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Limiting the influence of extreme grades 
in ordinary kriged estimates

A. Fourie1, C. Morgan2, and R.C.A. Minnitt3

Synopsis
The management of outlier grades in positively skewed gold distributions is a contentious issue. Incorporating 
outliers in standard ordinary kriging (OK) estimation procedures in a way that honours the data without 
smearing extreme grades into surrounding areas has been problematic. Cutting or capping of outliers to 
mitigate their influence in estimation techniques is common practice, while methods that manipulate the 
OK system of equations fail to honour the data. We propose a method of post-processing of kriging weights 
that provides realistic OK estimates and mitigates smearing without manipulating kriging equations or 
changing the original grades. The method requires that the data is not clustered, is approximately equally 
spaced, and is of the same support. Positively skewed data is ordered on attribute grade and nonlinearly 
transformed to a Gaussian histogram of categorical bins whose frequency is based on their likelihood of 
occurrence and location in the sample distributions. Factors that restrict kriging weights are calculated 
by dividing the percentage frequency of data in each bin by the percentage frequency of data in the bin 
with the highest frequency. Restriction factors applied to the kriging weights in the OK estimation restrict 
the range of influence in proportion to their probability of occurrence in the distribution. Smear reduction 
post-processing is easy to implement and addresses issues arising from negative kriging weights while 
considering the spatial location of samples, the sample grades, and their probability of occurrence. The 
method mitigates both smoothing and conditional bias .
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Introduction 
Outliers are sample observations that deviate considerably from the standard or expected (Hawkins, 1980). 
These deviations can be high or low in grade depending on the distribution. The presence of outliers in a 
mine sampling campaign could provoke mixed reactions. Mining engineers might view high-grade outliers 
as a promise of achieving higher grades, while the geostatisticians view outliers as affecting the accuracy 
and precision of the overall estimate, among other issues. Having identified outliers, the geostatistician 
must decide how to account for their presence and treat them so that true underlying estimates are not 
distorted. Advanced knowledge of the deposit allows the geostatistician to identify and treat outliers 
acceptably, especially where samples are limited in number and the true grade distribution is uncertain. If 
ignored, or treated incorrectly, outliers are likely to lead to smearing of extreme grades into the surrounding 
estimates, thereby steering regions towards potential under- or over-estimation. 

Methods of identifying outliers, the way they arise, and ways of dealing with them are considered. A 
description of current approaches to dealing with the smearing effects of outliers in kriging estimates is 
followed by a new method for mitigating over- and under-estimation of grade in areas immediately adjacent 
to outliers. Restriction factors are calculated and applied in a post-processing step to all kriged values, 
constraining smearing effects to an appropriate area around the outliers. The effectiveness of the method is 
demonstrated using face chip sample results taken along a raise in a deep-level gold mine in the Free State 
Province of South Africa. 

Kriging, as with all minimum mean-square error spatial estimators, tends to smooth estimates due 
to its weighted averaging routine (Isaaks and Srivastava, 1988; Deutsch and Journel, 1998). Smoothing 
of kriged estimates can be detected and modelled using cross-validation, but the method also results in 
systematic errors and an inability to reproduce the semivariogram (Olea and Pawlowsky, 1996). Ordinary 
kriged estimates using data containing uncapped outliers are compared with the newly proposed method of 
post-processing ordinary kriging (OK) weights. The method applies a weight reduction factor based on the 
likelihood of outlier occurrence and the restrictions on their spatial continuity. Issues related to honouring 
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the data and negative kriging weights associated with an outlier 
are considered. This tool provides more reliable and realistic OK 
estimates in areas surrounding outliers.

Identifying and dealing with outliers
Outliers could be the result of sampling or assaying error, or 
could simply be due to the highly erratic nature of the grades in 
the orebody. Nevertheless, the user must decide whether to accept 
or reject unrepresentative or outlying observations in the data-
set (Barnett and Lewis, 1979). Many orebodies display highly 
skewed distributions (Krige, 1999), with sample observations 
from the tail of the distribution often being considered as extreme 
grades or outliers. The presence of outliers in a small sample 
set introduces many problems, including excessive variability 
into measures such as mean and variance, and under- or over-
estimation or smearing of extreme grades (Sinclair and Blackwell, 
2004).

