Quasi-chemical viscosity model for fully liquid slags in the A1₂O₃-CaO-‘FeO’-SiO₂ system

A. KONDRATIEV and E. JAK
PYROSEARCH, Division of Mining and Minerals Process Engineering, The University of Queensland, Brisbane, Australia

A structurally-based viscosity model for fully liquid silicate slags has been developed and applied to the A1₂O₃-CaO-‘FeO’-SiO₂ system at metallic iron saturation. The model links the slag viscosity to the internal structure of melts through second nearest neighbour bonds concentrations taken from the quasi-chemical thermodynamic model. This viscosity model describes experimental data over the whole temperature and composition ranges within the A1₂O₃-CaO-‘FeO’-SiO₂ system at metallic iron saturation and can now be applied to other industrial slag systems.

Introduction

Development of a reliable and general model that would enable the viscosities of multi-component slag systems to be predicted over a wide range of compositions and temperatures is important for a number of industrial processes. Previously proposed slag viscosity models have recently been reviewed1-4. Most of the models are applicable to relatively limited composition and temperature ranges. In the present paper a general, structurally-based viscosity model for fully liquid silicate slags is developed and applied to the pseudo-quaternary Al₂O₃-CaO-‘FeO’-SiO₂ system in equilibrium with metallic iron.

Model description

Frenkel’s theory of liquids5-7 considers a liquid far from its critical point to possess a solid-like structure with molecules (or more generally, structural units) oscillating about near average positions in their energetic cells (potential wells)7. Higher oscillations result in the movement of a structural unit (SU) into an adjacent cell, provided the latter is vacant. These vacant cells, or holes, are formed in the liquid as a result of fluctuations in short range order or defects inherited from crystal structure, and are distributed randomly in the liquid.

If a shear force is applied to the liquid, the structural units will move not randomly, but preferentially in the direction of the applied force. From this point of view, the viscosity of liquid (reciprocal to its fluidity) as a reaction to the applied shear force is determined by two factors: the ability of structural units to jump over the potential barrier and the presence of holes in the liquid. Frenkel7 highlighted that in the general case of complex ionic solution, the height of potential barrier, which is related to the activation energy, depends on “the mutual action of the ions of each sign both on each other and on the ions of the opposite sign”, i.e. on the character and quantitative effect of interactions between different ions that make up the liquid. The concentration of holes in a liquid is related to the energy of hole formation7.

Based on the same postulates of liquid state and liquid viscosity initially formulated by Frenkel5-7, the Weymann-Frenkel8 and Eyring9-11 viscosity equations were derived. The Eyring approach has also been successfully applied to description of other kinetic processes, e.g. diffusion and chemical reactions6, and has been selected to describe the viscosities of liquid slag systems in the present work.

Viscous flow in Eyring theory10-11 is considered to be a thermally activated kinetic process in which the structural unit (SU) (atom or molecule in simple liquids) goes from one equilibrium position to another, jumping over a potential barrier. Considering two layers of structural units, one sliding past the other under the influence of an applied shear force and taking certain assumptions, the following equation was derived8 to describe the viscosities of liquid:

\[
\eta = \frac{2RT}{\Delta E_{\text{evap}}} \left(\frac{2m_{SU}kT}{v_{SU}} \right)^{\frac{1}{2}} \exp \left(\frac{E_a}{RT} \right)
\]

where \(R \) is the gas constant, \(k \) is the Boltzmann constant, \(T \) is the absolute temperature, \(\Delta E_{\text{evap}} \) is the energy of vaporization, \(E_a \) is the activation energy, and \(m_{SU} \) and \(v_{SU} \) are the weight and volume of the structural unit. The activation energy \(E_a \) is related to the potential barrier that has to be overcome by a structural unit to move to the available hole. The energy of vaporization \(\Delta E_{\text{evap}} \), which was also called by Bockris12 ‘work of hole formation’, is closely related to the probability of the formation of a hole, or a free volume in the liquid9. For simple liquids, the energy of vaporization can be approximately expressed through the latent heat of vaporization11. The Eyring equation has successfully been applied to describe viscosities of liquid silicates13,14.

