
Many developing nations depend on
exploration and exploitation of mineral
resources to sustain their economic growth.
Usually, the traditional mineral exploration
techniques require enormous finances,
prolonged time, and tremendous manpower,
particularly in areas that are not easily
reachable (Maduaka, 2014). Furthermore,
mineral exploration required state-of-the-art
techniques and expertise along with
geological, geochemical, and geophysical data-
sets, which may not be easily available or may
be lacking where access is problematic (Kaiser
et al., 2002; Bemis et al., 2014). Modern
remote sensing technology has proved to be
one of the highly efficient and robust
techniques used for mineral exploration. The
use of remote sensing satellite images for
geological mapping and mineral exploration
usually involves studying the physicochemical

properties of rocks and weathering soils, such
as mineralogy, landforms, geochemical
signatures, and the spatiall distribution of
lineaments (Bhattacharya et al., 2012). 

A fundamental principle of mineral
exploration is that it is quite possible that
undiscovered deposits will be located in the
close vicinity of discovered ones. For example,
if mining is taking place in a particulat area,
then similar minerals will be more likely found
nearer to the discovered deposit, and as the
distance increases, the likelihood of new
discoveries will decrease. In that situation,
before drilling exploratory boreholes at new
locations, remote sensing can be used
effectively to identify regions with higher
chances of mineralization, mainly through
multi- or hyperspectral remote sensing images
(Gholami, Moradzadeh, and Yousef, 2012;
Ciampalini et al., 2013). The use of reflectance
spectroscopic information derived from remote
sensing data allows effective localization of
mineral exploration and reduces the cost and
time spent on fieldwork for geological,
geophysical, and geochemical studies (Short
and Lowman Jr, 1973; Tedesco, 2012;
Marjoribanks, 2010). Several remote sensing
studies for mineral exploration and lithological
mapping have been done in arid and semi-arid
regions. In areas with good geological
exposure, satellites in orbit are capable of
acquiring spectral reflectance data directly
from rock or/and soils (Sabins, 1999; Di
Tommaso and Rubinstein, 2007; Zhang et al.,
2007; Pour and Hashim, 2012; Mahboob,
Iqbal, and Atif, 2015).
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Mapping of hydrothermally altered areas, which are usually associated
with mineralization, is essential in mineral exploration. In this research,
open source reflectance spectroscopy data from the multispectral
moderate-resolution Landsat 8 satellite was used to map altered rocks in
the Gauteng and Mpumalanga provinces of South Africa. The unique
spectral reflectance and absorption characteristics of remotely sensed
Landsat data in the visible, near-infrared (NIR), shortwave-infrared
(SWIR) and thermal infrared (TIR) regions of the electromagnetic
spectrum were used in different digital image processing techniques. The
band ratios (red/blue, SWIR 2/NIR, SWIR 1/NIR), spectral band
combinations (Kaufmann ratio, Sabins ratio) and principal component
analysis (Crosta technique) were applied to efficiently and successfully
map hydrothermal alteration minerals. The results showed that the
combination of spectral bands and the principal component analysis
method is effective in delineating mineral alteration through remotely
sensed satellite data. The validation of results by using the published
mineral maps of the Council for Geoscience South Africa showed a good
relationship with the identified zones of mineralization. The methodology
developed in this study is cost-effective and time-saving, and can be
applied to inaccessible and/or new areas with limited ground-based
knowledge to obtain reliable and up-to-date mineral information.
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Mapping hydrothermal minerals using remotely sensed reflectance spectroscopy data

Hydrothermal alteration minerals with diagnostic spectral
absorption properties in the visible and near-infrared through
the shortwave length infrared regions can be identified by
multispectral and hyperspectral remote sensing data as a tool
for the initial stages of porphyry copper and epithermal gold
exploration (Di Tommaso and Rubinstein, 2007; Zhang,
Pazner, and Duke, 2007; Ramakrishnan and Bharti, 2015).
In general, porphyry copper deposits are formed by
hydrothermal alteration of fluids. These altered rocks can be
identified through their spectral characteristics in the visible
and infrared wavelengths (Pour and Hashim, 2012). Many
minerals have unique and characteristic spectral properties,
with a specific amount of electromagnetic (EM) energy
reflected and/or absorbed at a particular wavelength, which
can be used to identify them with a high degree of
confidence. The portion of the electromagnetic spectrum from
0.4 to about 2.5 μm (the visible, near-infrared, and
shortwave-infrared region) is useful to sense the geological
features with moderate and low-temperature properties
because most of the sunlight is reflected in this portion of the
spectrum (Mahboob, Iqbal, and Atif., 2015a).

