
Prologue 

Daniel Krige’s influence on soil science, and on
soil survey in particular, has been profound.
Yet, I suspect that Daniel did not realize it. Some
25 years ago I found myself close to his holiday
home in the Cape Province and visited him
there. We chatted over coffee. I told him how we
were adapting and developing geostatistics for
mapping soil. He was encouraging, but he was
not surprised: of course the technology was
applicable in our domain. What he did not know
was the base from which we were starting. He
could not know how Aristotelian logic, with its
emphasis on classification, had constrained
both soil scientists’ thought and their mapping
practices for more than half a century; it was
not his field. So before I describe some of our
achievements, I provide a little history. 

I began my professional career in Africa.
The year was 1957. The British Colonial Office,
with the fiasco of the East African Groundnut
Scheme fresh in its collective mind, recruited me
to evaluate the suitability of land for
agricultural development in  what was then
Northern Rhodesia, now Zambia. It became my
job to survey and map soils for that purpose.
My training in Britain, based on the identifi-
cation of distinct classes of soil in a way similar
to that of much geological survey at the time,
ill-equipped me for what I should find. There
were no obvious boundaries between one kind
of soil and another on the deeply weathered
rocks of the Zambian plateaux. The soil seemed
to vary gradually over the landscape, though in
repetitive patterns on a grand scale in
sequences for which Milne (1936) had earlier
coined the term ‘catena’. Furthermore, the fairly
dense miombo woodland in the north of country
meant that one could rarely see for more than a
few tens of metres, and air-photo interpretation
had so far been of little help. Surveys had to be
done almost entirely by sampling, and mapping
by interpolation from the point observations.
How was I to interpolate? There must be some
method better than by hand and eye. I was no
nearer to answering my question when in 1960
I was invited by Philip Beckett to pursue the
matter at Oxford University alongside the Royal
Engineers. The aim was to predict soil
conditions at unvisited places.

Many influential pedologists at the time
were convinced that if one knew to which class
of soil a site belonged then one would be able to
predict the soil’s properties there. Beckett and I
were far from convinced. 

A few engineers had begun to realize that
the problem was essentially statistical and were
toying with a combination of classical soil maps
and prediction statistics based on stratified
random sampling in which the classes of the
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maps were the strata. Morse and Thornburn (1961) published
statistics obtained by sampling agricultural soil maps in
Illinois, and a year later Kantey and Williams (1962) reported
results of sampling engineering soil maps in South Africa. We
planned a thorough study along similar lines. We classified
and mapped a large part of the Oxfordshire landscape, sampled
it to a stratified random design, and measured properties of the
soil. Then by analysis of variance we assessed our classifi-
cation for its effectiveness in (a) diminishing the variances
within the classes and (b) predicting values with acceptable
precision. We also assessed maps made and sampled by
several of our collaborators. We had mixed success. Our map of
the Oxford region enabled us to predict the mechanical
properties of the soil reasonably well. It predicted relatively
poorly the soil’s pH and organic matter content, and it was
useless for predicting the plant nutrients in the soil. Table I
from Webster and Beckett (1970) summarizes our results. 

First steps 

Despite our partial success, even in the most favourable
situations there was substantial residual variation for which
we could not account. Some we might treat as white noise, but
much was evidently structural. We had not solved the problem
of the catena or any other form of gradual change or trend. If
we simply drew boundaries in those situations then the
residuals would be spatially correlated. At about the same time,
trend-surface analysis was becoming fashionable in geography
and petroleum exploration, but it was unsatisfactory because
(a) fluctuation in one part of a region affected the fit of the
surface elsewhere and (b) the residuals were correlated so that
calculated prediction variances were biased. 

I was joined from Mexico by H.E. Cuanalo in 1968. He
pointed out that time-series analysts have similar problems,
and they treat actuality as realizations of stochastic processes
to describe quantitatively fluctuations in time. Could we not do
the same for soil? So we switched our thinking from the
classical mode and took a leap of imagination; we should treat
the soil as if it were random – against all the tenets of the day! 