The Equation [1] requires the definition of a structural unit and contains four parameters affected by this definition: weight and volume of SU, activation energy, and energy of vaporization. These parameters are clearly related to the internal structure of liquids, the types of structural units and the interactions between them. Silicate slags are
known to have complex internal structures; these should be taken into account in defining the structural units participating in the viscous flow, describing their interactions as a function of their concentrations, and in their incorporation into the viscosity model (Equation [1]).

Definition of structural units

It has been proven that silicate slags possess complex internal structures determined by composition and temperature\(^\text{15-17}\). A silicate slag may be assumed to consist of nearly close-packed arrangements of oxygen anions with smaller metal cations occupying the interstices; these anions and cations interact to form ionic bonds\(^\text{15}\). Fincham and Richardson\(^\text{18}\) suggested a silicate slag can be considered to consist of three types of oxygens: ‘bridging’ (O\(^0\)—connected to two silicon cations); ‘non-bridging’ (O—connected to only one silicon); and ‘free’ (O\(^2\)—associated with non-silicon cations). This concept has been successfully used in numerous models related to the silicate slag structure. Figure 1 gives a simplified two-dimensional picture of the internal structure of the binary slag system MeO-SiO\(_2\) that follows from the Fincham-Richardson concept.

From the theoretical description of the viscous flow\(^\text{7,9}\) and from the existing interpretation of the internal structure of the slags\(^\text{18}\) it can be suggested that viscous flow of the silicate slag may be viewed as a movement of oxygen ions together with metal cations associated with them, under a shear force applied (see Figure 1). Based on this view it is proposed that the structural units for the silicate slag viscous flow description can be defined as oxygen anions with metal cations partly associated with them. The structural units defined this way are indicated in Figure 1 by shaded areas.

There are clearly a number of different types of structural units that involve oxygen associated with various combinations of metal cations. For example, for the binary MeO-SiO\(_2\) silicate slag (see Figure 1) three types of structural units can be identified (Si-Si), (Me-Si) and (Me-Me); and their concentrations will be indicated as X\(_{\text{Si-Si}}\), X\(_{\text{Me-Si}}\) and X\(_{\text{Me-Me}}\).

Weight and volume of structural units

The average molecular weight \(m_{\text{SU}}\) and average volume \(v_{\text{SU}}\) of structural units in the binary MeO-SiO\(_2\) system can be expressed through the concentrations of different structural units present in the melt in the following form:

\[
\begin{align*}
\text{Weight} & \quad m_{\text{SU}} = m_{\text{Si-Si}} X_{\text{Si-Si}} + m_{\text{Me-Si}} X_{\text{Me-Si}} + m_{\text{Me-Me}} X_{\text{Me-Me}}, \\
\text{Volume} & \quad v_{\text{SU}} = v_{\text{Si-Si}} X_{\text{Si-Si}} + v_{\text{Me-Si}} X_{\text{Me-Si}} + v_{\text{Me-Me}} X_{\text{Me-Me}},
\end{align*}
\]

where \(m_{\text{Si-Si}}\), \(v_{\text{Si-Si}}\), \(X_{\text{Si-Si}}\), \(m_{\text{Me-Si}}\), \(v_{\text{Me-Si}}\), \(X_{\text{Me-Si}}\) and \(m_{\text{Me-Me}}\), \(v_{\text{Me-Me}}\), \(X_{\text{Me-Me}}\) are the weights, volumes and the molar fractions of the (Si-Si), (Me-Si), and (Me-Me) structural units, respectively. Weights \(m_{\text{Si-Si}}\), \(m_{\text{Me-Si}}\) and \(m_{\text{Me-Me}}\) are equal to the weights of single molecules of the liquid Si\(_{10}\)O\(_9\), Me\(_{10}\)O\(_{20}\) and Me\(_{10}\)Si\(_{20}\)O\(_{5}\) respectively, where \(n\) is the oxidation state of a metal cation Me\(^n\). It was assumed that the volumes of the structural units are independent of composition; thus, \(v_{\text{Si-Si}}\) and \(v_{\text{Me-Me}}\) are equal to the volumes of single ‘molecules’ of the liquid Si\(_{10}\)O\(_9\) and
Me$^{+2}$SiO$_2$, respectively. The experimental data on the densities of the corresponding liquid orthosilicates22,24 have been used to calculate νMe-Si. If no experimental data have been found, a linear approximation between pure components was used to estimate these values. It has also been assumed that the volumes of the structural units do not change with temperature. Average uncertainty in density value caused by these assumptions is estimated for some binary systems to be approximately ±5%. The effect of this uncertainty on the slag viscosity does not exceed ±3%; and is 1% on average for most of the slags and is compensated for by other parameters.

