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Synopsis

Mining geomechanics presents specific challenges to application of the closely-related methods
of artificial intelligence (AlI), big data, predictive analytics, and machine learning. This is because
successful use of these techniques in geotechnical engineering requires four-dimensional (x, y, z, ¢)
data integration as a prerequisite, and 4D data integration is a fundamentally difficult problem.

This paper describes a process and software framework that solves the prerequisite 4D data

integration problem, setting the stage for routine application of Al or machine learning methods. The
work flow and software system brings together structured and unstructured data and interpretation
from drill-hole data to all types of geological, geophysical, rock property, geotechnical, mine production,
fixed plant, mobile equipment, and mine geometry data, to provide a data fusion capability specifically
aimed at applying machine learning to rock engineering problems.
The system does this by maintaining 3D earth model and 4D mine model geometrical data structures,
upon which multiple data-sets are projected, interpolated, upscaled, downscaled, or otherwise processed
appropriately for each data type so that the variables of importance for each problem can be co-located
in space and time, a requirement for the application of any analytics algorithm. Documents and files can
be stored, managed, and linked to data and interpretation to provide relevant metadata and contextual
links, providing the platform required for Al solutions. The system rationale and structure are described
with reference to specific Al challenges in rock engineering.
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rock engineering, geomechanics, artificial intelligence, AL

Introduction

Most people are aware of the Al technology revolution. From self-driving cars to medical, financial, and
marketing applications, we have been exposed to its predictive power. Why have these methods not yet
had a significant impact on understanding or forecasting mining geomechanics outcomes? The rewards
of Al should be immense as mines get deeper and forecasting of stress-related or other rock behaviour
becomes a limiting factor on safety and production. The reason for lack of success is simple—there is a
fundamental barrier that makes mining geomechanics different from traditional Al applications.

Al and its close relatives, predictive analytics, machine learning, and big data (all of which in
practice are either broadly synonymous terms or subsets of each other), work well when you can
measure many variables on a specific entity, such as a mining machine, a length of drill core, or even an
industrial process, and simultaneously record a condition that you want to be able to forecast such as
machine failure, the mineral and geometallurgical properties of rock, or the output of a process. Al can
uncover complex, predictive relationships among measured variables and the condition to be predicted.
That is why it is already being used with success in some corners of the mining industry, such as
understanding the relationship between fleet vehicle data and maintenance requirements or predicting
geometallurgical parameters from core scans.

However, in mining geomechanics, its application is far from simple. The reason for this is that the
condition being predicted, such as the location and timing of a geotechnical hazard (including rockfall,
rockburst, or slope failure, seismic event probability forecasting, ore dilution forecasting, or drawpoint
hang-up prediction), may be related to known factors (e.g. geology, rock mass properties, fault
structures, mine geometry, stress, extraction, production, stope sequencing, deformation, seismicity,
blasting, and support). But those factors are in many cases not easily estimated quantifiable variables
at the location where the prediction is required. The condition to be forecast (e.g. the rockburst or the
slope failure) exists when and where it does because of the properties of the complex, four-dimensional,
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spatial and temporal natural earth and engineered mine system.
Not only are many of the factors affecting the prediction
separated in space and time from the location and timing of the
forecast event, but many can only be partially known, because
they are inferred from models (geological models, geotechnical
models, numerical stress models, etc.) that are themselves created
from sparse measurement or drill-hole data.

Nevertheless, in spite of these particular challenges of
applying modern Al or machine learning methods to mining
geomechanics, success can be and has been, achieved. The
solution is to take the focus off the mechanics of Al itself and put
the focus on how these problems are set up for the application
of Al methods, which is where deep domain knowledge and
a mining-specific, supporting computational framework are
required.

How artificial intelligence works

There is much confusion in popular usage of the terms used

to describe what amounts to a collection of pattern recognition

algorithms. In formal usage, Al is a broad term encompassing

the general field of computer simulation of human intelligence.

Machine learning is a narrower term, conventionally a sub-

set of Al that uses computer algorithms to create a predictive

mathematical model based on so-called historical training data

that can be used to forecast the relative probability of future
occurrences of given events.

Classes of machine-learning algorithms include decision trees,
random forests, support vector machines, Bayesian inference,
ensemble methods, and others. Deep learning is a subset of
machine-learning algorithms that uses neural networks. The
term ‘predictive analytics’ is roughly synonymous with machine
learning, but more often used in a business application context.
The term ‘big data’ is conventionally reserved for very large data-
sets, typically comprising both structured data (such as tables of
numbers) and unstructured data (documents, photos). In popular
use, however, and for the purposes of this paper, I consider
Al, machine learning, predictive analytics, and big data to all
be effectively synonymous, and will use the term Al For rock
engineering applications, the choice of Al algorithm matters much
less than correctly setting up the inputs to whatever algorithm is
chosen.