The Sandford transect I 

To test the feasibility of the approach we sampled the soil at 10
m intervals on a transect 3.2 km long across the Jurassic
scarplands of north Oxfordshire, near Sandford St Martin, and
measured several properties of the soil at each point (Webster

and Cuanalo, 1975). Correlograms computed from the data
showed strong spatial correlation extending to 200–250 m.
This distance corresponded approximately to the average width
of the outcrops and to the evident changes in soil. If we filtered
out the variation due to the presence of the distinct underlying
Jurassic strata we discovered that there was still spatial
correlation in the residuals, though with a range of only about
80 m. Figure 1 shows an example, here with variograms 
rather than correlograms, for the clay content in the subsoil 
(±65 cm). The points on the graphs, the experimental
semivariances, are computed by the usual method of moments
at 10 m intervals, and the spherical functions are fitted by
weighted least squares with the ‘fitnonlinear’ command in
GenStat (Payne, 2013) with weights proportional to the
numbers of paired comparisons – see also below. Table II
summarizes the statistics and Table III lists the fitting
parameters.

From today’s viewpoint  the situation seems obvious. We
had two sources of variation, one from class to class, which we
might treat as a fixed effect; and the other within classes,
which we should treat as random. We needed a mixed model to
describe it. I return to the matter below. 

Nested sampling and analysis 

I spent the year 1973 working with B.E. Butler, doyen of
Australian pedology in the CSIRO. Our first task was to
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Table I

Components of variance and intra-class
correlations for a soil classification in Oxfordshire
(from Webster and Beckett, 1970)

Variance components
Soil property Mean Between Within ri

classes classes

Strength (cone index) 138 1248 510 0.71
Clay content, % 37.2 112.3 90.2 0.61
Plastic limit, % 38.8 125.6 111.4 0.53
pH 7.1 0.161 0.326 0.40
Organic matter, % 9.8 3.96 9.48 0.28
Available P, % 0.031 0.000113 0.00114 0.09
Available K, % 0.013 6.0×10-6 93.9×10-6 0.06

Figure 1—Variograms of the percentage of clay in the subsoil (65 cm)
along a transect in north Oxfordshire. The upper sequence of points is
of the raw data; the lower sequence is the variogram of the data after
the means of the individual stratigraphic outcrops have been filtered
out. The curve between the two is the model fitted by REML. The
models fitted, shown by the lines, are spherical with nugget:

and exponential with nugget:

The values of the parameters c0, c, r, and a are listed in Table III



discover the spatial scale(s) on which soil properties varied on
the Southern Tablelands of Australia. We sampled to a
balanced spatially nested design and estimated the components
of variance from a hierarchical analysis of variance (ANOVA),
quite unaware that the technique had been proposed 36 years
earlier by Youden and Mehlich (1937) and published in their
house journal, or that it had been used by geologists Olsen and
Potter (1954) and Krumbein and Slack (1956) in the
intervening years, and then forgotten. We summed the
components to form rough variograms and discovered that
different soil properties varied on disparate scales in that
complex landscape (Webster and Butler, 1976). Figure 2
shows such variograms of two of the variables. Notice that the
spacings in the design increase in logarithmic progression. At
about the same time Miesch (1975) had the idea of applying
the same techniques for geochemistry and ore evaluation. 

