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Quantification of rock mass weathering 
using spectral imaging

J. Park1 and K. Kim1

Synopsis
The degree of weathering, a key parameter for evaluating rock mass strength, has traditionally been 
assessed based on visual inspection by engineers. In an effort to reduce the human bias associated 
with this approach, a study was conducted to investigate the potential for using spectral imaging to 
quantify weathering. This entailed developing a portable, rapid method for narrow-band multispectral 
(NBMS) remote sensing using a spectral index classification algorithm, applying this algorithm to 
detect weathered features, and then quantifying the degree of weathering based on the percentages of 
weathered and aperture areas. A case study was conducted on Mt. Lemmon in southern Arizona and 
spectral images were collected from rock slopes using a visible and near-infrared (VNIR) hyperspectral 
camera. A two-band ratio approach was used to delineate key areas. Wavelength ratios of 601 nm to 550 
nm and 993 nm to 450 nm, were used to delineate weathered and aperture areas respectively on the rock 
mass. The weathering degree at the test site was then quantified using thematic images. This entailed 
assessing the percentages of the weathered (22.5%) and aperture (12.5%) areas in the thematic image 
and using them in a modified Geological Strength Index (GSI) evaluation. The weathering rating (Rw) 
was classified as ‘slight’ and scored as ‘5’ based on the percentage of weathered and aperture areas, and 
the GSI was determined to be 43. This study successfully demonstrated the potential for using spectral 
information to quantify rock mass weathering, as well as for using the calculated weathering degree to 
estimate the GSI.
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Introduction
Rock mass strength – the maximum resistance to external stresses – can be measured via Rock Mass 
Rating (RMR), the Q-system, and the Geological Strength Index (GSI), among other systems. However, 
these systems often present challenges for quantifying rock mass conditions, which are used to evaluate 
slope stability. In the mining industry, these challenges are related to the pit-slope scale, accessibility, 
and the human bias that is introduced by conventional scanline surveys (or cell mapping), which rely 
on visual inspection.

Potential sources of error 
The degree of weathering, a key parameter in rock mass estimation, introduces a major source of 
potential error since it relies mainly on visual inspection and subjective evaluation by geological 
engineers. Weathering typically reduces the strength of the rock mass and accelerates its disintegration 
(Viles, 2013). For geotechnical applications, visual observations of weathering focus on the 
disintegration and decomposition of the rock, discolouration, and the presence of decomposed and 
discoloured rock along discontinuities (Rocha, 1981; Shang et al., 2017). For example, highly 
weathered granite generally shows separation of mineral grains, discolouration due to iron oxides, 
increased friability, and the formation of clay minerals (Murphy, 1985). Some researchers have shown 
that the shape and size of the discoloured areas on the rock mass surface can indicate the relative age of 
fractures, as well as groundwater infiltration and flow processes (Spreafico et al., 2017; Vilder, Rosser, 
and Brain, 2017).

To eliminate the human bias in estimation of the degree of weathering, state-of-the-art image 
processing technologies can be applied. These technologies include spectral imaging and 3D LIDAR 
(light intensity distance and ranging) imaging. Spectral imaging is especially useful because it can 
mimic human visual observation but mitigate the limitations related to resolution, colour sensitivity, 
and bias. In recent decades, images that have been acquired remotely through spectral sensors have 
demonstrated their utility in geotechnical and geological inspections. They have been used to delineate 
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weathered rock mass surfaces by detecting the diagnostic spectral 
absorption features of altered minerals (Clark et al., 1990). 
Likewise, close-range spectral image sensors have been used 
successfully to detect the delicate changes in mineralogy on a 
highwall and in the weathering of rock masses (Nieto, Monteiro, 
and Viejo, 2010; Fraser et al., 2006; Park et al., 2016).  

Spectral imaging types and features
Spectral imaging can be classified into two main types – 
hyperspectral and multispectral – based on the continuity of 
information in the wavelength domain. Hyperspectral sensors 
employ over 100 contiguous bands to obtain a continuous 
reflectance spectrum for a given material, whereas multispectral 
sensors typically use fewer than ten discrete bands that can 
be selected to delineate material characteristics. Each pixel of 
a hyperspectral image contains a full spectrum, whereas each 
pixel of a multispectral image contains a set of isolated data from 
separate wavebands. 