Activation and vaporization energies

As it was quoted above, according to Frenkel, the activation energy of viscous flow (or the height of potential barrier) and the concentration of holes in a liquid (or the energy of viscous flow) can then be assumed to be proportional to the partial molar activation energies and concentrations of each type of SU. Thus, in the binary system MeO-SiO$_2$ the molar activation energy can be expressed as follows:

$$E_a = E_{a,Si-Si} X_{Si-Si} + E_{a,Me-Me} X_{Me-Me}.$$ \[4\]

where $E_{a,Si-Si}$ and $E_{a,Me-Me}$ are the partial molar activation energies and X_{Si-Si} and X_{Me-Me} are the molar fractions of each type of SU, respectively.

A given structural unit involves one oxygen and two metal cations. Each of these two metal cations in turn has other neighbours and is involved in other structural unit(s). The forces holding the first considered SU (and therefore corresponding partial molar activation energy) are assumed to depend on the nearest neighbours each of these two metal cations have. For example, if the two Si cations forming a (Si-Si) structural unit have other metal cation neighbours (Figure 2a), they will have a different partial activation molar energy compared to a case when some or all other neighbours are silicon ions (Figures 2b and 2c). The effects of neighbouring structural units on a partial activation energy is assumed to depend on the concentrations of the other types of structural units, so the partial molar activation energy of each type of SU in the Equation [4] can be calculated as follows:

$$E_{a,Si-Si} = E_{a,Si-Si}^0 + E_{a,Si-Si}^{1}\chi_{Si-Si} + E_{a,Si-Si}^{2}\chi_{Si-Si}^2 + E_{a,Si-Si}^{3}\chi_{Me-Me}X_{Me-Me}.$$ \[5\]

To satisfactorily describe the experimental data in the binary silicates it was necessary to introduce a term in X_{Si-Si}.

Extensive analysis of the experimental data for a number of silicate systems indicated that adequate description of ΔE_{vap} as a function of X_{Si-Si} can be achieved in the following form (for the binary system MeO-SiO$_2$):

$$\Delta E_{vap} = \exp \left\{ E_{v,Si-Si} X_{Si-Si} + E_{v,Me-Me} X_{Me-Me} \right\}.$$ \[8\]

where $E_{v,Si-Si} X_{Si-Si}$ and $E_{v,Me-Me}$ are the partial vaporization energies of each type of a structural unit, and X_{Si-Si}, X_{Me-Si} and X_{Me-Me} are the molar fractions of corresponding types of structural units.

Charge compensation effect

It has been found experimentally16 that Al$^{3+}$ can replace Si$^{4+}$ in tetrahedral coordination positions if the excess negative charge for Al$^{3+}$ is compensated by the presence of alkali or alkaline earth cations, thus keeping the silicate network structure instead of breaking it. As a result, associates of the form Me$^{+}$AlO$_2$ or Me$^{2+}$Al$_2$O$_4$ are formed in the melt. This is commonly referred to as the ‘charge compensation effect’. A number of experimental studies in the Al$_2$O$_3$-(Me$_2$,Me)O-SiO$_2$ systems3,16 also reported behaviour of viscosity as a function of composition, which can be attributed to the charge compensation effect25. For example, in the Al$_2$O$_3$-CaO-SiO$_2$ system the viscosity was reported to have a maximum at $X_{CaO}/X_{Al_2O_3} = 1.5$. The same phenomenon was observed in other Al$_2$O$_3$-(Na$_2$O, K$_2$O, MgO)-SiO$_2$ systems. The current quasi-chemical model does not describe the charge compensation effect28. In order to describe the viscosity behaviour in the Al$_2$O$_3$-(Ca, Fe)O-SiO$_2$ systems, the following charge compensation term therefore is added to the activation energy of viscous flow:

$$E_a^{ch/c} = E_a^{1/ch} + (2X_{Al-Me} + X_{Al-Me})^\alpha + (2X_{Me-Me} + X_{Me-Me})^\beta.$$ \[9\]

where $E_a^{1/ch}$ is proportional to the concentrations of (Si-Si) structural units, reflecting the fact that the charge compensation effect appears only in the presence of the silicate network.

Experimental data

The review and selection of most of the available experimental sources of viscosity data for the Al$_2$O$_3$-CaO-

Figure 2. Examples of different nearest neighbours of a given (Si-Si) structural unit
‘FeO’-SiO\textsubscript{2} system in equilibrium with metallic iron (including all its sub-systems) have recently been described by the authors in detail elsewhere39: a few additional studies30,37 have also been reviewed and some of them used in the present work. Altogether approximately 4 700 experimental points for the four-component system Al\textsubscript{2}O\textsubscript{3}-CaO-‘FeO’-SiO\textsubscript{2} have been critically analysed.

Experimental measurements of slag viscosities at high temperatures are subject to a number of error sources. Aggressive molten slags may dissolve container and sensor materials, resulting in changes of slag composition and of container/sensor geometry. Post-experimental analysis of experimental points for the four-component system Al\textsubscript{2}O\textsubscript{3}-CaO-‘FeO’-SiO\textsubscript{2} have also been reviewed and some of them used. Over 3 700 experimental points were selected for the optimization in total.

Optimization procedure

The mass and volume of each of the structural units were determined first using available density data. A viscosity value at a given composition then is dependent on two parameters—\(\Delta E_{\text{evap}}\) and \(E_a\). The same viscosity can be obtained with different values of \(\Delta E_{\text{evap}}\) and \(E_a\) in case there is no other constraint, i.e., temperature dependency information for a given composition. This factor was taken into account and the parameters for the viscosity model were optimized in two steps: (1) the ‘experimental’ activation and vaporization energies were found for those experimental points with the available temperature dependency at a given composition; (2) the calculated viscosities were then fitted into all other accepted experimental values over the whole composition range in the four-component system Al\textsubscript{2}O\textsubscript{3}-CaO-‘FeO’-SiO\textsubscript{2}. ‘Experimental’ values for the activation and vaporization energies in the first stage of optimization were found using Equation [1] by fitting into experimental viscosities at each

\[
m_{\text{SS}} \left[10^{-26} \text{ kg}\right] = 4.99X_{\text{Si-Si}} + 5.64X_{\text{Al-Al}} + 9.31X_{\text{Ca-Ca}} + 11.93X_{\text{Fe-Fe}} + 5.32X_{\text{Al-Si}} + 7.15X_{\text{Ca-Si}} + 8.46X_{\text{Al-Fe}} + 7.48X_{\text{Al-Ca}} + 8.79X_{\text{Fe-Fe}} + 10.62X_{\text{Ca-Fe}}; \quad [10]
\]

\[
v_{\text{SS}} \left[10^{-20} \text{ m}^3\right] = 2.49X_{\text{Si-Si}} + 1.88X_{\text{Al-Al}} + 2.78X_{\text{Ca-Ca}} + 2.03X_{\text{Fe-Fe}} + 2.13X_{\text{Al-Si}} + 2.67X_{\text{Ca-Si}} + 2.82X_{\text{Al-Fe}} + 2.99X_{\text{Al-Ca}} + 3.51X_{\text{Fe-Fe}} + 4.25X_{\text{Ca-Fe}}; \quad [11]
\]