Along the bottom of the graph are the degrees of freedom
with which the components are estimated. You will see that as
one moves from right to left on the graph, i.e. as the scale
becomes increasingly fine, the number of degrees of freedom
increases twofold with each step after the first. If one wants
more steps on the graph for a more refined picture, then
maintaining balance by doubling the sampling soon becomes
unaffordable. The increased precision at the shorter lag
distances is also unnecessary. Margaret Oliver recognized the
problem and sacrificed balance and analytical elegance for
greater efficiency for studying the soil in the Wyre Forest of
England. She and I designed a five-stage hierarchy but without
doubling all branches of the hierarchy at the lowest stage, and
we programmed Gower’s (1962) algorithm to estimate the
components of variance (Oliver and Webster, 1987). Shortly
afterwards Boag and I devised an extreme form of unbalanced
hierarchy with equal degrees of freedom at all stages, apart
from the first, in a study of the distribution of cereal cyst
nematodes in soil, and again we estimated the components of
variance by Gower’s method (Webster and Boag, 1992). We
have since replaced Gower’s method, which though unbiased is
not  unique, by the more efficient residual maximum likelihood
method (REML) of Patterson and Thompson (1971). A full
account of the procedures and guide to computer code can be
found in Webster et al. (2006). 

That paper, however, is not the last word; since then Lark
(2011) has sought to optimize hierarchical spatial sampling. If
he assumed that the variances contributed at spacings
incremented in a logarithmic progression were equal, then
neither the fully balanced design nor the one that distributed
the degrees of freedom equally was best; the optimal design
was intermediate between the two. Webster and Lark (2013)
summarize the search mechanism using simulated annealing
to find the optimum and the results. 

The last three publications cited above should ensure that
this efficient, economical way of obtaining a first rough
estimate of the variogram in unknown territory will not be
forgotten. It should be a part of any geostatistician’s toolkit. 

Gilgai and spectral analysis 

A second topic in my Australian research was to investigate
the repetitive spatial patterns of gilgais. Gilgais are typically
shallow wet depressions a few metres across in otherwise flat
plains, and their patterns seemed to be regular. The question
was: is there some regularity? and if so what are its character-
istics?

As in north Oxfordshire, I sampled the soil at regular
intervals on a transect on the Bland Plain of New South Wales
(Webster, 1977). The transect was almost 1.5 km long and
was sampled at 4 m intervals. Table IV summarizes the
statistics. The correlograms of several properties appeared
wavy, and I transformed them to their corresponding power
spectra. I illustrate the outcome with results for just one
variable, the electrical conductivity in the subsoil (30–40 cm)
converted to logarithms to stabilize the variance and with the
variogram instead of the correlogram (Figure 3). The function
fitted to the experimental variogram comprises four
components, namely nugget, spherical, linear, and periodic.
Figure 4 shows the spectrum computed with a Parzen lag
window of width 60 sampling intervals. Notice the strong peak
at approximately 0.12 cycles corresponding to the wavelength
of 34 m in the model fitted to the variogram. 
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Table II

Statistical summary of data on the clay content
(percentage by mass) in the subsoil (±65 cm) of
north Oxfordshire

Raw data

Mean 39.1
Median 36.0
Variance 936.81
Class means OLS REML 

estimates estimates
Sharp’s Hill Beds (clay) 61.3 75.4
Great Oolite (limestone) 33.4 42.3
Lower Estuarine Beds (silt) 12.9 15.1
Chipping Norton Limestone (limestone) 9.5 10.8
Chipping Norton Limestone (sand) 15.1 25.2
Upper Lias (clay) 69.9 50.3
Pleistocene and Recent (silt and clay) 55.8 51.0
Middle Lias (ironstone) 41.4 43.4
Middle and Lower Lias (clay) 68.6 67.5

Figure 2—Accumulated variances as proportions of the total variances
forsoluble potassium in the soil and the water held at –10 kPa
estimated by hi-erarchical analysis of variance from nested spatial
sampling at Ginninderra, Australia. The numbers immediately above the
abscissa are the degrees of freedom at the spacings (data from
Webster and Butler, 1976)
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The patterns are two-dimensional, of course, and one
would like to extend the above analysis in two dimensions.
Despite the remark above, sampling the soil at sufficient places
for such analysis was prohibitively expensive. An alternative
was to analyse aerial photographic images of the Bland Plain,
on which the gilgais appear typically as roughly circular dark
patches on a paler background. Milne et al. (2010) took this
approach.