Therefore, hyperspectral sensors may be better suited to the 
detailed classification of spectral features (Ferrato and Forsythe, 
2013). However, the large number of bands (higher spectral 
dimensionality) could cause an imbalance between classifiers 
and the training sample size, known as the Hughes phenomenon 
(Hughes, 1968), during data analysis. The Hughes phenomenon 
refers to the decrease in classification accuracy that occurs as 
the dimensionality of the classifier increases beyond a certain 
threshold (Bellman, 2015; Hughes, 1968). Furthermore, since 
scanning each pixel with the full spectral data-set is time- and 
energy-consuming, hyperspectral imaging is not feasible for field 
applications, which require fast and portable image acquisition. 
Thus, lowering the dimensionality is important for practical 
applications of hyperspectral imaging.

On the other hand, multispectral imaging has fewer, but 
wider, spectral bands for classifying features. This characteristic 
supports real-time and online image acquisition without 
large power or computational load requirements, allowing for 
sustainable, viable data acquisition for various field applications 
such as those involving unmanned aerial vehicles (UAVs) (Qin 
et al., 2013). Therefore, the benefits of multispectral imaging 
(flexibility and mobility) outweigh the higher analytical capability 
of hyperspectral imaging in practice.

Fortunately, narrow-band multispectral (NBMS) imaging 
leverages the advantages of both technologies for feature 
classification. NBMS was developed as a result of recent advances 
in optics technology (Surface Optics, 2018). It uses bandpass 
filters with a narrow bandwidth (approximately 10 nm) to 

provide more delicate spectral information in real time and 
thereby improve classification ability and efficiency (Qin et al., 
2013).

Study goal and scope
The ultimate goal of this study is to develop an automated 
rock-mass classification system that will overcome accessibility 
and human bias issues using advanced image processing 
technologies. To achieve this goal, a quantitative approach for 
evaluating the degree of weathering using NBMS imaging was 
investigated. In the following sections we detail the processes 
for developing thematic maps using hyperspectral, NBMS, 
and RGB imaging, and discuss how the quantified weathering 
degree information was integrated into GSI (rock mass strength) 
estimates for the study site.

Spectral image acquisition and processing
Spectral image processing was conducted to extract and classify 
the features of interest from raw hyperspectral data. The 
geological features of interest (weathered, non-weathered, and 
aperture areas) were extracted via computational and statistical 
approaches, using ENVI software and the OpenCV3-Python 
library. The work flow for the spectral imaging processes is 
shown in Figure 1.  

Data acquisition and study area
Spectral images were acquired using the Surface Optics SOC710-
VP hyperspectral camera (SurfaceOptics, 2018). This visible and 
near-infrared (VNIR) camera has a spectral range of 400– 
1000 nm, which corresponds to wavelengths in the visible light 
to near-infrared range. Its sensor has a spatial resolution of 
696 × 520 pixels and spectral resolution of 128 pixels (bands). 
Historically, the short-wave near-infrared (SWIR) wavelength 
range has been applied for mineral identification; however, in this 
study, the VNIR range was selected for practical reasons such as 
portability, cost, and fast image acquisition. This range can still 
mimic an engineer’s visual inspection (typically 400–700 nm) for 
geological surveys. 

The study area was an exposed road cut (rock slope) located 
near Thimble Peak Vista on Mt. Lemmon in southern Arizona, 
USA. Figure 2 shows an image of the study area. Hyperspectral 
images were obtained from two subsections, A and B. As shown 
in Figure 2, the area consisted mainly of granite, with heavily 
fractured and weathered zones. Several rock chips were also 
observed. Rock samples, weathered and relatively unweathered, 
were collected, and the uniaxial compressive strength (UCS) 
was estimated using a Schmidt hammer and a point load tester. 