\[
E \left[10^6 \text{ J/mol}\right] = E_{\text{a-Si-Si}}X_{\text{Si-Si}} + E_{\text{a-Al-Al}}X_{\text{Al-Al}} + E_{\text{a-Ca-Ca}}X_{\text{Ca-Ca}} + E_{\text{a-Fe-Fe}}X_{\text{Fe-Fe}} + E_{\text{a-Al-Si}}X_{\text{Al-Si}} + E_{\text{a-Ca-Si}}X_{\text{Ca-Si}} + E_{\text{a-Al-Fe}}X_{\text{Al-Fe}} + E_{\text{a-Ca-Fe}}X_{\text{Ca-Fe}} + E_{\text{a-Al-Ca}}X_{\text{Al-Ca}} + E_{\text{a-Ca-Fe}}X_{\text{Ca-Fe}} \text{ where}
\]

\[
E_{\text{a-Si-Si}} = 1.94 - 4.55X_{\text{Si-Si}} + 8.06X_{\text{Si-Si}}^2 + 7.29X_{\text{Al-Si}} + 0.91X_{\text{Ca-Si}} + 2.63X_{\text{Fe-Si}}; \quad E_{\text{a-Al-Al}} = 1.29 + 0.64X_{\text{Al-Al}} + 3.31X_{\text{Al-Ca}} - 0.80X_{\text{Al-Fe}}; \quad E_{\text{a-Ca-Si}} = 0.82 - 1.11X_{\text{Ca-Si}} + 1.44X_{\text{Al-Ca}} - 0.12X_{\text{Ca-Fe}}; \quad E_{\text{a-Al-Fe}} = 0.50 - 0.25X_{\text{Fe-Fe}} - 0.58X_{\text{Al-Fe}} - 0.09X_{\text{Ca-Fe}}; \quad E_{\text{a-Al-Ca}} = 2.53 - 1.96X_{\text{Al-Si}} - 1.58X_{\text{Ca-Si}} - 1.50X_{\text{Fe-Si}} + 3.15X_{\text{Al-Ca}} - 4.90X_{\text{Al-Fe}}; \quad E_{\text{a-Ca-Fe}} = 2.26 - 1.05X_{\text{Ca-Si}} + 1.00X_{\text{Fe-Si}} - 0.76X_{\text{Al-Ca}} - 1.10X_{\text{Ca-Fe}}; \quad E_{\text{a-Al-Fe}} = 0.63 - 0.43X_{\text{Fe-Si}} + 1.50X_{\text{Al-Fe}} - 3.30X_{\text{Ca-Fe}}; \quad E_{\text{a-Al-Ca}} = 0.37 + 1.20X_{\text{Al-Ca}} + 1.31X_{\text{Al-Fe}} + 0.87X_{\text{Ca-Fe}}; \quad E_{\text{a-Ca-Fe}} = 1.20 - 0.60X_{\text{Al-Fe}} - 0.28X_{\text{Ca-Fe}}E_{\text{a-Al-Ca}} = 0.67 - 0.12X_{\text{Ca-Fe}}; \quad E_{\text{a-Al-Ca}} = 4.60 \left(2X_{\text{Al-Al}} + X_{\text{Al-Si}} + X_{\text{Al-Ca}}\right)^{2/3} \left(2X_{\text{Ca-Ca}} + X_{\text{Ca-Si}} + X_{\text{Al-Ca}}\right)^{2/3}; \quad E_{\text{a-Al-Ca}} = 2.40 \left(2X_{\text{Al-Al}} + X_{\text{Al-Si}} + X_{\text{Al-Ca}}\right)^{2/3} \left(2X_{\text{Ca-Ca}} + X_{\text{Ca-Si}} + X_{\text{Al-Ca}}\right)^{2/3}; \quad \Delta E_{\text{evap}} \left[\text{J/mol}\right] = \exp \left(E_{\text{vSi-Si}}X_{\text{Si-Si}} + E_{\text{vAl-Al}}X_{\text{Al-Al}} + E_{\text{vCa-Ca}}X_{\text{Ca-Ca}} + E_{\text{vFe-Fe}}X_{\text{Fe-Fe}} + E_{\text{vAl-Si}}X_{\text{Al-Si}} + E_{\text{vAl-Ca}}X_{\text{Al-Ca}} + E_{\text{vCa-Fe}}X_{\text{Ca-Fe}} + E_{\text{vAl-Fe}}X_{\text{Al-Fe}} + E_{\text{vCa-Fe}}X_{\text{Ca-Fe}}\right) \text{ where}
\]