Usually, Iron oxides, oxyhydroxides, and ligands can be
mapped very well in this range of the electromagnetic
spectrum because of their high- or low-temperature alteration
characteristics (Clark et al., 1990). This portion of the
spectrum can also be used for differentiation between silicate
(clay) minerals and other features. This spectral
differentiation of minerals has been the basis for the use of
this technique in mineral exploration (Calvin, Littlefield, and
Kratt, 2015). The thermal infrared (TIR) portion of the
spectrum, usually from 7 to 14 μm, senses the energy emitted
from the Earth's surface. In addition to water, carbonates,
and sulphates, this region of the electromagnetic spectrum is
also sensitive to Si-O bonds in silicates (Repacholi, 2012;
Udvardi et al., 2017; Manley, 2014). The spectral signatures
of some typical minerals (calcite, orthoclase feldspar,
kaolinite, montmorillonite, and haematite) that can be clearly
and confidently mapped using reflectance spectroscopy data
(i.e. hyperspectral data) are shown in Figure 1.

In this study, the identification of hydrothermally altered
rocks and features associated with hydrothermal
mineralization in South Africa’s Gauteng and Mpumalanga
provinces is examined using Landsat 8 (originally known as
Landsat Data Continuity Mission (LDCM)) remote sensing
reflectance spectroscopy.

The study areas for this research were Roodepoort and
Westonaria in Gauteng Province and Witbank and Kriel in
Mpumalanga Province, as shown in Figure 2. 

Gauteng's name is derived from the Sotho, ‘Gauta’ which
means ‘gold’, with the local suffix ‘-eng’. Gauta has been
taken from the Dutch word for gold, ‘goud’. The main
economic sectors are financial services, business services,
logistics, communications, and mining. The most significant
geological formation in Gauteng is the Witwatersrand
Supergroup. Gold in this region was derived from granite-
greenstone terranes and transported to and concentrated in
the Witwatersrand Basin by fluvial activity. Gauteng was
built upon the wealth of gold found deep underground, i.e.
almost 40% of the world’s reserves (Durand, 2012). 

Mpumalanga is another mineral-rich province of South
Africa. The general geology of of this area consists of
mudrock, siltstones, sandstones, conglomerate, and several
coal seams. Mpumalanga accounts for 83% of South Africa's
coal production. Ninety per cent of South Africa's coal
consumption is used for electricity generation and the
synthetic fuel industry (Dabrowski et al., 2008). 

Usually, ASTER is the most commonly used satellite data for
hydrothermal mineral mapping and exploration. However,
since 2008, ASTER’s six SWIR sensors have not been
operational because of malfunctioning (Wessels et al., 2013).
Landsat data is also free and is used in mapping and
exploration of hydrothermally altered minerals and rocks. In
this research, the cloud-free level 1T (L1T) data from the
Landsat 8 satellite (path 170 / row 78) recorded in August
2017 was used. Landsat images are processed in units of
absolute radiance using 32-bit floating-point calculations.
These values are then converted to 16-bit integer values in
the finished Level 1 product (Chander and Markham, 2003).
Landsat 8 is equipped with the Operational Land Imager
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(OLI) and the Thermal Infrared Sensor (TIRS); their spatial
and spectral characteristics are shown in Table I. A single
Landsat 8 image covers an area of 170 km (north-south) by
183 km (east-west). 

The pre-processing of raw satellite images is necessary to
obtain geometrically and atmospherically corrected images so
that the spectral information can be extracted and analysed.
The raw satellite images of the study areas are shown in
Figure 3.