Outliers may be capped or removed from the data-set, or 
treated as a separate population (Sinclair and Blackwell, 2004), 
but assuming sampling and assaying are correct, the outlier must 
be considered a legitimate member of a continuous population 
distribution (Krige, 1999) and cannot be ignored. Ordinary 
kriging, a linear weighting estimation method, is known to smear 
outlier grades into surrounding areas (Pan, 1994), especially 
where sample numbers are limited. With limited data, outliers can 
disproportionately inflate the tail-end estimates of a distribution 
relative to the true grades. The proposed post-processing solution 
avoids the smearing of outlier grades into surrounding areas 
where sample coverage is limited once outliers in the sample data 
have been identified. 

Sampling methods
Poor sampling methods introduce not only error or bias in sample 
assay results (Gy  1979, 1982; Pitard 1993), but may also 
result in outliers or extreme grades (Fourie and Minnitt, 2013). 
However, not all outliers are a result of poor sampling, but may 
be an integral part of the naturally occurring positively skewed 
distribution for gold. If the extreme value, defined here as an 
’outlier’, is part of a naturally occurring distribution, the grade 
is taken as true and must be honoured at that point. However, 
when performing an estimation, its influence on the surrounding 
areas should be restricted. For any estimation technique including 
kriging, the sample grades are the best unbiased estimators of 
grade at that point. So whatever estimation technique is used 
should honour the sample points unless it is known that there is 
sampling error associated with that value. If there is doubt about 
the validity of the outlier, it should be re-assayed or omitted. 
Sampling by diamond drill core generally results in better sample 
extraction, whereas chip sampling can introduce both errors and 
bias (Cawood, 2003; Freeze, Flitton. and Pillay, 2013; Magri and 
McKenna, 1986). The decision about how outliers should be 
treated, depends on whether they originate from natural causes, 
such as the occurrence of coarse gold nuggets (Dominy, 2010), 
or as a result of sampling errors. Erroneous outlying results that 
cannot be rectified should be removed.

Facies and geological domains
Sample data should be assigned to facies or domains, 
characterized by well-defined geological features or properties, 
before outliers are identified (Krige, 1999). Geostatistical 
problems related to outliers include inaccurate semivariogram 

modelling (Krige and Magri, 1982). Some practitioners have been 
known to ignore outliers during semivariogram modelling, but 
they reintroduce and include them during resource estimation 
(Sinclair and Blackwell, 2004). Exploratory data analysis should 
identify outlier grades as those that do not form part of the 
distribution. Extreme grades in a positively skewed distribution 
usually occur as discontinuous points at the very high-grade end 
of the tail. 

Areas characterized by samples with distinctive spatial and 
grade attributes can be disaggregated into well-defined domains 
in which samples are treated differently from those in adjacent 
domains (Sinclair and Blackwell, 2004). Outliers are then 
classified as observations that deviate significantly from other 
members of the domain in which they occur (Barnet and  
Lewis, 1979). 

Methods for identifying outliers
Once erroneous sample data has been corrected or removed, 
and remaining grades have been assigned to a specific 
geological domain, the outliers can be identified using graphical 
methods such as histograms, quantiles, probability plots, and 
semivariogram plots (Srivastava, 2001; Babakhani, 2014). 
Outliers can also be identified using a cross-validation plot. A 
popular industry method for identifying extreme values is to set a 
percentile threshold; any value exceeding this threshold is classed 
as an outlier (Parker, 1991).