‘Artificial Intelligence is colossally hyped these days, but

the dirty little secret is that is still has a long, long waqy to
go... Al systems tend to be passive vessels dredging through
data in search of correlations; humans are active engines

Jor discerning how things work... Unlike human cognition,

Al systems lack a theory of the world and how it works.’

Marcus (2017).

The truth of the above quotation underlines what we can and
what we cannot hope to achieve in applying these methods to
mining geomechanics.

What we may achieve by applying Al in mining
geomechanics:

1. Find correlations among multiple data-sets and conditions or
events we would like to forecast.

2. Create useful statistical models that quantitatively combine
multiple input data-sets into meaningful output forecasts of
future geomechanical behaviour.

3. establish the relative importance of individual data types in
understanding future behaviour.

4. Confirm or refute assumptions concerning relationships
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between data, models, and experience and generally put our
assumptions of site behaviour to the test of measured facts.

However, we will not (at least any time soon) applying Al in
rock engineering:

establish new conceptual or physical models that describe
rock engineering behaviour

Al systems easily available to us today are indeed ‘passive
vessels dredging through data in search of correlations.’ Yet that
is of great value in itself in mining geomechanics. It provides us
with a new, sophisticated capability to understand underlying
patterns in very complex data and apply those patterns as a
set of rules that can be used to predict future behaviour based
on the patterns of past experience. Al works in any domain by
measuring features of a great many examples of something
and correlating those features with a condition to be predicted.
For example, one could measure features (Symptoms) of many
individual patients in a medical application and label those
patients according to the presence or absence of a specific medical
condition. Al techniques could be deployed to comb through
thousands of patient records, sort out the relative importance
of multiple measured features (symptoms in the example), and
create a mathematical model enabling the estimation of the
probability of any new patient having the specific condition. Al
does this by measuring the important features and combining
them according to the learned relationship between the features
and the probability of having the condition. The process of
uncovering the relationship between measured features and the
condition of interest is called training.

By analogy, the example above can be applied to many
problems in rock engineering and, by further analogy, to the
medical diagnostic case, it can be of tremendous practical
value to understand the likely existence of a specific condition
of importance (e.g., high probability of failure) that can be
addressed with practical remediation measures. That remains
true whether or not the underlying root causes of the conditions
to remediated are fully understood. Nevertheless, in mining
geomechanical applications of Al, unlike in many other domains,
we prefer to use Al algorithms that are not black boxes, but
rather reveal as much as possible about relationships among
data, models, and outcomes.

Challenge in applying artificial intelligence to mining geo-
mechanics

The central challenge in applying Al to mining geomechanics
problems stems from a simple fact: the condition (including rock
fall and slope failure ) whose location and timing that we want
to forecast results from a complex interplay of factors in a four-
dimensional, dynamic system that can only partially be known.
Capturing the important factors from this complex system for Al
training, and subsequent application to new data for providing
probabilistic forecasts of where and when conditions of interest
may occur, is the key challenge. Meeting this challenge requires
deep domain knowledge. It is here where mining geomechanics
knowledge enters the Al work flow, and it is where the
application of that knowledge to capturing the most meaningful
system factors will mark the difference between success and
failure.

To give some examples, consider rockbursts in underground
mines or slope failures in open pit mines. Rockbursts may be
correlated to a host of factors such as depth, stress, stiffness,
ground deformation, extraction ratio, production rate and
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sequencing, support, blasting, span and other mine geometry
factors, rock type, rock quality, proximity to geological contacts,
proximity to structures, proximity to structural intersections,
and orientation of structures with respect to stress and mine
geometry. Similarly, slope failures may be correlated to a host
of factors such as slope angle, face angle, inter-ramp angle, face
height, berm width, rock quality generally, joint characterization
both generally and with respect to wall orientation, water, rock
type, proximity to geological contacts, proximity to structures,
proximity to structural intersections, orientation of structures
with respect to pit geometry, and ground deformation. The factors
in play are generally site-dependent; capturing the appropriate
ones requires both general and site knowledge.

