The effect of substituting fractions of imported coking coals with coke oven tar on coal blend, carbonization, and coke properties
SS Makgato, R.M.S. Falcon

In this study, coke oven tar additions over a range of 0–8 wt.% were evaluated as a possible substitute for imported coal fractions. The coke oven tar used was collected from tar decanters in the byproducts section of the coking plant. The moisture content in the tar varied depending on the residence time and water carryover from the coke oven tar separators to the storage tanks. Moisture contents of 1 wt.%, 3 wt.%, and 6 wt.% were investigated in order to evaluate the effect on coal blend, carbonization, and coke properties. At 6 wt.% moisture content with 6 wt.% coke oven tar, although the coke quality improved the yield showed a 4% decrease. On the other hand, 1 wt.% moisture content with coke oven tar of 6 wt.%, increased the yield by 1% and the coke quality improved. However, the latter process was characterized by an excessive increase in wall pressure and pushing energy, both of which are detrimental to the oven walls. The optimum moisture content in coke oven tar was found to be 3 wt.% with a coke oven tar addition of 6 wt.% in the coal blend. With these conditions, the coke properties improved and wall pressure and pushing energy were acceptable. However, a decrease in coke yield of up to 2% was observed. Despite this, coke oven tar addition is considered to be a viable option based upon economic factors of a reduction in the quantity and cost of imported coking coals that is required to achieve the same optimum final coke product. Keywords
coal substitution, coke oven tar, tar moisture, coal blend, coke, coke quality.