Current methods of addressing smearing of outlier grades 
into kriging estimates
Once they have been identified, the options regarding the 
treatment of outliers include leaving them unchanged, removing 
or cutting them, or reducing their influence through capping 
(Sinclair and Blackwell, 2004). Sound judgement and good 
reasons should support whichever method is employed because 
hard-and-fast rules about treating outliers do not exist. Most 
practitioners quote a single value above or below which data-
points are classed as outliers. Although capping is a common 
technique (Sinclair and Blackwell, 2004; Babakhani, 2014), it is 
possible to use capping or lower percentiles to mask underlying 
mining issues. Consultants making a first visit to a mining 
operation, should probably accept current mine practice for 
handling outliers and suggest necessary changes once the effects 
of outlier treatment have been observed. OK is a linear weighting 
estimation technique that attributes kriging weights to samples 
within the defined search radius, and depending on sampling 
density and the range of influence, one extreme value in a set of 
data can produce a bias in many surrounding estimates. Despite 
the well-meaning intention of capping to reduce the influence of 
outliers in kriged estimation results, high grades are still smeared 
into surrounding areas (Leuangthong and Nowak, 2015), 
particularly if the data is limited. The smearing of kriged grade 
into areas adjacent to outliers is the problem addressed in this 
paper.

Cressie and Hawkins (1980) proposed robust kriging 
as a means of reducing the effect of outliers in Ore Reserve 
estimation, a technique that was confirmed by Costa (2003). 
According to Cressie (1991) the method involves downweighting 
outliers using neighbouring grades, and recalculation of the 
original OK weights before final estimation. The actual data 
grades are edited through a winsorizing approach, which 
according to Dixon (1960) involves replacing extreme grades of 
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a data-set with a certain percentile value from each end to obtain 
a less skewed distribution. Winsorizing is acceptable if there is 
certainty that an extreme value is a legitimate member of the 
distribution, but for outliers belonging to a different distribution, 
trimming is more acceptable (Cross Validated, 2018).

Outlier restricted kriging, another method of mitigating the 
effects of outliers, was proposed by Arik (1992). This method 
edits the OK matrix by introducing the additional requirement 
that the weights of the outliers sums to the probability of their 
occurrence. In this approach, an additional Lagrange multiplier 
is used, and an additional row and column in the kriging matrix. 
Outlier restricted kriging adjusts the kriging weights through 
an additional requirement that the weights of the outliers sum 
to the probability of outlier occurrence. Other methods proposed 
by Deutsch, Boisvert, and Deutsch (2011) and Rivoirard et al., 
(2013) include moving outliers to a higher dimension and a 
decomposition of the grade variables, respectively. The outlier 
resistance of simulation approach was proposed by Babakhani 
(2014) as a means to determine the cutting level for kriging and 
other estimation techniques. This approach was further developed 
by Chiquini and Deutsch (2017), who proposed the use of 
simulation to calibrate a cutting level for estimation.

Both robust kriging and outlier restricted kriging modify the 
OK system prior to estimation, and neither approach is an exact 
interpolator of the outlier value. The approach taken in this paper 
does not adjust the OK system of equations, but rather applies 
a post-processing approach after estimation that honours all the 
sample points.

New proposed method for addressing smearing of outlier 
grades into kriging estimates
The post-processing method proposed here for overcoming 
the smearing effect of outlier grades into surrounding kriging 
estimates is based on the much lower probability of occurrence 
and sparsity of outliers in positively skewed distributions. 
Smearing of grade occurs because kriging weights are only 
related to the spatial distribution of sample points relative to the 
point being estimated, taking no cognizance of the actual sample 
grades. Based on their low probability of occurrence, outliers 
should also have a smaller range of sample influence (ROSI), 
meaning that kriging weights associated with outliers should also 
be reduced. 

The proposed method is a three-stage post-processing 
procedure that does not interfere with the OK matrix. Based on 
probability of occurrence, both high- and low-grade outliers can 

occur in a positively skewed distribution, although low-grade 
outliers are not usually recognized or eliminated. Firstly, these 
high- and low-grade outliers in the highly positively skewed 
distribution must be identified; secondly, restriction factors based 
on the probability of outlier occurrence are calculated; and thirdly, 
factors that reduce the weights for the grade contribution to 
estimates are applied, so that the influence of extreme grades is 
constrained to an acceptable fringe around the outlier. The size of 
this acceptable fringe is somewhat subjective, but is determined 
by the qualified and experienced practitioner. This post-
processing procedure is demonstrated through a one-dimensional 
kriging example. 