The geometric correction entails the georeferencing of
satellite images with respect to ground control points in order
to obtain pixels with the same dimensions. For atmospheric
corrections there are two different approaches: relative
normalization (Schroeder et al., 2006) and absolute
correction (Chavez, 1996; Song and Woodcock, 2003).
Relative normalization includes radiometric correction of the
Landsat data-sets with respect to a reference image based on
the correlation between pseudo-invariant objects from multi-
date images (Song et al., 2001). Absolute correction can be
subdivided into two more categories: empirical and physical-

based methods. In the empirical approach, the spectral
properties of the ground features are used for transforming
the spectral data from the sensor’s radiance to ground
reflectance. Empirical methods are simple but do not
incorporate the pixel-to-pixel variation in atmospheric effects,
whereas the physical-based methods, such as
Atmospheric/Topographic CORrection or ATCOR (Richter,
1997), MODerate resolution atmospheric TRANsmission or
MODTRAN (Berk et al., 1998), and the Satellite Signal in the
Solar Spectrum (6S) code (Vermote et al., 1997), incorporate
the heterogeneity of the atmosphere but require several
complicated and manual procedures, which make it difficult
to process large amounts of satellite data. On the other hand,
the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) software (Masek et al., 2006), which has
implemented the 6S code, made atmospheric correction for
Landsats 4–7 fully automated. Recently, Vermote et al.
(2016) derived an improved atmospheric correction algorithm
for Landsat 8 (L8SR), which has shown an improvement
over the ad-hoc Landsat 5–7 LEDAPS product. The modified
LEDAPS product was applied in this study for atmospheric
corrections as shown in Figure 4.

As OLI band 1 (coastal aerosol) is useful for imaging shallow
waters and band 9 (cirrus) for detecting high-altitude clouds
and tracking fine particles like dust and smoke, these two
bands were not included in further analysis. Moreover,
according to the literature, for mineral exploration mapping
the most appropriate bands are located in the visible, NIR,
and SWIR regions. In this research study, OLI bands 2–7 and
TIRS bands 10–11 were used for advanced processing. All
these bands were stacked as a single image using the layer
stacking digital image processing technique (Mahboob, Atif,
and Iqbal, 2015).

Usually, the L1T images of Landsat 8 consist of the digital
numbers (DNs), which cannot be used due to lack of
physically meaningful information and should be converted
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Table I

1 Coastal aerosol 0.43 - 0.45 30
2 Blue 0.45 - 0.51 30
3 Green 0.53 - 0.59 30
4 Red 0.64 - 0.67 30
5 Near-Infrared (NIR) 0.85 - 0.88 30
6 Shortwave-Infrared (SWIR) 1 1.57 - 1.65 30
7 Shortwave-Infrared (SWIR) 2 2.11 - 2.29 30
8 Panchromatic 0.50 - 0.68 15
9 Cirrus 1.36 - 1.38 30
10 Thermal-Infrared (TIRS) 1 10.60 - 11.19 100
11 Thermal-Infrared (TIRS) 2 11.50 - 12.51 100



to surface reflectance. This conversion is required for
quantification of different features in remote sensing data as
it incorporates solar conditions (geometry, illumination, and
intensity) when the images were captured. In this study, the
data was converted to Top of Atmosphere (TOA) reflectance
using radiometric coefficients as recommended by Roy et al.
(2016), whereby DNs were converted to reflectance
representing the ratio of the radiation reflected from a surface
to the radiation striking it (Han and Nelson, 2015), as shown
in Figure 5.

Equation [1] was used to convert DN values to TOA
reflectance (Zanter, 2016):

[1]

where
= Top of Atmosphere Planetary Reflectance

(dimensionless)
M = Reflectance multiplicative scaling factor for the

band
A = Reflectance additive scaling factor for the band
Qcal = Level 1 pixel value in DN

= Solar elevation angle (degrees).

The data captured by Landsat 8 represents the reflected
and/or emitted spectral energy, which can be further used
based on the absorption characteristics of spectra to detect
different materials and features of the Earth’s surface. Some
minerals and mineral groups in hydrothermally altered rocks
have unique absorption characteristics in the EM spectrum.
For example, some alunite and clay ores have unique
absorption features at approximately 2.1 μm, and their
spectral responses are much higher at approximately 1.7 μm

(Sabins, 1999). Usually, minerals like iron oxide and
sulphate have low and high reflectances in the
ultraviolet/blue and near-infrared portion of the EM spectrum
respectively (Johnson et al., 2016), hence these minerals
have a rusty shade in a natural colour image.