But how could we use this intelligence to interpolate? 
Perhaps the most significant event during my sojourn in

Australia occurred a week or so before I was due to leave. A
complete stranger breezed into my office without a by-your-
leave and asked me bluntly, ‘What’s this kriging?’. I had never
heard the term before, and rather than plead complete
ignorance I played for time. Who was this intruder? and why
did he ask? He was Daniel Sampey, a mining geologist. I let
him talk, which he did for about 20 minutes. He told me of a
certain Professor Krige and Georges Matheron, of the theory of
regionalized variables and of its application in geostatistics.
Then, clearly disappointed that I knew even less than he did,
he left as abruptly as he had arrived. His parting shot was that
as I was about to return to Britain I should visit Leeds
University, where mining engineers knew a thing or two. In
those 20 minutes I realized that my problem of spatial
prediction of soil conditions at unvisited places had been
solved, at least in principle, and in general terms I understood
how. On my return to Britain I contacted Anthony Royle at
Leeds. He amplified what Daniel Sampey had told me, and he
generously gave me a copy of his lecture notes on the subject
and some references to the literature, including Matheron’s
(1965) seminal thesis.

Back in Oxford I was joined by Trevor Burgess, a young
mathematician. Together we turned Matheron’s equations into
algorithms and the algorithms into computer code. Our first
scientific papers appeared in 1980 (Burgess and Webster,
1980a, 1980b; Webster and Burgess, 1980). They were the
first to describe for soil scientists the variogram as we know it
today and the first to display maps of soil properties made by
kriging. It is from there that geostatistics in soil science
burgeoned to become a branch of science with its own identity,
pedometrics, and its magazine Pedometron
(http://pedometrics.org/?page id=33 for the latest issue). 

Soil: an ideal medium for geostatistics 

Soil is almost the ideal medium for practical geostatistics. It
forms a continuous mantle over large parts of the Earth’s land
surface. Access is easy over much of that, so that sampling at
the working scale of the individual field, farm, or estate can be
cheap. Some of soil’s most important properties, such as pH,
concentrations of the major plant nutrients and trace elements,
salinity, and pollutant heavy metals are also cheap to measure
nowadays: pedometricians need not be short of data for these
variables, and from large databases they can estimate spatial
covariance functions or variograms accurately. The statistical
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Figure 3—Experimental variogram of log10 (electrical conductivity) in the
subsoil (30–40 cm) of the soil on the Bland Plain of New South Wales
showing points and the four-component model fitted to it

Table IV

Summary statistics of electrical conductivity in the
soil at 30–40 cm on the Bland Plain of New South
Wales

Electrical conductivity

mS cm-1 log10(mS cm-1)

Minimum 0.06 –1:214
Maximum 5.10 0.707
Mean 0.958 –0:2298
Median 0.54 –0:2668
Variance 0.95948 0.19205
Skewness 1.64 0.10

Table III

Estimated parameters of variogram of the clay
content in the subsoil (≈65 cm) of north
Oxfordshire

Model type
Spherical Exponential

c0 c r/m c0 c a/m

Raw data 120.6 580.3 207.0
OLS residuals 108.4 296.4 79.2
REML residuals 77.5 505.3 67.3

Figure 4—Power spectrum log10 (electrical conductivity) in the subsoil
(30 – 40 cm) of the soil on the Bland Plain of New South Wales derived
from the correlogram and smoothed with a Parzen lag window of width
60 sampling intervals. Note that frequency is the reciprocal of sampling
interval



distributions of these properties are in most instances ‘well-
behaved’ in that they are either close to normal (Gaussian) or
to lognormal, so that in the latter situation a simple transfor-
mation to logarithms makes analysis straightforward and
efficient. Furthermore, although the laws of physics must be
obeyed as soil is formed, the numerous processes that operate
and have operated in combination over many millennia to form
the present-day soil have produced a complexity that is
indistinguishable from random (Webster, 2000). So, we can
often treat soil as the outcome of random processes without
harming our professional reputations. 