Successful application of the proposed technique requires 
firstly, that the data be approximately equally spaced since 
the method is not effective if outliers are clustered. If data is 
clustered, domaining should be considered so that the data in 
that domain provides a reliable indication of continuity of grade 
at the most common sampling distance. Secondly, the data should 
all be of the same support in order to mitigate the potentially 
erroneous mixing of distributions with different support. 

Identifying low- and high-grade outliers 
Rarely are outliers found adjacent to one another; they are 
typically very high or very low isolated grades with a low 
probability of occurrence and a low ROSI. This method uses the 
fact that gold grades in a positively skewed distribution can be 
transformed into a Gaussian distribution of categorical variables, 
as shown in Figure 1, based on their probability of occurrence. 
There is no hard-and-fast rule or template for undertaking this 
procedure. In this particular example seven  bins were selected 
and a 0.8% probability of occurrence for extreme outliers 
was considered adequate. The choice of the number of bins 
and the probability of occurrence depends on the distribution 
of the data and should be supported by the final validation. 
This determines how much constraint one would like to place 
on the outlier influence. The sample frequency (above) and 
percentage frequency (below) are shown at the top of each bin 
in Figure 1. Implementation is subjective, as the application is 
potentially sensitive to the number of bins and the percentage 
used. However, it depends on the deposit type. The method is 
subjective, but it is no more subjective than selecting a capping 
threshold or selecting an appropriate estimation technique. 
Ultimately the results need to be validated by a knowledgeable 
practitioner. It is important, as far as possible, to verify that the 
method produces results that can be reconciled with production 

Figure 1—Positively skewed gold grades are transformed to a Gaussian distribution of seven categorical bins based on their probability of occurrence 
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data. The mining practitioner’s experience, knowledge of 
the orebody, and visual confirmation of sample behaviour is 
important for the choice of the number of bins and the probability 
of occurrence of outliers.

Grades at the ends of the distribution are identified by 
ordering the data from lowest to highest, so the low- and 
high-end bins, comprising the lower and upper 4.1% of the 
overall distribution, each contain five data grades classed 
as outliers, based on their probability of occurrence. This is 
a nonlinear transformation of positively skewed data to a 
Gaussian distribution of categorical bins. In this case, data is 
assigned to one of seven equally spaced categories from bin 1 
to bin 7, depending on each sample’s probability of occurrence 
in the distribution. Low-grade outliers, which occur only 0.8% 
and 3.3% of the time in the distribution, are assigned to bins 
1 and 2, respectively, whereas high-grade outliers that only 
occur 0.8% and 3.3% of the time are assigned to bins 6 and 7 
(Figure 1). The four bins containing outliers in this particular 
example occur in the upper and lower tails of the distribution. 
The central 90.8% of data is assigned to bins 3, 4, and 5, having 
percentage frequencies in this example of 30%, 30.8%, and 30%, 
respectively (Figure 1). These percentages are illustrative for this 
example, but it is left to the practitioner to determine the optimal 
bin frequencies for a particular mineral deposit. 

The ROSI is the influence range of the grade between two 
adjacent sample points and is defined as half the distance 
between the sample and its adjacent sample, as shown in Figure 2. 

The ROSI for each sample in a standard kriging equation is 
shown as a red line in Figure 2. Samples with average grades, the 
green and red arrows, have the same range of sample influence. 
The range of sample influence for outliers, shown as short green 
lines, is reduced because their frequency of occurrence is low. 
Hence the very low outlier at 6.6 m and the very high outlier at 
6.8 m (Figure 2), should have shorter ranges of influence than 
samples close to the average grade.  

The ROSI for the one-dimensional, equally spaced samples at 
20 cm intervals in Figure 3 is 20 cm, being 10 cm to the left and 