Figure 1—Work flow of hyperspectral, multispectral, and RGB imaging process
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The average estimated strengths of weathered and unweathered 
samples were approximately 40 MPa and 120 MPa respectively, 
indicating a significant reduction in strength due to the 
weathering, multiple fissure systems, and oxidation observed in 
Figure 3.

Granite is a competent rock with low porosity and 
permeability. However, once water infiltrates into the rock mass, 
areas adjacent to fractures become altered and degraded. The 
contrast between the weathered and relatively non-weathered 
(fresh) areas can become more distinct because of the fracture 
pattern, discolouration, and formation of clay minerals (Riaza et 
al., 2001). 

Pre-processing
Images were pre-processed using raw hyperspectral cubes. 
This pre-processing included camera calibration, atmospheric 
correction, and noise reduction. 

Camera calibration 
Raw data from the hyperspectral camera contains only a digital 
number (DN) that corresponds to the pixel intensity. Because 
light conditions affect pixel intensity, data must be calibrated. 
In this study, the DNs in each element of the hyperspectral cube 
were normalized and converted to reflectance values based on 
Munsell (18% reflectance) grey (Munsell, 2019). 

Atmospheric correction 
Reflectance values were also corrected to compensate for the 
effects of the atmosphere. This entailed removing the dependence 
on atmospheric conditions (absorption by molecules, gas, and 
aerosol) on the surface of the rock mass to improve spectral 
classification.

Noise reduction 
Noise reduction is essential for improving the quality of 
hyperspectral analyses. The radiance received by the spectral 
sensor is generally degraded by instrumental noise (thermal, 
quantization, and photon) (Rasti et al., 2018). Two methods 
have been commonly used to reduce noise in hyperspectral 
imagery (Green et al., 1988; Luo et al., 2016): the maximum 
noise fraction (MNF) and principal component analysis (PCA). 
For this study, the MNF method was applied as shown in Figure 
4. The raw spectral profile of a pixel is shown in Figure 4a. 
After noise reduction, the small spikes, which are considered 
minor components of the profile, were eliminated to produce the 
smoother curve that is shown in Figure 4b.

Figure 2—Photograph of the study area. Hyperspectral images were  
captured from sections A and B

Figure 3—Rock samples from the study area: (a) weathered granite and (b) 
relatively non-weathered (fresh) granite Figure 4—Noise reduction results (a) before and (b) after MNF transform
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End-member designation
Hyperspectral images can be classified based on a representative 
spectral profile of each feature that mimics an engineer’s visual 
inspection. The process of designating the spectrally pure 
constituent that corresponds to each feature of interest is referred 
to as ‘end-member designation’. Three designated areas – 
weathered, relatively non-weathered (background), and aperture 
– were identified for this study site. The representative spectral 
profiles for each end-member were derived by averaging pixel 
reflectance across wavelengths. Hundreds of spectra from each 
end-member were manually selected from these three areas. The 
profiles for each end-member are shown in Figure 5.

Feature band selection and spectral index
Detecting features of interest from raw images is difficult using 
single-band methods. First, the contrast between the weathered/
aperture areas and non-weathered areas (background) may be 
insufficient. In addition, single-band methods pose a higher 
risk of encountering misclassified pixels that have similar 
intensity values to feature areas (Sun et al., 2018). To intensify 
this contrast and show a uniform response across the entire 
rock mass, a spectral index (or ‘band ratio’) can be used. An 
example of a band ratio is the well-known normalized difference 
vegetation index (NDVI). Configured with red and NIR bands, 
NDVI has been widely used to identify vegetation areas. 

In this study, a band ratio was used to identify weathered and 
aperture areas. This ratio was developed by selecting a couple 
of bands at specific wavelengths based on the spectral profile of 
the end-members shown in Figure 5. The most effective band 
ratios (those with the highest contrast between reflectances) 
were identified for weathered and non-weathered areas and for 
aperture and non-weathered areas. 