It is a small step from there to assume that soil variables
are intrinsically stationary. In the conventional notation 

E[Z(x) – Z(x + h)] = 0 for all x [1]

and

E[{Z(x) – Z(x + h)}2 ] = 2γ(h) for all x ; [2]

where Z(x) and Z(x + h) denote random variables at places x
and x + h, and vector h is the separation, or lag, between them
in the two dimensions of soil survey. Ordinary kriging follows.
From the 1980s onwards it has become the workhorse of
geostatistics in surveys, not only of soil itself but also in the
related fields of agronomy, pest infestation, and pollution;
there are hundreds of examples of its application described in
the literature. It is proving to be valuable in modern precision
agriculture in particular – see Oliver (2010) and the topics
therein.

Disjunctive kriging required a somewhat larger advance in
technique. Matheron (1976) formulated it for selection in
mining. Pedologists saw in it the means of estimating and
mapping the probabilities of nutrient deficiencies over land
grazed by cattle and sheep (Webster and Oliver, 1989; Webster
and Rivoirard, 1991) and of contamination by potentially toxic
metals (von Steiger et al., 1996). In both situations thresholds
are specified to trigger action. In the first, the thresholds are
minimum concentrations of available trace elements such as
copper and cobalt. If the soil contains less than these
thresholds then stock farmers are advised to supplement their
animals’ feed or to add salts of the elements to their fertilizers.
However, kriged estimates of concentrations are subject to
error, and farmers do not want to risk deficiencies by taking
those estimates at face value. They want in addition estimates
of the probabilities, given the data, that patches of ground are
deficient. In the second situation the thresholds are maxima, in
excess of which authorities must clean up or restrict access.
Again, estimated concentrations are more or less erroneous,
and an authority will wish to have estimates of the
probabilities of excess before spending taxpayers’ money on
unnecessary remediation or risking poisoning people or
grazing animals by doing nothing. 

Nonlinear modelling of variograms 

Throughout the 1980s one of the most serious stumbling
blocks in practical geostatistics was the lack of software in the
public domain for fitting models to sample variograms. Many
practitioners fitted models by eye, and they defended their
practice with vigour. In some instances, estimated
semivariances fell neatly on smooth curves that matched one
or other of the standard valid variogram functions, and in
those circumstances the practice was reasonable. But in many
other situations, choosing and fitting functions to experimental

variograms were, and remain, problematic. Some experimental
variograms are erratic, usually because they are derived from
rather sparse data. In some the numbers of paired comparisons
vary greatly so that it is hard to know how to weight the points
on graphs. The variation can be strongly anisotropic, so that
again one cannot see what models might fit. And there can be
combinations of these. 

All of the popular functions, apart from the unbounded
linear model, contain nonlinear distance parameters, and these
cannot be estimated by ordinary least-squares regression.
Some, such as the exponential and power functions, can be re-
parameterized so that they are linear. Others, such as the
spherical and related functions, cannot; they must be estimated
by numerical approximation, and doing that requires expertise
in numerical analysis. Rothamsted had that expertise; Ross
(1987) had written his program, MLP, for nonlinear
estimation, and we soil scientists used it to advantage for
fitting models to experimental variograms (McBratney and
Webster, 1986). The algorithms were incorporated in GenStat,
Rothamsted’s general statistical program, now in its 16th
release (Payne, 2013), to provide the facilities for estimating
and modelling spatial covariances completely under the control
of the practitioner and with transparent monitoring of the
processes. These facilities include the choice of steps, bins and
maximum lags; the robust estimates of Cressie and Hawkins
(1980), Dowd (1984), and Genton (1998) in addition to the
usual method of moments; and variable weighting according to
the expected values, as suggested by Cressie (1985). They
include also the linear model of coregionalization for two or
more random variables. 