10 cm to the right of each sample point. For the chip sampling 
shown in Figure 4 the ROSI is defined as a block centred on each 
sample extending 2.5 m north, east, south, and west of that 
sample, which is a 5 × 5 m block. The colours of the samples in 
Figures 3 and 4 correspond to their probability of occurrence in 
the distribution. High and low outlier data, shown in red, occur 
infrequently and occupy bins 1 and 7 at the extreme ends of 
the distribution in the lowest 1% and highest 1% of the data 
grades. The next most frequently occurring data, shown in green, 
occupies bins 2 and 6 with a frequency of occurrence of 4% for 
the lowest 4% and highest 4% of data grades, whose spatial 
continuity and probability of occurrence is less than that for the 
yellow samples. The most frequently occurring grades, shown in 
yellow, lie between 10 g/t and 180 g/t in the central 90% of the 
distribution and occupy bins 3, 4, and 5 in the range between 
the 5% and 95% (Figure 3). The continuity from one sample 
and the next is high, meaning that the ROSI of 10 cm on either 
side is valid and restriction factors are null to low. Based on their 
probability of occurrence and limited continuity, the ROSI for the 
green and red samples should be less than 10 cm. 

In typical mining situations the spacing between samples on 
the mining face, in winzes, shafts, and on conveyor belts is likely 
to be very similar for each sample setting. Evenly spaced chip 
samples on a two-dimensional 5 × 5 m sample spacing over large 
areas is typical of the routine production or chip sampling that is 
conducted in Witwatersrand-type gold deposits in South Africa, 
shown in Figure 4. Shallow-dipping, narrow conglomeratic and 
carboniferous reefs contain pyrite and finely disseminated gold 
mineralization; no clustering of extreme grades is evident in 
Figure 4. The lowest 5% of grades are shown in blue and highest 
5% in red. The remaining grades, between 5% and 95%, are 
shown in green.

The data is ordered from lowest to highest by attribute value 
and potential outliers are found in the upper and lower frequency 
bins holding 0.8% and 3.3% of the data, respectively. Based 
on their probability of occurrence, outliers have a shorter ROSI 
compared to other data in the set. For this reason, the OK weights 
assigned to extreme data should be restricted accordingly. 

Figure 3—A line of 120 samples at 20 cm intervals showing frequently occurring grades in green, less frequently occurring grades in blue, and rare grades (outliers) 
in red; blue represents the lower 5% and red upper 95% spatially for 120 samples
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Calculation of restricted kriging weights
A kriging weight reduction factor is assigned to all sample grades 
lying within bins whose percentage frequency is less than the 
median frequency of bin 4, namely, 30.8% as shown in Table I. 
The weight restriction factors are calculated by measuring the 
frequency of occurrence of data in each of the categorical bins as 
a percentage of total frequency of bin 4. The frequency of data 
in bins 1 and 7 is 1 in 120 samples, so the percentage frequency 
is equal to 1/120, or 0.8%, and the weight restriction factor for 
each bin is therefore 0.8 % divided by 30.8%. or 0.027, as shown 
in Table I. Similarly, in bins 2 and 6 there are 4 and 5 samples 
respectively, with  percentage  frequencies of 3.3% and 4.2%, 
equating to weighting restriction factors of 0.108 and 0.135. The 
weight restriction factors for bins 3, 4, and 5 are likewise 0.973, 
1.000, and 0.973, respectively (Table I).  

Due to the variability of grades typically found in gold deposits 
and because OK is a linear arithmetic averaging technique, 
the output is likely to be smoothed and subject to conditional 
bias, but the occurrence of outliers will exacerbate the problem. 
The RSPP approach applies a weight reduction factor to the 
OK weights for each sample, such that the estimate at a given 

Figure 4—Coverage on a 5 m by 5 m grid of chip samples on advancing mining faces in a typical Wits-type gold deposit 

Table I

Sample frequency, percentage frequency, and restriction factors for the 120 data 
categorized in seven bins
Category min. (>=) Category max. (<=) Sample frequency Percentage  

frequency=(frequency/
total samples)*100

Restriction factor 
(frequency/median)