Band-ratioing is a digital image-processing technique that
enhances the contrast between features by dividing a
measure of reflectance for the pixels in one band by that of
the pixels in another band of the same satellite image. This
technique has been widely used for visualizing and mapping
hydrothermally altered rocks. For example, Han and Nelson
(2015) efficiently used the image ratios of Landsat Thematic
Mapper (TM) band 5 (1.55–1.75 μm) over band 7 (2.09–
2.35 μm) to differentiate areas with high concentrations of
alunite and clay, where pixels in the satellite image appear
bright. Another study, conducted by van der Meer (2004),
used the ratio image of band 3 (0.63–0.69 μm) over band 
1 (0.45–0.515 μm) to highlight areas with rich iron ores. In
the current research work different band ratios, as shown in
Table II, were developed and applied in order to enhance
hydrothermally altered rocks and lithological units. The
selection of bands is related to the spectral reflectance and
position of the absorption bands of the mineral or
assemblage of minerals to be mapped. 

Even though the band-ratioing technique works very well
for visualization, it is not capable of mapping or
quantification of the land features. One of the reasons for
this limitation is that most of the optical multispectral remote
sensing instruments use the bandwidths > 0.05 μm, which is
too wide to explicitly differentiate the unique spectral
absorptions related to specific alteration minerals (van der
Meer, 2004). Furthermore, many band-ratioing techniques
use only two or (sometimes) three bands, whereas
multispectral remote sensing instruments offer many more
bands than that. Based on these limitations, there is a need
to adopt another advanced digital satellite image analysis
approach which can utilize all available satellite bands
together, as described in the following sections.

The spectral band combination technique, also known as red-
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Table II

1 Red 640–670 Iron oxide
Blue 450–510

2 Shortwave-Infrared (SWIR) 1 1570–1650 Hydroxyl-
Shortwave-Infrared (SWIR) 2 2110–2290 bearing rock

3 Shortwave-Infrared (SWIR) 2 2110–2290 Clay minerals
Near-Infrared (NIR) 850–880

4 Shortwave-Infrared (SWIR) 1 1570–1650 Ferrous 
Near-Infrared (NIR) 850–880 mineral



green-blue (RGB) combination, is a very useful image
enhancement technique which offered powerful means to
visually interpret multispectral satellite data (Novak and
Soulakellis, 2000). The band combinations of satellite data
can be true (natural) or false-colour composites (FCC) using
individual bands or band ratios. For this purpose, several
band ratios and bands combinations have been developed
over time to differentiate lithologies in a satellite image. A
few examples are given in Table III. 

In this research, the Kaufmann and Sabins ratios were
applied to highlight the hydrothermally altered rocks
associated with the minerals present in the study areas. Most
research studies have applied these two ratios for the
identification of altered areas and their associated minerals.
For example, Mia and Fujimitsu (2012) and Abhary et al.
(2016) applied the Kaufmann ratio for the mapping of
minerals containing hydroxyl and iron ions using Landsat
satellite data. Similarly, da Cunha Frutuoso (2015) used the
Sabins ratio for the identification of sulphide deposits
associated with the alteration areas of iron oxides.

Principal component analysis (PCA) is an advanced
information extraction technique and is frequently used in
the Earth sciences (Cheng et al., 2011, El-Makky, 2011). PCA
is a well-known multivariate statistical method and has been
generally used to study associations between variables. By
orthogonal transformation, several correlated variables can
be transformed into uncorrelated combinations (eigenvector
loadings) of principal components (PCs) based on their
covariance or correlation matrix (Horel, 1984; Loughlin,
1991). Generally, the first few PCs highlight the most
variability in the original data-set (Panahi, Cheng, and
Bonham-Carter, 2004). Therefore, PCA reduces the
dimensionality and redundancy of data-sets and is commonly
applied to enhance information interpretability (Cheng et al.,
2011; Horel, 1984; Jolliffe, 2002). According to the algorithm
for PCA, PCs are linear combinations of the original variables,
whereas each PC incorporates the input variable uniquely and
signifies only limited information within the complete data-
set (Abdi and Williams, 2010). Due to its handling of
multivariate data-sets, PCA has been extensively used in
remote sensing for geological mapping of ores, igneous rocks,

strata, etc. (Grunsky. Mueller, and Corrigan, 2014).
Generally, the spectral properties of different features present
in the area, i.e. vegetation, rocks, and soils, are responsible
for the statistical variance mapped into each PC, which
becomes the basis of the Crosta technique (Tangestani and
Moore, 2001). In this study, the same technique has also
been applied based on highly variable non-correlated satellite
bands for hydrothermally altered rocks.