The facilities are readily called into play from menus.
Alternatively they can be built into programs in the GenStat
language, so that one can proceed from raw data, via their
screening, distributions, and transformation, variography,
kriging and cross-validation, to final output as gridded
predictions, back-transformed if necessary, and their variances
ready for mapping. GenStat (http://www.vsni.co.uk/
software/genstat) is immensely powerful and is available in
the public domain for a modest price. 

Statistical modelling is no longer novel, and it has largely
replaced fitting models by eye. Unfortunately, the pendulum
has swung too far towards automation. Too often, modelling is
now a blinkered push-button exercise in a geographic
information system applied with little understanding or control
and no facilities for monitoring. 

Where are we now? Mixed models incorporating trend
and other knowledge 

Although the assumption of intrinsic stationarity has seemed,
and continues to seem, easily satisfied there are two situations
in which it is not satisfactory. The first is where there is
geographic trend – ‘drift’ in the geostatistical jargon – and for
which Matheron (1969) devised universal kriging. Universal
kriging itself requires no more than an augmentation of the
ordinary kriging system. Obtaining a valid estimate of the
variogram of the random component of variation is more
difficult, because what is required is the variogram of the
residuals from the drift, and one cannot know what the
residuals are until one has correctly identified the drift.
Webster and Burgess (1980) recognized the situation, and to
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map the soil’s electrical resistivity over an archaeological site
that had been sampled on a dense grid they programmed the
algorithms set out by Olea (1975) for the purpose. 

Trend is a kind of knowledge in addition to the sample
data. There are other kinds of additional knowledge about soil.
The variable of interest, the target variable, might be related to
one or more other variables that the pedologist knows or can
measure cheaply at the prediction points. Or, as at Sandford
mentioned above, there might already be a classification of the
region that could partition the variance. How should one take
this knowledge into account? 

For some years pedologists answered with a pragmatic
approach; they called it ‘regression kriging’. They regressed by
ordinary least squares (OLS) the target variables on the
predictors, which could be the geographic coordinates for trend,
the ancillary variables they measured, or the classes of the
regions being mapped. They estimated variograms of the OLS
residuals, kriged the residuals, and then added back the
estimates from the regression equations at the prediction sites
– see, for example, Odeh et al. (1995). The predictions are
unbiased, but the prediction variances are underestimated,
partly because the variograms are biased (Cressie, 1993) and
partly because there is no valid way of combining the errors
from the kriging and the OLS regressions. The problem was to
estimate simultaneously the regression or deterministic
component with minimum variance and the random residuals
from the regression without bias, and then to sum the
predictions of the deterministic and random variation at
unsampled sites with known minimized variance. The solution,
pointed out by Stein (1999), was to use maximum likelihood
methods and to obtain what he called the empirical best linear
unbiased predictor (E-BLUP). The basic maximum likelihood
technique can be biased; residual maximum likelihood (REML)
is not, and soil scientists, especially my colleague Murray Lark
and co-workers, are now at the forefront among geostatis-
ticians in its application. 

The basic model underlying the E-BLUP is the linear mixed
model:

Z(x) = wβ + ε(x); [3]

in which the vector w, with K+1 columns, contains the K+1
elements 1; x1;  …  ; xK of the regression function and β
contains the coefficients. The quantity ε(x) is the random
residual from the regression. It is assumed to be second-order
stationary with mean zero and covariance function C(h),
which, because of that assumption, has the equivalent
variogram ϒ(h) = C(0) – C(h). Its parameters are typically a
nugget variance, c0, a structural variance, c, and a distance
parameter, a, which we may denote in short by θ ≡ (c0, c, a}.

One finds values for the parameters in θ numerically by
maximizing the log-likelihood of the residuals given the data:
L [θ|z (Xd)]. Having found them, one then estimates the
coefficients in β by generalized least squares, and with both
sets of values known one can proceed to the kriging for
prediction with its variances. Webster and Oliver (2007, pp.
200–202) provide the details. In 2006 Lark et al. (2006) called
the technique ‘state of the art’, and though their solution by
simulated annealing was still in the research phase, they
showed the way forward. Now, with facilities in the public
domain in SAS (http://support.sas.com/documen-tation),
GenStat (Payne, 2013), and R (R Core Development Team,
2010; Pinheiro et al., 2013), for example, it can be applied as
best practice. 