Weathered index (WI) 
On weathered areas of the rock mass surface, the granite was 
discoloured, indicating biotite and feldspar alteration that 
occurs when water flows through fractures and forms reddish-
brown iron oxides (Riaza et al., 2001). This discolouration was 
assumed to be a good indicator of weathering; consequently, 
this study mostly focused on the discoloured and aperture areas, 
as suggested by the work of other researchers (Shang et al., 
2017; Spreafico et al., 2017; Vilder, Rosser, and Brain, 2017). 
To evaluate the weathered area, a weathered index (WI) was 
determined as the ratio of two wavelengths – 550 nm (green) and 
601 nm (orange):

[1]

where r is the reflectance value at a specific wavelength.   

Aperture index (AI) 
An aperture is an open discontinuity on the rock mass that is 
filled with air or water. Once the rock wall is subjected to high 
tensile stress or the existing fracture is eroded by weathering, the 
aperture density increases (Singhal and Gupta, 2010). As shown 
in Figure 5, the spectral reflectance of an aperture at a short 
wavelength is almost zero, but reflectance increases at longer 
wavelengths. Thus, the ratio between the blue (450 nm) and NIR 
(993 nm) bands provided good contrast for aperture detection. 
Aperture index (AI) was determined as the ratio of these two 
wavelengths as follows: 

[2]

where r is the reflectance value at a specific wavelength.   

Occlusion index (OI)
Shaded (‘occluded’) areas, which have low reflectance and 
intensity values, disrupted digital image processing. To evaluate 
the effectiveness of hyperspectral classification across these 
areas, an image mask was created using an occlusion index (OI) 
and applied during thematic mapping. The OI was defined as a 
combination of the NIR band (993 nm) and two blue bands  
(400 nm and 450 nm) as follows:

Figure 5—End-member designation for the features of interest (non-weath-
ered, weathered, and aperture areas): (a) section A and (b) section B 
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Figure 6—The process of creating a thematic map using NBMS imaging 

Figure 7—Thematic maps using various algorithms

[3]

where r is the reflectance value at a specific wavelength.   

Thematic mapping and quantification
Thematic mapping shows the spatial distribution of the features 
of interest on the image. It involves mapping the spectral index 
values in image pixels to a 16-bit grey scale. To classify features 
on the map in a binary way, a threshold was then defined to 
distinguish weathered and aperture areas from non-weathered 
(background) areas. This process was automated using the 
adaptive threshold technique (Otsu, 1979) instead of using a 
fixed (absolute and specific) threshold value. It determines the 
thresholding values based on the relative difference between 
the intensity of the featured object and background, mitigating 
the misclassification caused by the global intensity gradient. 
The binary images of each spectral index were all combined to 
create a thematic map. The overall process of thematic mapping 
and image processing is described in Figure 6. Non-weathered, 

weathered, aperture, and shaded areas are shown in Figures 7c 
and 7d as green, red, blue, and black respectively.

Other approaches – the use of Spectral Angle Mapper 
(SAM) and RGB analysis – were also applied for comparison 
with hyperspectral full-band analysis via NBMS. SAM uses the 
similarity between spectral vectors to classify target features. 
It offers a key advantage: the ability to classify target features 
under different sunlight conditions since it depends only on the 
directions of spectral vectors, not their magnitudes (De Carvalho 
and Meneses, 2000). In this study, the spectral vector of each 
image pixel was compared to that of each end-member. Note 
that the reference spectral information of each end-member for 
SAM was the same as the designated end-members shown in 
Figure 5. If a spectral vector at the arbitrary pixel showed the best 
similarity with the reference spectral vector of the ‘weathered’ 
end-member, then the pixel was classified as ‘weathered’, since 
the best similarity produces the smallest spectral angle. The 
thematic images developed using SAM are shown in Figures 7e 
and 7f. RGB analysis of normal digital images, a relatively simple 
and cost-efficient method, was also used to evaluate the relative 
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capability of weathering classification. This method has been 
used to detect rock weathering by other researchers (Spreafico 
et al., 2017; Vilder, Rosser, and Brain, 2017). In this study, a 
maximum likelihood estimation algorithm was applied to classify 
the weathered and aperture areas. The thematic maps using RGB 
analysis are shown in Figures 7g and 7h.

