Air drying of fine coal in a fluidized bed
M Le Roux, QP Campbell, MJ van Rensburg, ES Peters, C Stiglingh

The demand for energy has continued to rise worldwide in line with population growth. The majority of South Africa’s electricity is supplied by coal-fired power stations. The amount of fine coal (-2 mm) generated at coal processing plants has increased, due mainly to mechanized mining methods. Fine coal retains more water, which lowers its heating value. Drying the coal is costly and it is difficult to achieve the required moisture content. Consequently, coal fines are often discarded. An estimated 8% of the total energy value of mined coal is lost1. Fluidized bed technology is often used to dry coal thermally, but this method is expensive and has an adverse environmental impact. The objective of this study was to investigate the removal of moisture from fine coal (<2 mm) in a fluidized bed operated with dry fluidizing air at moderate temperatures as the drying agent. The effects of different air temperatures and relative humidity levels were investigated in a controlled environment. The study further investigated the influence of coal particle size on moisture removal.
The drying rate was found to increase with increasing temperature. The relative humidity of the drying air had a more pronounced effect on the drying rate, even at temperatures as low as 25°C.. It became more challenging to remove moisture as the particle size decreased. The gain in calorific value was greater than the energy required to dry the coal samples, showing that a fluidized bed using moderately warm dry air is an energy-efficient drying technology. The energy efficiency of the fluidized bed compared favourably with other thermal drying methods.
Keywords: coal fines, drying, fluidized bed, energy efficiency.