Lark et al. (2006) illustrated their solution by kriging the
soil’s water content in a field with a strong trend. Later,
Webster and Oliver (2007) incorporated both trend and an
external drift variable – the apparent electrical conductivity of
the soil – to predict and map the soil’s sand content in another
field. The comparisons they made of the variograms obtained
using REML with those of the raw data and the OLS residuals
are instructive, and I summarize them below. 

Drift at Yattendon 

Oliver and Carroll (2004) sampled a 23 ha field on the Chalk
downland of southern England, and they measured, among
other variables, the percentage of sand in the topsoil (0–15 cm)
at 230 places. Their map in pixel form showed a strong
regional trend. In addition they measured the apparent
electrical conductivity, ECa, of the soil. In this field the ECa and
the sand content are linearly related, and so one can treat the
ECa as an external drift variable when predicting the
proportion of sand. Webster and Oliver (2007) compared four
treatments of the data: 

(a) Analysis of the raw data 
(b) Ordinary least-squares regression on the spatial

coordinates
(c) REML to incorporate spatial trend 
(d) REML to incorporate both spatial trend and ECa as

external drift.
Figure 5 shows the variograms from the four treatments,

and Table V lists the values of parameters of the spherical
models fitted to them. The variogram of the raw data, Figure
5(a), increases to an apparent sill at a lag distance of approxi-
mately 200 m, and then increases beyond with ever-increasing
gradient. The latter increase is characteristic of long-range
trend. If one fits a quadratic trend surface by OLS regression
and then models the variogram of the residuals one obtains
Figure 5(b). Evidently the residuals are much less variable
than the raw data, but they are also autocorrelated, and so the
OLS regression gives a faulty representation of the truth.
Figure 5(c) shows the REML variogram of the residuals with
the quadratic trend fitted as a deterministic (fixed) effect. Its
sill at 176.4%2 is substantially larger than that of the OLS
residuals in Figure 5(b). By taking into account the additional
knowledge of the relation between sand content and ECa as
external drift in the REML analysis one obtains the variogram
shown in Figure 5(d), now with a sill of only 151.6%2.

Webster and Oliver (2007) went on to map the sand
content by punctual kriging from the data at the nodes of a fine
grid of 5 m × 5 m using these variograms. The maps of the
predicted values were similar, as might be expected because
kriging is so robust. The kriging variances differed substan-
tially. Those for ordinary kriging from the raw data were quite
the largest; they had a mean of 63.2%2. The mean variance for
the OLS residuals was 52.0%2, which we know to be an
underestimate. That for the universal kriging, i.e. incorporating
the spatial coordinates only, item (c) above, was 53.5%2, and
the mean for kriging with the external ECa in addition, item
(d), was 48.2(%)2. The example shows that the more pertinent
information we have the more accurate are our predictions. 

The Sandford transect II 

The analysis above of the Sandford transect also used what we
know about the environment, in that instance, the stratigraphy
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of the rocks beneath the soil as represented by the geological
map. We may criticize it for the same reasons as we now
criticize the early regression kriging based on the simple OLS
residuals: the sampling was at regular intervals, not random,
and so the within-class variances would be biased and perhaps
the mean values also. Murray Lark, whom I thank, has kindly
re-analysed the data based on the model of Equation [3], but
now with β containing the mean value of the stratigraphic class
to which position x belongs and w taking the value 1 if x
belongs to that class. So again we use REML to find both the
class means and the variogram of the residuals. 