The effectiveness of remote sensing-based hydrothermal
minerals identification and mapping depends on the clear
differentiation of the reflected spectra of altered bedrock from
those of the other objects. The true colour composite of bands
3, 2, and 1 as red, green, and blue respectively highlighted
the textural characteristics of the igneous rocks, which could
be separated from those of sedimentary rocks. Pournamdari,
Hashim, and Pour (2014) tested the same satellite band
combinations and found them to be effective for
differentiating igneous rocks in south Iran. The false-colour
composite was assigned to bands 4, 3, and 2 as red, green,
and blue respectively as shown in Figure 6 to analyse the
reflected satellite spectroscopy. The false-colour composite is
important to enhance the regional geological and
geomorphological features, as also reported by Bedini
(2009). Vegetation appeared in red shades because of the
near-infrared (0.7–1.2 μm) band, which was highlighted with
a red colour and vegetation reflects the maximum in this
band.

Hydrothermally altered clay and carbonate minerals are
recognizable as yellow areas in crystalline igneous rocks in
the Gauteng and Mpumalanga districts as shown in Figure 7.
This may be due to clay and carbonate minerals having
absorption in the 2.1–2.4 μm range (band 7 of Landsat 8)
and reflectance at 1.55–1.75 μm (band 6 of Landsat 8)
properties. Van der Meer (2004) also reported the same
absorption and reflectance bands for the clay minerals using
NASA’s Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) data. Another study, conducted by Zaini et al.
(2016), concluded that clay and carbonates have the same
absorption and reflectance bands and these can be effectively
used to map them using reflectance spectroscopy.

Mapping hydrothermal minerals using remotely sensed reflectance spectroscopy data
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Table III

1 Kaufmann ratio 7  : 4  : 5 Red represents minerals containing iron ions; green (Kaufmann, 1988)
4     3     7 represents vegetated zones, and blue represent hydroxyl-bearing minerals.

2 Chica–Olma ratio 5  : 5  : 3 Red depicts clay; green represents iron ions; blue represents ferr in colour. (Mia and Fujimitsu, 2012b)
7     4     1

3 Sabins ratio 5  : 3  : 3 Yellow represents hydrothermal alteration areas; black identifies (Sabins, 2007)
7     1     5 water; dark green indicates vegetation, lighter  green signifies clay-rich rocks; 

blue shows sand; red, pink or magenta indicates iron oxides.

4 Sultan’s ratio 5  : 5  :  5  × 3 Deep violet represents the hydroxyl minerals; (Gad and Kusky, 2006)
7     1     4      4 green ferric ions, and blue the ferrous oxides.

5 Abrams ratio 5  : 3  : 4 Hydrothermally altered iron- oxide represented as green and clay minerals as red. (Pour and Hashim, 2012)
7     1     5
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The iron oxides present within the study areas were
highlighted by the spectral band ratio of red and blue bands
as discussed in Table II. The soils rich in iron oxides reflect
more in the red band of the spectrum, i.e. 0.64–0.67 μm and
have absorption characteristics in the blue band i.e. 0.45–
0.51 μm (Schwertmann, 1993). The typical reflectance curve
of iron oxide-rich soils is shown in Figure 8. Pour and
Hashim (2015) have also shown the importance of the red
and blue bands of Landsat data for mapping of iron oxides in
Iran. In 2017, Pour et al., also identified the iron-rich
mineralized zones of remote Antarctica from Landsat imagery
by using spectral band ratio techniques. The map of potential
iron oxides present in the study areas derived from the band
ratio of the red and blue wavelengths of the spectrum is
shown in Figure 9. This map showed a good agreement with
the Council for Geoscience (CGS) map of iron deposits of
South Africa, as indicated in Figure 10. The areas highlighted

in dark blue represent the iron deposits in Gauteng and
Mpumalanga. In addition, the research conducted by Holmes
and Lu (2015) supported the results of this study and
highlights the potential of iron ore deposits in Gauteng and
Mpumalanga.