\[
E_{\text{vSi-Si}} = 27.69 - 19.60X_{\text{Si-Si}} + 14.00X_{\text{Si-Si}}^2 + 3.22X_{\text{Al-Si}} - 6.01X_{\text{Ca-Si}} + 0.1X_{\text{Fe-Si}}; \quad E_{\text{vAl-Al}} = 13.93 + 9.02X_{\text{Al-Al}} + 21.51X_{\text{Fe-Fe}} + 14.28X_{\text{Fe-Fe}} = 11.75; \quad E_{\text{vCa-Ca}} = 19.15 - 6.03X_{\text{Al-Si}} + 0.50X_{\text{Ca-Si}} + 9.60X_{\text{Fe-Si}} + 18.60X_{\text{Ca-Fe}}; \quad E_{\text{vAl-Ca}} = 14.67 + 22.75X_{\text{Fe-Fe}} - 0.70X_{\text{Al-Ca}} = 9.62 + 0.40X_{\text{Fe-Si}} - 5.30X_{\text{Al-Si}} + 69.80X_{\text{Ca-Fe}}; \quad E_{\text{vAl-Fe}} = 16.58, \quad E_{\text{vAl-Ca}} = 11.37, \quad E_{\text{vCa-Fe}} = 11.39.
particular composition by adjusting constants E_a and ΔE_{vap}. The ‘experimental’ values of ΔE_{vap} and E_a obtained in the first step of optimization were also used together with the viscosity values.

After initial parameters, estimation the cycle of parameter adjustment from unary, binary and ternary systems to the quaternary data and back was repeated until satisfactory agreement with all accepted experimental data was achieved. The final set of model parameters therefore describes the experimental viscosities as well as the experimental activation and vaporization energies. The parameters of the quasi-chemical viscosity model for the Al$_2$O$_3$-CaO-'FeO'-SiO$_2$ system at iron saturation are given by Equations [10–13]:

Results and discussion

In assessing the ability of the model to describe the viscosities of slags over a wide range of compositions, temperatures and oxygen pressures, two separate issues should be considered: (1) the inherent scatter in the available data and (2) the description of these data by the model.

Internal scatter is always present within a particular dataset and between different experimental sources (see Figure 3), which we will further refer to as ‘internal variability’. The scatter within a given data set (Figure 3a) is usually called ‘repeatability’. The scatter between different data sets (Figure 3b) is usually referred to as ‘reproducibility’. It can be seen from Figure 3 that the scatter can be very high compared to the experimental uncertainty reported by different authors. It is sometimes possible to reject a particular dataset because of inaccuracies of the experimental technique used (see section ‘Experimental data’), but in many cases the internal variability determines the limits of the best agreement achievable in terms of a given viscosity model. The procedure used in the present study to evaluate the internal variability of the experimental dataset in the Al$_2$O$_3$-CaO-'FeO'-SiO$_2$ system at metallic iron saturation is outlined below. First, the following assumptions have been made:

1. Weymann-Frenkel equation27 for a given composition can perfectly describe temperature dependence of the slag viscosity;
2. Within a narrow composition range the modified Urbain model29 can perfectly describe compositional dependence of the slag viscosity.

All experimental data for each sub-system have been subdivided into small compositional areas (within 5 mol pct)

![Figure 3. Internal scatter of experimental data: (a) within one dataset, (b) between different datasets](image)

Table I. Internal variability and model evaluation factor for available systems.

