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Kimberlites sample and transport exotic minerals from the mantle during their violent eruption 
to the surface. Weathering and transport of these indicator minerals (most importantly 
chromite, diopside, garnet, ilmenite, and olivine) gives the explorationist a trail to follow, which 
hopefully leads back to a kimberlite source. These mantle minerals are relatively rare, 
comprising less than 1% of surface material, which explains why explorationists collect dozens 
of sacks of soil and surface material which are then concentrated before the search for minerals 
starts. Individual mineral grains are usually less than 2 mm in diameter and some alter into 
other minerals during the weathering phase. The Aster satellite integrates reflected and emitted 
long wave infrared (LWIR) signals over a 90 × 90 m pixel - which may be regarded as a large-
scale geochemical sample. Mantle minerals have diagnostic spectra in the LWIR and their 
abundances may be mapped even under moderate vegetation and transported cover. This is 
done using a simple linear spectral mixing model. Kimberlite weathering products and 
indicator mineral maps estimated from space provide the explorationist with a cost-effective 
tool for regional diamond exploration. 

 
 

INTRODUCTION 
 
Before the Argyle lamproite, now a Tier 1 diamond mine in Australia, was discovered, it was thought 
that diamonds occurred only in ultrabasic volcanic rocks called kimberlites which erupted from the 
mantle and transported diamonds to the surface. 
 
Diamonds are not the only passengers. Chromite, chrome-diopside, garnet (pyrope [A1]  and eglogitic), 
picro-ilmenite, and olivine are minerals from the mantle which are also transported to the surface. These 
minerals have very distinct LWIR spectra, even when resampled to the five thermal spectral bands of 
the Aster satellite. 
 

 
 

Figure 1. LWIR spectra of some common kimberlite indicator minerals, resampled to Aster bands. 
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Aster has been collecting five bands of LWIR data at 90 m spatial resolution both day and night since 
2000 and is still functioning, well past its sell-by date. The five bands measure reflected and emitted 
thermal energy at 8.29, 8.63, 9.08, 10.66 and 11.32 μm. A database of over 3 million images exists and 
these images have been free since 1 April 2016. They are a useful database for explorationists.  
 
Images are downloaded as 60 × 60 km scenes, and we mosaicked four such scenes from two overflights 
of the Orapa area of Botswana. The westernmost pair of scenes were imaged on 7 May 2000 while the 
eastern ones were collected on 10 May 2001. All scenes are from early winter and as the area is arid 
semi-desert, standing pools of water were not a problem. There was no cloud cover. 
 

 
 

Figure 2. Reflected 9.1 μm mosaic of four  scenes over Orapa. The spatial extent is 140 × 140 km. 
 
 
METHOD AND RESULTS 
 
The data was compensated for atmospheric effects and the signal was decomposed into temperature 
and emissivity components using a proprietary technique described by Pendock (2016). It is this 
emissivity property of rocks that allows them to be mapped under cover, either transported regolith 
such as windblown sand or vegetation. For examples (see Pendock, 2016) while buried paleochannels, 
a potential source of alluvial diamonds, have been mapped using Aster LWIR data (see for example 
Thakur et al., 2016).  
 
As we know what spectra we are looking for, target detection algorithms seem the obvious processing 
strategy. Correlation of kimberlite weathering products and indicator mineral spectra with image pixels 
is the simplest such paradigm. Each image spectrum was correlated with the five mantle mineral spectra 
and the largest response for each pixel was retained. All five minerals feature in this simple classification 
of the scene. 
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Figure 3. Classification by assigning the label of maximum correlation mantle mineral to each pixel. 
 

 
 

Figure 4. Maximum correlation classes. 
 
Excluding pixels with a maximum correlation < 0.5 gives a more realistic interpretation. Of course these 
correlations simply indicate possible presence of mantle minerals which occur in tiny amounts in the 
scene, if at all. While their contribution may be small, mantle minerals, like chili in a bowl of pasta, can 
make their presence felt due to their unique spectral fingerprints. 
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Figure 5. Maximum correlations > 0.5. 
 
Given the relatively large spatial size of each pixel (90 m), plus the presence of an unknown background 
mineral (calcrete-derived carbonates, quartz, and iron oxides in the case of Orapa), a linear mixing 
model is arguably more realistic. If each pixel is decomposed into a non-negative linear combination of 
the five mantle mineral spectra, we achieve a spectral unmixing result. 
 