0 1 1 0.8 0.027

1 10 4 3.3 0.108

10 40 36 30.0 0.973

40 80 37 30.8 1.000

80 180 36 30.0 0.973

180 240 5 4.2 0.135

240 270 1 0.8 0.027

Total 120 100

Table II

Descriptive statistics for 120 sampled values at  
0.2 m intervals

Statistic Value

Mean grade (g/t) 70.10

Standard error (g/t) 4.87

Median (g/t) 57.56

Mode (g/t) 28.57

Standard deviation (g/t) 53.34

Sample variance (g/t)2 2845.30

Kurtosis 1.94

Skewness 1.37

Range (g/t) 266.63

Minimum (g/t) 0.24

Maximum (g/t) 266.87

Sum (g/t) 8412.49

Count 120

9.64
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Table III

Comparative estimation results
Sample location (m) Sample value 

used for kriging 
estimation

Actual sampled 
grade

OK uncapped 
estimate

OK capped estimate ROK estimate OK uncapped with 
RSPP estimate

0 90.2 90.2 90.2 90.2 91.51 90.2

0.2  114.26 101.86 103.12 116.9 122.72

0.4  146.63 113.42 114.38 125.16 129.13

0.6  83.72 125.86 126.52 134.37 136.52

0.8  141.87 133.96 134.49 141.14 143.16

1 175.01 175.01 175.01 175.01 176.32 175.01

1.2  7.38 133.39 133.12 131.66 128.27

1.4  74.92 126.74 126.17 121.78 116.78

1.6  126.37 111.7 111.26 108.24 104.21

1.8  26.15 88.7 88.3 85.67 80.47

2 69.31 69.31 69.31 69.31 70.62 69.31

2.2  14.48 80.11 79.87 78.74 75.08

2.4  19.4 58.44 58.21 57.34 52.62

2.6  11.73 51.22 50.86 48.59 41.71

2.8  10.52 35.51 35.85 40.47 36.83

3 9.68 9.68 9.68 9.68 10.99 9.68

3.2  13.44 54.33 52.04 30.61 10.54

3.4  14.16 60.96 58.81 38.89 20.39

3.6  14.52 61.55 59.81 43.92 29.12

3.8  12.92 65.66 63.56 44.1 28.49

4 48.92 48.92 48.92 48.92 50.23 48.92

4.2  80.08 -1.11 3.01 45.15 65.9

4.4  121.4 17.02 20.25 53.53 70.61

4.6  104.02 26.42 28.59 51.45 62.39

4.8  45.42 34.56 35.95 50.96 57.52

5 28.57 28.57 28.57 28.57 29.88 28.57

5.2  28.53 31.97 31.49 28.08 24.02

5.4  3.86 39.79 38.92 31.64 24.86

5.6  33.75 40.92 40.44 37.06 32.75

5.8  49.63 40.68 40.46 39.58 36.47

6 85.46 85.46 85.46 85.46 86.77 85.46

6.2  82.27 93.24 92.38 85.22 78.48

6.4  153.35 92.73 92.4 90.39 86.44

6.6  0.24 97 96.35 91.28 85.31

6.8  219.2 92.1 92.12 93.62 91.69

7 79.84 79.84 79.84 79.84 81.15 79.84

7.2  97.85 89.43 89.55 91.98 92.82

7.4  81.39 94.84 94.8 95.73 96.1

7.6  114.77 97.79 97.96 100.89 103.03

7.8  35.14 125.3 123.38 105.66 96.43

8 83.31 83.31 83.31 83.31 84.62 83.31

8.2  58.73 116.74 113.49 82.6 61.4

8.4  98.85 139.64 134.68 86.79 55.97

8.6  93.87 162.31 155.4 88.24 46.03

8.8  52.36 180.88 172.88 94.91 46.37

9 231.03 231.03 231.03 219 101.08 231.03

9.2  106.37 163.87 158.24 103.73 70.53

9.4  61.43 153.42 148.88 105.24 77.81
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restriction factors listed in Table I returns a grade of 39.7 g/t 
using exactly the same sample data. Descriptive statistics for 
this data are shown in Table II.