Compared to other approaches, the spectral index images 
(Figures 7c and 7d) analysed using NBMS showed the most 
reasonable results. The NBMS algorithm never misclassified non-
weathered points as weathered; it also produced better results 
for shaded areas and for weathering/aperture classification. The 
shaded areas (the black, masked areas on the left side of section 
B) did not influence the spectral classification of the aperture and 
weathered areas from the non-weathered areas in the spectral 
index images. In addition, NBMS successfully delineated the 
hidden aperture under the shaded area, shown in the white 
circle in Figure 7d, whereas the SAM and RGB images failed to 
even detect this aperture line. For weathering classification, the 
RGB analysis yielded similar results to the spectral index image; 
however, this method could not discriminate between the aperture 
area and occlusion and it overestimated the size of the aperture. 
In addition, because the RGB colour space uses only three bands, 
this method is susceptible to changes in illumination conditions 
(for example, during sunset) (Angelopoulou, 2000).

Calculation of percentages of weathered, aperture, and 
background areas
Weathering was then quantified by calculating the percentage 
of classified pixels in the weathered and aperture areas over 
the entire image. Table I shows the percentage of weathered 
and aperture areas for sections A and B. The weathered areas 

comprise 14.1% and 22.5% and the aperture areas comprise 6.5% 
and 12.5% of sections A and B, respectively.

Application to GSI system
Spectral indexes from two-band ratios were calculated and used 
to delineate the discoloured and aperture areas. The quantified 
weathering in section B at the study site was used to evaluate the 
rock mass via the GSI system (Hoek and Brown, 1997).

The GSI system estimates the condition of the rock mass or 
slope based on its structure and surface conditions. The structure 
rating (SR) considers block size and the interlocking of rock 
blocks; the surface condition rating (SCR) considers weathering, 
persistence, and the condition of discontinuities. GSI scores can 
range from 10 to 85. Higher values represent good/intact rock 
mass conditions, whereas lower values represent poor/fractured 
conditions. A key challenge for GSI estimation is that joint 
surface conditions are based on qualitative guidelines, which 
induce human bias, rather than quantitative calculations.

Sonmez and Ulusay (1999) proposed a modified version of 
the GSI system, also known as the Turkish GSI. The SR parameter 
describes the geometric characteristics of joints (joint space and 
density) and can be calculated as follows:

   Table I

  Estimated percentage of weathered and aperture areas 
   Section Weathered Aperture

   A  14.1% 6.5%
   B  22.5% 12.5%

Figure 7—Thematic maps using various algorithms (continued)
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   Table II

  SCR rating for GSI (Sonmez and Ulusay, 1999)
   SCR = Rr+ Rf + Rw

   Roughness rating (Rr) Very rough Rough Slightly rough Smooth Slickenside
  6 5 3 1 0
   Infilling rating (Rf) None Hard and thin Hard and thick Soft and thin Soft and thick
  6 4 2 2 0
   Weathering rating (Rw) None Slightly weathered Moderately weathered Highly weathered Decomposed
  6 5 3 1 0 

[4]

where Jv is the volumetric joint count (joints per m3). 
Traditionally, Jv has been assessed using a conventional 

scanline survey (or cell mapping). In this study, a 3D LIDAR 
image was used to estimate Jv in section B, as shown in Figure 
8. The overall process of data acquisition and manipulation, 
demonstrated in a previous publication by the authors (Park et 
al., 2016) entailed obtaining the 3D point-cloud data using a 
FARO X330 scanner with 2 mm resolution and analysing the 
data using Split FX software (Version 2.3, Split Engineering, 
Tucson, AZ). The analysis identified joint orientations and the 
virtual planes of rock mass discontinuities. The joint number was 
counted using virtual scanlines from the 3D model. 