 
 

Figure 6. Linear spectral unmixing result. 
 
Only three mantle minerals feature in this interpretation, which is in effect a supervised classification 
of the scene. In practise we implement an unsupervised classification by finding a set of spectral 
endmembers (typically around 16) with sparse abundances that explain the variation present in the 
scene and account for the spectral response of background minerals, vegetation, and other features of 
the regolith. 
 
These spectral endmembers may be interpreted by comparing them to a spectral library measured in a 
laboratory. One benefit of this approach is that there is no unique spectrum for a mantle mineral as the 
reflected spectra are functions of grain size and texture.  
 
The American Johns Hopkins University spectral library of 324 minerals contains 14 garnet spectra and 
29 olivine spectra (Salisbury, 1991). Choosing a single target spectrum may lead to missing the source if 
we are blinded by preconceptions. 
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Figure 7. Ilmenite spectral abundances. 
 

 
 

Figure 8. Chromite spectral abundances. 
 

 
 

Figure 9. Olivine spectral abundances. 
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Figures 7–9 are likely wildly optimistic as to the actual amounts of indicator minerals present, but  
thresholding the largest olivine abundances and overlaying them on Google Earth along with the 
locations of 79 kimberlites in a database from the Botswana Geological Survey shows good spatial 
correlation between olivine abundance and kimberlite location. The internet link to this data is included 
as a reference. 
 

 
 

Figure 10. Olivine abundances correlate well with kimberlite locations, represented as white open circles. 
 

 
 

Figure 11. Olivine abundance around Damtshaa mine (kimberlites BK09 and BK12). 
 
The Damtshaa mine, here represented by two kimberlite pipes, and its dumps are evident on the image 
above, so is the olivine abundance contributing anything useful? Yes, as the scenes were collected three 
years before the mine opened.  Now it is well known that olivine rapidly weathers to serpentine, which 
is exactly what we observe in a shortwave infrared (SWIR) spectral decomposition of the same Aster 
image over the Orapa mine dumps. 
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Figure 12. Serpentine (weathered olivine) over the Orapa AK01 mine dumps. 
 
When the Aster images were collected, Damtshaa mine was just a few holes and trenches. 
 

 
 

Figure 13. False colour 15 m spatial resolution Aster visible near-infrared image over Damtshaa mine BK12 to 
the northwest and BK09 to the southeast. 

 
Decomposition of the scene into sparse linear combinations of 16 thermal spectral endmembers yields 
three spectra interpretable as ’olivine’. 
 

 
 

Figure 14. Three potential in-scene olivine endmembers. 
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Each endmember has an associated spatially sensible abundance. Sensible in that each has a contiguous 
geographical context. 
 

 
 

Figure 15. Corresponding abundances for three olivine in-scene spectral endmembers. 
 
One olivine endmember does a good job of mapping Damtshaa mine. It comprises barely 0.35% of the 
scene, which confirms another benefit of spectral unmixing over target detection through correlation – 
quantification of the amount of an endmember present in a pixel. 
 

 
 

Figure 16. Abundances of one olivine signature are relatively sparse. Colour indicates amount present. 
  



 

111 

 
 

Figure 17. Histogram of thermal abundances. 
 

 
 

Figure 18. The same endmember abundances at Damtshaa  mine (BK12 and BK09). 
 
The abundances for endmember 9 may comprise less than 0.35% of the scene yet map the soon-to-be-
developed mine at Damtshaa as well as the established Orapa mine, which was already in production 
when the satellite images were collected. As such, it is a useful target generator which may be integrated 
with other exploration data-sets. 
 
 
CONCLUSIONS 
 
Kimberlite weathering products and some indicator minerals can be rapidly and inexpensively mapped 
using Aster LWIR imagery. Remote satellite geochemistry is a cost-effective addition to the toolbox of 
the modern diamond exploration professional.  
 
The relatively poor spatial resolution of 90 m makes Aster imagery problematic for detailed exploration 
as kimberlite diameters are typically measured in the hundreds of metres, with kimberlitic dykes even 
smaller in cross-section. However airborne systems are currently available with two orders of 
magnitude more spectral bands than Aster and spatial resolution in the metres. The first explorationists 
to deploy such systems in environments where cover impedes traditional remote sensing methods 
(northern Canada, Angola) will likely be richly rewarded.  
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