Gold cannot be ‘seen’ directly in any remotely sensed
satellite image. However, the presence of this precious metal
can be mapped through its association with several other
minerals based on their spectral reflectances (Kotnise and
Chennabasappa, 2015). The group of minerals present in the
alteration zones related to gold deposits generally includes
the clay minerals illite-1M and illite-2M1, dioctahedral
smectite, and kaolinite (Drews-Armitage, Romberger, and
Whitney, 1996). These minerals have characteristic spectral
signatures mostly in the shortwave infrared portion of the
electromagnetic spectrum. These spectral signatures can be
used to map the sites that are most favourable for the
occurrence of gold deposits, which is very cost- and time-
effective for mineral exploration programmes. The band
combination of shortwave infrared 2 with spectral band 2.11–
2.29 μm and near infrared with spectral band 0.85–0.88 μm
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in Figure 11 shows the areas which have the potential to
host clay minerals in shades of red to yellow. Liu et al.
(2018) applied various image-processing techniques,
including false-colour composite, band ratios, and matched
filtering, to process ASTER satellite data and map the
distribution of hydrothermal minerals associated with gold
deposits, and concluded that the SWIR and NIR bands are the
most effective for this purpose.

In general, clay minerals, which are associated with gold
mineralization potential, are more widespread in Gauteng
Province compared to Mpumalanga Province (Durand, 2012;
Sutton et al., 2006; Sutton, 2013). The approach that was
applied to map potential gold mineralization in this study has
also been applied by several other researchers. Safari,
Maghsoudi, and Pour (2017) used a similar approach to
identify gold mineralization and concluded that the
integration of remote sensing data with other information led
to the definition of locations possibly suitable for hosting Sn-
W and Au-Ag occurrences. Another study, conducted by
Gabr, Ghulam, and Kusky (2010), utilized the shortwave
infrared and near-infrared bands of ASTER to map high-
potential gold mineralization in Egypt. However, through an
optical sensor satellite, it is quite difficult to directly map any
mineral located at depths of 100 m or more in the ground, as
in the case of Gauteng. However, there are always indirect
measurements from the surroundings, such as altered rocks
or soils on the surface, which give an indirect indication of
the presence of these minerals. In this study, the identified
potential gold areas (Figure 11) can be associated with gold
mining tailings, because no direct or indirect measurement
can be used to map surface gold potential in Gauteng due to
the geological setting of the region. The map of gold deposits
published by the CGS (Figure 12) was used in order to
verify/support the potential gold (tailings) identified in the
area. The map shows that there are several gold deposits in
Gauteng Province but none or very few in Mpumalanga,
which supports the results of the gold (probably gold
tailings) map (Figure 11) generated during this study. 

The other important band ratio comprising shortwave
infrared and near infrared was applied for identification of
ferrous minerals. The results showed that this band ratio
technique produced good results for ferrous minerals in
Gauteng but overestimated their occurrence in Mpumalanga.
The soils with ferrous minerals reflect mostly in shortwave
infrared 1 with spectral band 1.57–1.65 μm and near-
infrared with spectral band 0.85–0.88 μm (Ducart et al.,
2016) and are shown in Figure 13 in shades of orange to
yellow.

The Kaufmann and Sabins ratios were developed by
combining spectral reflections of satellite bands ratios, and
the results proved to be promising for mapping of
hydrothermal minerals (Mahandani, 2018). Da Cunha
Frutuoso (2015) applied the same ratios to map
hydrothermal gold mineralization in Portugal and found
them to be very effective and accurate. Figures 14 and 15

Mapping hydrothermal minerals using remotely sensed reflectance spectroscopy data
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show the results obtained using these ratios for Gauteng and
Mpumalanga respectively. In the Kaufmann ratio map, the
red colour represents minerals containing iron; green
represents vegetated zones, and yellow represents hydroxyl-
bearing minerals. In the Sabins ratio map the shades of green
represent hydrothermal alteration areas, black identifies
water, the dark tones of green indicate vegetation, the lighter
tones of greenish-yellow signify clay-rich rocks; blue shows
sand, red, pink, or magenta indicates iron oxides. These
colour shades for several Earth features and minerals are in
accordance with the research done by Sabins (2007), and
show the effectiveness of the Sabins ratio in mineral
mapping.

Similarly, the outputs of PCA also revealed very good
results in terms of hydrothermal mapping of minerals present
in the study areas. In our study, the principal component

transformation specifies that the first principal component
(PC1) is composed of a negative weighing of all total bands,
as shown in Table IV. 