Whereas OK weights must sum to 100% for each estimate, 
weights calculated by the RSPP method do not. The RSPP 
approach considers both the spatial positioning of a sample 
relative to the block being estimated and the value of samples 
used to make the estimate. A restriction factor is applied to all 

Figure 5—Variogram modelled for 120 samples at 5 m lag

sample point is honoured. The OK weight of each sample is 
recalculated based on the categorical bin in which it occurs. Using 
the percentage frequency and restriction factors provided in Table 
I, consider a basic example for a point informed and estimated 
by five nearby samples. The grades 3, 65, 83, 48, and  266 g/t 
have OK weights of 0.18, 0.25, 0.09, 0.31, and 0.17 respectively, 
so that the linear weighted sum of the grades is 84.4 g/t. The 
reduced smearing post-processing (RSPP) approach using the 

Table III

Comparative estimation results
Sample location (m) Sample value 

used for kriging 
estimation

Actual sampled 
grade

OK uncapped 
estimate

OK capped estimate ROK estimate OK uncapped with 
RSPP estimate

9.6  70.4 135.58 133.02 108.87 92.7

9.8  83.35 120.15 119.35 112.76 106.75

10 113.8 113.8 113.8 113.8 115.11 113.8

Average  grade 92.28 73.02 90.27 89.28 80.81 77.13

Statistics on estimates for 10 m portion

Median  74.92 90.2 90.2 86.77 77.81

Standard deviation  54.16 48.76 46.92 35.20 42.85

Sample variance  2934 2378 2202 1239 1836

Kurtosis  0.77 0.15 -0.10 -0.29 2.20

Skewness  0.86 0.43 0.35 0.15 1.02

Range  231 232 216 165 221

Minimum  0.24 -1.11 3.01 10.99 9.68

Maximum  231 231 219 176 231

Sum  3724 4604 4553 4121 3934
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weights except those arising from samples occurring inside the 
median bin, namely bin 4 (Table I). 

Implementation of reduced smear post-processing
The following examples illustrate the effectiveness of RSPP in 
mitigating an over-estimation of ordinary kriged grade around 
a high-grade outlier along a one-dimensional environment. It 
is assumed that the sampling was done correctly and that no 
sampling errors are included in the assay grades. This example 
is based on actual face-chip sampling results from a deep-level 
gold mine in the Free State Province of South Africa. The data 

forms part of an investigation into the effect of chip sampling of 
carboniferous reef types (Fourie and Minnitt, 2013), where the 
samples were extracted at 0.2 m intervals to model the variability 
of grades over very short intervals.

A variogram (Figure. 5) was compiled from the sample data, 
and OK was used to estimate grades selected at 1 m intervals 
(starting at zero metres). Four different estimation regimes were 
considered: OK with uncapped data, OK with data capped to the 
98th percentile, restrictive ordinary kriging (ROK), and finally OK 
of uncapped data with the RSPP technique proposed. The sample 
data and OK estimates obtained are listed in Table III.

Figure 6—OK estimate of uncapped (green curve), capped (purple curve), and actual sample grades (dotted curve)

Figure 7—Comparison between block estimates produced using OK versus ROK 
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Of the four methods applied, the RSPP technique provides a 
mean grade of 77.13 g/t Au, which is closer to the actual sampled 
grade of 73.02 g/t Au than any of the other methods. The 
estimates obtained from the four different methods are plotted  
in Figure 8. 

sample grade
The visual representation of estimates obtained using OK without 
capping is shown as the green curve in Figure 6, and indicates a 

poor match between the variability of sample data and variability 
of block grade estimates.

This well-known smoothing characteristic of kriged estimates 
means that OK cannot reproduce the local variability in the 
original sample data in the estimated block grades. Instead there 
is smoothing of the estimated block grades such that Var Z* = 
Var Z0 – SKVAR (Chiles and Delfiner, 2012). The erroneous spread 
of the estimated grade (smearing) between positions 8 and 10 
is due to the single high-grade sample at position 9. This single 
outlier results in an over-estimation of the gold content in regions 

Figure 8—Comparison between uncapped OK estimates and estimates using the reduced smear post-processing
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adjacent to sample 9 between points 8 and 10. In addition to 
the problems associated with the outlier at sample location 9, 
negative kriging weights in the region to the right of sample 4 
will result in poor estimation between sample points 3 and 5 
(Figure 6). Because this is a simple linear one-dimensional point 
estimate example, a well-defined qualitative kriging neighbour 
analysis was not relevant to the illustration and therefore 
negative weights appear. Nevertheless, the RSPP method reduces 
the negative weights accordingly.