<table>
<thead>
<tr>
<th>System</th>
<th>Accepted points</th>
<th>Internal variability, %</th>
<th>Model evaluation factor, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>modified Urbain model29</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>38</td>
<td>9.6</td>
<td>13.0</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>51</td>
<td>9.0</td>
<td>19.1</td>
</tr>
<tr>
<td>Al$_2$O$_3$-SiO$_2$</td>
<td>58</td>
<td>5.3</td>
<td>30.1</td>
</tr>
<tr>
<td>Al$_2$O$_3$-CaO</td>
<td>65</td>
<td>10.3</td>
<td>76.0</td>
</tr>
<tr>
<td>CaO-SiO$_2$</td>
<td>205</td>
<td>7.3</td>
<td>10.9</td>
</tr>
<tr>
<td>Al$_2$O$_3$-CaO-SiO$_2$</td>
<td>597</td>
<td>17.1</td>
<td>31.2</td>
</tr>
<tr>
<td>'FeO'-SiO$_2$</td>
<td>432</td>
<td>5.0</td>
<td>8.1</td>
</tr>
<tr>
<td>CaO-'FeO'-SiO$_2$</td>
<td>819</td>
<td>8.4</td>
<td>9.9</td>
</tr>
<tr>
<td>Al$_2$O$_3$-CaO-'FeO'</td>
<td>44</td>
<td>12.1</td>
<td>86.6</td>
</tr>
<tr>
<td>Al$_2$O$_3$-CaO-'FeO'-SiO$_2$</td>
<td>1448</td>
<td>21.2</td>
<td>29.2</td>
</tr>
<tr>
<td>Average</td>
<td>3757</td>
<td>10.5</td>
<td>31.4</td>
</tr>
</tbody>
</table>
Figure 4. Viscosities of the: (a) pure Al₂O₃; (b) pure 'FeO'; (c) pure SiO₂

Figure 5. Viscosities of the: (a) Al₂O₃-SiO₂; (b) CaO-SiO₂; (c) 'FeO'-SiO₂
and the best fit for each small area was found by adjusting appropriate parameters. Since the compositional areas were so small, the true viscosity values could have been approximated within them with very high precision. The overall deviations from these fits can then be taken as an indicator of the internal variability of experimental data for each sub-system. Table I presents the number of accepted data points, internal variability of these data, and model evaluation factor for each sub-system in the Al2O3-CaO-'FeO'-SiO2 system. Both the internal variability and model evaluation factor were calculated using the formula proposed by Mills et al.46:

\[\Delta = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\eta_{calc}^i - \eta_{ex}^i}{\eta_{ex}^i} \right)^2, \]

where \(N \) is a number of points and \(n \) is a particular slag system, the subscripts calc and ex refer to the calculated and experimental viscosities at a given composition and process condition.

It is clearly seen that the description of the experimental viscosities in the Al2O3-CaO-'FeO'-'SiO2' system at metallic iron saturation provided by the quasi-chemical viscosity model is in general better than the modified Urbain model. Significant improvements in description have been achieved in certain systems (e.g. Al2O3-SiO2, Al2O3-CaO) as well as for the whole system. The average uncertainty for the quasi-chemical viscosity model assessed by the model evaluation factor for 10 slag systems and over 3 700 experimental points is 16.6 pct, which is almost half that for the modified Urbain model. These latter data are rejected due to the obvious inconsistency with the other results. Figure 4b shows the viscosities for the 'FeO' at metallic iron saturation. Both authors31,49 did not report that the atmosphere was controlled during the experiments. Lopatin et al.31 used molybdenum crucibles, but reported that the slag composition contains 91.5 per cent of FeO. These data therefore can be plotted on the unary graph for comparison. Figure 4b indicates a large discrepancy between these two studies. Predicted viscosities therefore were optimized as close to the recommended by Slag Atlas values3 as possible.