The PC1 is about 94.53% of the eigenvalue of the total
variance for unstretched data of PCA. The eigenvector
loadings for PC3 indicates that PC3 is dominated by
vegetation, which is highly reflective in band 4; the positive
loading of band 4 in this PC (0.602391) also indicates that
strongly vegetated pixels will be bright in this PC image.
Similar results were found by Cheng et al. (2011), as they
have vegetation-dominated pixels in band 4 loadings for PC3.

The eigenvalues for bands 2 and 4 in PC6 of Table IV are
also opposite in sign, which indicates that iron oxides will be
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distinguished by bright pixels in PC6. PC5 can be used to
map the hydroxyl-bearing minerals because of the positive
and negative eigenvalues of bands 7 and 5 respectively, and
these minerals appeared as dark. These selected PCs were
further used in the Crosta technique; the hydroxyl (H) and
iron oxide (F) images are combined with selected PCs to
produce a map revealing the pixels indicating abnormal
concentrations of both hydroxyls and iron oxides. The PCs
having positive eigenvalues from both input bands are
selected for the analysis. Figure 16 shows the Crosta images
of hydroxyl (H), hydroxyl plus iron oxide (H+F), and iron
oxide (F) as an RGB composite. This band combination
returns a dark bluish composite image on which alteration
zones are highlighted as bright regions, as also discussed by
Ciampalini et al. (2013).

The most common method to evaluate the results of this sort
of mineral mapping is by spectrometer and/or spectral testing
of samples in the laboratory. According to Clark (1999) there
are two types of method for authentication of information
extracted from remotely sensed imagery: virtual and in situ.
If the spatial and/or spectral resolution of remotely sensed
satellite data is fine and accurate then virtual verification can
be done by inspecting the remote sensing data directly and
comparing it with already published reports or data. In this

paper, virtual verification, i.e. visual interpretation of
absorption of spectral bands and comparison with the
published maps by the CGS was used to evaluate the results
of hydrothermal mineral exploration, along with the several
similar research studies done by different researchers. Good
qualitative agreement was observed for the results of PCA
and the spectral reflectance of the satellite data.

This study confirms that Landsat reflectance spectroscopy
data can be used easily and efficiently to map hydrothermal
minerals. Different digital image processing algorithms and
techniques were applied to assess their significance for
hydrothermal mineral exploration. The principal component
analysis (PCA)-based Crosta technique and band ratio
techniques like the Kaufmann and Sabins ratios proved to be
more significant and efficient for hydrothermal mineral
exploration. Several researchers have also concluded that
advanced image processing techniques like those applied and
tested in the current study are quite efficient in terms of
mineral mapping through remote sensing data (Manuel et al.,
2017; Liu et al., 2018). The maps produced in this study are
not only appropriate for any spatial queries and analysis, but
also for environmental modelling such as assessing the
impacts of mining activities on environmental features such

Mapping hydrothermal minerals using remotely sensed reflectance spectroscopy data
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Table IV

Band 2 0.360613 -0.149047 -0.473757 0.642169 -0.156241 -0.431860
Band 3 0.346576 0.127976 0.409188 0.052900 -0.093199 0.827397
Band 4 -0.352093 -0.273256 0.602391 0.608503 0.463980 -0.352654
Band 5 -0.489315 0.846570 -0.302391 -0.155955 -0.127694 0.055763
Band 6 0.484542 0.143013 0.471431 0.321111 0.435239 -0.037414
Band 7 -0.389437 0.386786 -0.256332 0.295141 0.738839 0.005991
Eigenvalues (%) 94.53 7.93 3.67 0.08 0.04 0.001
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as the forest, farmland, and urban areas. The hydrothermal
minerals identified in this study are only the estimation
based on literature-cited, proven algorithms for remotely
sensed data, and should be treated as a preliminary
assessment of the study areas. The other important point to
consider is the resolution of the satellite data used in this
study; Landsat 8 has a 30–100 m spatial and moderate
spectral resolution. Data-sets with this kind of resolution may
suffice for regional work but not for detailed mineral
mapping. Using satellite data with higher spatial and spectral
resolutions, such as that from Worldview 3 satellite (Kruse,
2015) or aerial drones, may be more suitable for detailed
minerals mapping. Nevertheless, the maps developed in this
research are a valuable data source for comprehensive studies
to be conducted in the future. The methodology developed in
this study is cost-effective and time-saving, and can be
applied to inaccessible and/or new areas with limited ground-
based knowledge where reliable and up-to-date minerals
information is desired.
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