The OK estimates using sample data capped to the 98th 
percentile and uncapped sample data are compared in Figure 
6. Capping the data, one of the most common techniques for 
mitigating the effects of high-grade outliers, smears the estimates 
between sample positions 8 and 10. Neither does it resolve problems 
associated with the negative OK weight occurring between samples 
3 and 5. Thus, capping alone does not alleviate the smoothing or the 
estimation effect of the negative kriging weights.

The difference in OK and ROK block estimates, especially in 
regard to the influence of outliers between samples 3 and 5 and 
at sample location 9, as shown in Figure 7, is noteworthy. ROK 
mitigates the over-estimation of block grades between samples 8 
and 10, and returns a quite different estimate to OK in the region 
affected by negative kriging weights, between samples 3 and 5.

The average ROK estimate of 80.81 g/t Au is significantly 
less than the 90.27 g/t Au OK estimate using uncapped data. The 
actual average grade of 73.02 g/t Au is the true in-situ grade 
(based on the 0.2 m sampling distance) and is lower than both 
kriging estimates at 1 m sample intervals. However, ROK does 
not honour the sample value at point 9, and furthermore requires 
a restructuring of the kriging system of equations (Arik, 1992).

Uncapped OK estimate versus RSPP of the same estimate
Results obtained from the RSPP method applied to the OK 
estimates of uncapped data are shown in red in Figure 8. Again, 
the high-grade smearing between locations 8 and 10 is mitigated, 
while still honouring the data at location 9 and not requiring any 
changes to the OK system of equations. The estimates between 
sample locations 3 and 5 are also improved, as the negative OK 
weights assigned to the outlying value is reduced by the post-
processing reduction factor.

Estimates produced by all four kriging techniques are 
compared in Figure 9, showing the superior results of the 
RSPP in terms of smearing and dealing with negative kriging 
weight associated with an outlier. The benefit of RSPP over the 
ROK is that no adjustments need to be made to the OK system 
of equations. This implies that RSPP can be applied to any 
commercial package offering OK without any additional editing of 
source code. The RSPP estimates have an average grade of 77.13 
g/t Au, which is much nearer to the true grade 73.02 g/t and is 
significantly lower than the OK estimate of 90.27 g/t Au.

Conclusions
The capping of high-grade sample grades prior to kriging 
estimation in an attempt to mitigate the smearing of higher 
grades into lower grade areas is inefficient in this worked 
example, and does not achieve much by way of improvement in 
the estimates. Restricted OK (ROK) fails to honour the sample 
data and requires manipulation of the OK system of equations. 

The method proposed here involves an adjustment of the OK 
weights that identifies outliers and calculates a weight reduction 
factor based on the likelihood of occurrence. This significantly 
removes smearing while still honouring the data and addresses 
issues arising from negative kriging weights associated with an 

the direction of movement for lines indicating an improved kriging result 



Limiting the influence of extreme grades in ordinary kriged estimates

401 ◀The Journal of the Southern African Institute of Mining and Metallurgy VOLUME 119 MONTH APRIL 2019

outlier. It is easy to implement with most software, because it is 
merely a post-process and does not require additional computing 
time to changes the OK system of equations. The smear reduction 
post-processing method complements the OK weight calculation 
process by considering the spatial location of samples relative to 
one another and the point being estimated, as well as the actual 
sample grades and their probability of occurrence. 

The RSPP method will not remove the conditional bias, but 
it will definitely mitigate this age-old problem in geostatistical 
estimation techniques, as illustrated in Figure 10.

Figure 10 shows a comparison of the outcomes of the different 
kriging methods using trend lines for the different data-sets 
and the 45-degree line representing perfect correlation between 
actual and estimated grades. This plot indicates that the thick 
blue line, representing the RSPP method, is rotated considerably 
more towards the 45-degree line than any of the other trend lines. 
Another important aspect is that the R2 value for the correlation 
coefficient of the RSPP method is about twice that for the uncapped 
and capped OK methods, and significantly better than for the ROK 
technique. This indicates that the RSPP estimates are considerably 
less smoothed than the kriging outputs from the other techniques 
and hence RSPP goes a long way towards balancing the tensions 
between smoothing and conditional bias.
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