Table II lists the mean values as estimated both by
ordinary least squares and by REML. The differences among
the latter are highly significant statistically; the Wald statistic is
33.12, which, with 8 degrees of freedom, gives a probability of
< 0:0001 for the null hypothesis. The best-fitting variogram of
the residuals estimated by REML turns out to be exponential

with parameter values listed in Table III. I have plotted it on the
same graph as the variograms of the raw data and OLS
residuals to show the comparisons in Figure 2. Its sill (c0 + c =
582.4%2) is substantially larger than that (c0 + c = 404:8%2)
of the OLS residuals. It has a different shape from the first two,
and its effective range (3 x 67.3 = 201.9 m) is comparable to
the range (207.0 m) of the variogram of the raw data and
much larger than that of the OLS residuals (79.2 m). 

Nonstationary variances 

A more intractable stumbling block in the spatial prediction of
soil properties is that of nonstationary variances. The field
pedologist knows well that some parts of a landscape are more
variable than others: for example, the flood plain of a braided
river does not vary in the same way or on the same spatial
scale as the river’s higher catchment. At Sandford the soil
seemed not to vary equally on all sedimentary outcrops, and
Lark and Webster (1999) introduced wavelets into soil science
to investigate the matter. 

A wavelet is a function that varies within a narrow window
and is constant at zero outside. The window is moved step by
step, i.e. translated, over the field of data, and at each position
it is convolved with the data in the window to obtain its
coefficient. The window can be also be dilated and again
translated so that a new set of coefficients are obtained at a
different scale. By plotting the results against spatial position
one can see where and on what spatial scales the variance
changes (e.g. Lark and Webster, 2001; Milne et al., 2011).
Milne et al. (2010) also analysed aerial photographs of the
gilgai patterns on the Bland Plain. Their results accorded well
with, and augmented, those from the earlier spectral analysis
above.

What is not yet clear is how we should take into account
nonstationary variance in prediction, unless we have abundant
data and can segment fields of data into zones of stationary
variance. Some progress has been made by Paciorek and
Schervish (2006) using a new class of nonstationary
covariance functions, and by Haskard et al. (2010), who
combined the linear mixed model with spectral tempering. This
should be a matter of further research in the years to come. 

Epilogue 

We soil scientists are greatly indebted to Daniel Krige. Perhaps
without his realizing, it was on his pioneering technology that
we built and advanced in our own field; the technology and the
ideas behind it released us from the constraining mind-set of
earlier years and opened up a whole new field of endeavour –
pedometrics. We should thank also Daniel Sampey; I shall not
forget him. Who knows how much longer we should have
groped at snail’s pace towards the solution of our problem of
spatial prediction had he not burst into my office in Australia
that day 40 years ago? Finally, we should recognize the recent
achievements of Murray Lark. His penetrating study of drift in
its various forms, its estimation as part of the linear mixed
model, and his clear and convincing writing (e.g. Lark 2012)
have set soil scientists on a new and sound course in regional
prediction and mapping – see, for example, the papers by
Philippot et al. (2009) and Villanneau et al. (2011).
Furthermore, with packages for the analysis now in the public
domain we have no excuse for inferior practice.

Technological developments for spatial prediction of soil properties
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Figure 5—Variograms of the sand content of the topsoil at Yattendon:
(a) of the raw data; (b) of the ordinary least-squares residuals from
quadratic trend; (c) of the residuals from REML with quadratic trend; (d)
of the residuals from REML with quadratic trend and ECa. The
parameters are listed in Table V

Table V

Model parameters of spherical variogram models*
fitted to sand content (percentage) at Yattendon,
England

Analysis c0 c c0 + c r/m

Raw data 26.1 208.7 234.8 252.4
OLS residuals from quadratic trend 10.4 104.3 114.7 101.5
REML with quadratic trend 16.6 1 59.8 176.4 175.8
REML with quadratic trend and ECa 21.7 129.9 151.6 208.7

* The symbols c0, c, and r are the conventions for nugget, sill of the
correlated variance, and the range, respectively, for the model as given at
the foot of Figure 1
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