The SCR parameter can be obtained simply by summing the 
roughness (Rr), filling (Rf), and weathering (Rw) ratings, which 
range from 0 to 6, as shown in Table II. In this study, Rr and Rf 
were obtained using the 3D LIDAR image from Park et al. (Park 
et al., 2016; Mansfield and Kemeny, 2009). These values are 
shown in Table III. Rr was calculated from the Fisher K of each 
triangulated unit mesh surface (Park et al., 2016), and R was 
determined by visual inspection of section B.

Traditionally, Rw is determined by visually inspecting the 
degree of weathering in the rock mass in accordance with the 
International Society for Rock Mechanics (ISRM) guideline 
(Rocha, 1981). Consequently, to estimate Rw for this study, 
the percentages of the weathered and aperture areas were 
calculated as previously noted and Rw was tentatively quantified 
by assuming a linear correlation with the average percentage of 
these areas. Since Rw ranges from 0 (very weathered) to 6 (not 
weathered/intact), the average percentages were converted to Rw 
using Equation [5].

[5]

where Aw is the percentage of the weathered area, Aa is the 
percentage of the aperture area, and the constant 16.7 is the 
coefficient that was derived to convert these values from a 
percentage (0 to 100) to the Rw range of 0 to 6. 

For section B, the estimated values of the constituent 
parameters and GSI are summarized in Table III. The Rw at section 
B was classified as ‘slight’, with a score of 5, and the GSI was 43 
according to the chart in Sonmez and Ulusay’s study (Sonmez 
and Ulusay, 1999). The other parameters were obtained from the 
authors’ previous study (Park et al., 2016).  

To assess the validity of this approach, a traditional visual 
inspection was conducted to determine Rw (Rocha, 1981). Based 
on this inspection, section B scored ‘3’, indicating moderate 
weathering. Further studies are required to understand why this 
result differs from the Rw of 5 obtained using the spectral imaging 
methods described in this paper. These studies are recommended 
in the following section. 

Conclusions and future work
In this study we proposed a quantitative approach for measuring 
the degree of rock mass weathering using a simple spectral index 
classification algorithm, referred to as NBMS imaging. A simple 
two-band ratio was applied to delineate weathered and aperture 
areas. The weathered area was delineated using the wavelength 
ratio of 601:550 nm, the aperture area using the wavelength ratio 
of 993:450 nm. Compared to a full-band hyperspectral imaging 
analysis, NBMS imaging successfully demonstrated the potential 
for quantifying the degree of weathering. This quantified 
weathering was also applied to estimate the (modified) Turkish 
GSI by converting the percentage of weathered and aperture areas 
into the weathering parameter, Rw, in the GSI system. The study 

Figure 8—3D LIDAR image (point cloud) of section B (Park et al., 2016)

   Table III

   GSI estimation using the advanced image processing 
technologies

    Parameter Rating

   Block size parameter Jv 6.9
  SR 46
   Surface condition ratings (SCR) Rr 2
  Rf 2
  Rw 5
  SCR 9
   GSI  43
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results also showed the potential for applying the quantified 
weathering degree using NBMS imaging to estimate rock mass 
strength. However, using the weathered area percentage as 
input for GSI determination has several limitations that require 
additional study, as noted below.

It was assumed that the relationship between Rw and the 
percentage of the weathered area is linear; however, it could be 
nonlinear. This relationship should be verified.

The weathering parameter, Rw, depended largely on the 
threshold level in the thematic map – for example, a higher 
threshold level would underestimate the weathered areas, 
resulting in higher values. The threshold value should be 
site-specific for the GSI application and consider the rock type, 
climate, and engineering purpose (e.g., mining industry, civil 
industry), etc.

The Rw was influenced by uneven illumination conditions at 
the test site. This problem was alleviated by applying the adaptive 
threshold method and using an occlusion image mask; however, 
further studies are required for various lighting conditions.

Rock mass weathering was quantified only from image 
processing technologies and therefore captured only surface 
conditions; it did not consider the thickness of the weathered 
zone.

To detect the specific features of clay minerals and delineate 
their distribution, SWIR spectrometry is required. In this study, 
VNIR-range spectrometry was applied for practical reasons, and 
the presence of clay minerals – a major factor in rock weathering 
– was not considered.
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