Figure 4a represents the viscosities of the pure Al2O3 oxide versus reciprocal temperature. It can be seen from the figure that the predictions of the QC viscosity model are close to the average between all experimental data except Hofmaier48. These latter data are rejected due to the obvious inconsistency with the other results. Figure 4b shows the viscosities for the 'FeO' at metallic iron saturation. Both authors31,49 did not report that the atmosphere was controlled during the experiments. Lopatin et al.31 used molybdenum crucibles, but reported that the slag composition contains 91.5 per cent of FeO. These data therefore can be plotted on the unary graph for comparison. Figure 4b indicates a large discrepancy between these two studies. Predicted viscosities therefore were optimized as close to the recommended by Slag Atlas values3 as possible. The experimental26,50-52 and predicted viscosities of the pure SiO2 are given in Figure 4c. The detailed analysis29 indicated that the optimization should be based mostly on two consistent studies by Urbain26 and by Hofmaier41. It can be seen from Figure 4c that the present model predictions describe experimental viscosities better than those of the previous model29.

Figure 5a represents the viscosities of the Al2O3-SiO2 system at 2173 and 2273 K. The present model describes the experimental results26,27,30 in general better than the modified Urbain model. Agreement between the calculated and experimental viscosities26,27,33,34,48,56 in the CaO-SiO2 system at 1873, 1973 and 2073 K is shown at Figure 5b. Results of Shiraishi et al.33 as well as of Saito34 appeared inconsistent with the other measurements, and therefore were not used in the present optimization. More weight has been given to the data by Urbain26. This resulted in a difference between the present model and the modified Urbain model at higher SiO2 concentrations. Figures 5c presents the experimental29,45,57 and calculated viscosities in the 'FeO'-SiO2 system in equilibrium with metallic iron at 1573 K. The priority has been given to the most recent studies29,42-43.
Good agreement between the model predictions and experimental viscosities26,27,34,48,58-63 in the Al\textsubscript{2}O\textsubscript{3}-CaO-SiO\textsubscript{2} system at 1773 K is demonstrated in Figure 6. Results of Saito et al.34 differ significantly from the others and have been rejected. Iso-viscosity curves repeat trends of the iso-SNNB curves. For example, approaching pure CaO the influence of (Ca-Si) structural unit concentrations becomes very strong resulting in ‘waves’ in viscosity curves at SiO\textsubscript{2} contents less than 40 wt%. This is due to the fact that the present viscosity model is closely related to the slag structure, which in turn is described by the SNNB concentrations. This can be taken as confirmation of the predictive power of the present model.

Figure 7 presents the experimental viscosities26-27 and calculated isocons in the Al\textsubscript{2}O\textsubscript{3}-CaO-FeO-SiO\textsubscript{2} system in equilibrium with metallic iron at 1473 K and 10 wt% of ‘FeO’. Trends of iso-viscosity curves are very similar to those of the modified Urbain model29 except in low silica area. Data by Chen et al.36 was not accepted for the optimization due to the inconsistency with the other studies. Sheludyakov et al.37 did not report either the atmosphere of experiments or post-experimental analysis done. These results were also not accepted for the optimization.

Conclusions
A quasi-chemical viscosity model has been developed for liquid slag in the Al\textsubscript{2}O\textsubscript{3}-CaO-FeO-SiO\textsubscript{2} system in equilibrium with metallic iron, this model is directly related to the internal slag structure. The structures of the slags have been determined from the second nearest neighbour bond concentrations extracted from the modified quasi-chemical model available in the FactSage package. The model parameters are valid for the whole range of compositions in the Al\textsubscript{2}O\textsubscript{3}-CaO-FeO-SiO\textsubscript{2} system.

The method of estimating the internal variability of experimental data has been suggested. This method can be used to evaluate the best achievable fit of a viscosity model. The present model has in general a better agreement than the modified Urbain model29 in the binary systems. The model predicts the slag viscosities reasonably well over the whole composition range in the Al\textsubscript{2}O\textsubscript{3}-CaO-FeO-SiO\textsubscript{2} system at metallic iron saturation. The model can now be extended to other chemical systems and various industrial applications.

Acknowledgements
The authors would like to acknowledge the Australian Research Council for financial support of this project. The authors would also like to acknowledge the significant contribution of Professor Peter C. Hayes to this study and express special thanks to him for valuable discussion and comments.

References