Co-location in space and time is the most important concept in
properly capturing the rock engineering factors that may correlate
to the conditions we want to forecast. The Al training algorithms
require many examples of multiple measurements on the same
thing. In the medical diagnostic analogy, that same thing is the
patient, and the algorithms require many patients on whom
multiple factors are measured in addition to noting whether
individual patients are afflicted with the condition of interest.

In mining geomechanics, it is individual locations in space and
time on the rock face that stands in for the patient of the medical
analogy. At those individual locations on the rock face (along a
drift, in a stope, on a pit wall), many factors can be measured,
some of which (e.g. stress, deformation, seismicity) change over
time. The data to be assembled for the Al training is of the form:

(x, y, z, t, observation 1, observation 2, ... observation m,
condition = true or false).

In Al this collection of measurements is called a feature
vector. It contains the coordinates of the place (x, y, 2, ¢) that
specifies a unique location in space and time on the mine, a
series of m observations (e.g. RMR, stress) that are observed
or estimated at that location, and a condition or target variable
that is most commonly a simple binary true or false, indicating
that the condition being investigated was present or absent at
that place and time (for example a rockburst or slope failure).
In practice, there are typically many thousands of individual
feature vectors and a few tens of observations per feature vector.
In fact, the number of feature vectors available to us in the
rock engineering domain is virtually unlimited because we are
sampling over the mine geometry and time, both of which we
may discretize as finely or coarsely as we choose. The number
m of observation variables per feature vector is also very much
at our discretion, as it is not unusual in Al to include many
secondary variables (such as mathematical derivatives to test
for significance of both spatial and temporal rates of change) of
the primary observed or inferred variables. This expansion of
observations in the feature vector by mathematical manipulation
such as taking derivatives can be carried out systematically. It is
in establishment of the primary observations that the crux of the
challenge lies.

Co-location demands that we establish potentially useful
quantities relating to each of the primary factors (e.g. rock
quality, stress) that we may think have a relationship to the
condition being analysed (rockfall, slope failure) at thousands
of points (x, y, z ¢) in the mine. In practice, this means creating
a 4D model of the mine—a 3D model at several or many time
steps—that contains all the primary observations believed to
possibly have a relationship with the condition of interest.
Creating that 4D mine model upon which Al algorithms can be
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trained to understand the patterns and relationships among
data, interpretations, and the history of occurrence of specific
events is the central challenge in applying Al methods to mining
geomechanics. It is also in constructing the 4D model that
rock engineering problems may indeed become big data. The
number of data contained in the 4D model that is input to the
Al algorithm is (m x n), where m is the number of observations
per feature vector, n is the number of feature vectors (which is
the number of digitized points on the mine model multiplied by
the number of time steps, a quantity that can easily be in the
millions).

The practice and pitfalls associated with the application of
Al algorithms to rock engineering problems have been described
elsewhere, for example in McGaughey (2019). In the remainder
of this paper I focus on the most pressing challenge in the overall
work flow, which is construction of the 4D mine model from
which the set of feature vectors used as input in Al are derived.

A framework for successful application of Al in rock engi-
neering

A system, Geoscience INTEGRATOR (McGaughey et al.,
(2017), has been created that provides simple computation
of the variables required to address the application of Al to
mining geomechanics problems, and provides a real, working
data-structure definition to the notion of a 4D mine model. It
accomplishes this by maintaining 3D earth model and 4D mine
model geometrical data structures, upon which multiple data-sets
are projected, interpolated, upscaled, downscaled, or otherwise
processed appropriately for each data type so that the variables of
importance for each problem can be co-located in space and time.
Documents and files can be stored, managed, and linked to data
and models to provide relevant interpretational metadata and
contextual links, providing the platform required for Al solutions.
The general system configuration is shown in Figure 1. A 4D
data management system sits at the core of the system. The data
management system manages all relevant data types, including
geological models, mine infrastructure models, drill-hole and
sample data, production and blasting data, and instrument
monitoring data of all types (e.g. convergence and extensometer
station time series data, prism and radar data, seismic data).

Model Server Analytics Server

i I

4D Data Management System

Easy-to-Use Interface and
Reporting Applications

* to PC’s, tablets, phones
* web browser

* 3D visualiser

« dashboards
—————————————————————————————————————————— * email dispatch

Mine Monitoring Hazard Occurrence
Data Streams Reports

Real-time Geohazard
Assessment Reporting
* automated, real-time + groundfall or other

upload to 4D data geotechnical incident
management system reports

Primary Data

Figure 1—The Geoscience INTEGRATOR system configuration. A 4D data
management system resides on a server, connected to a model server for
automated computation of variables (feature vector observations described
in the text) and an analytics server for applying Al rules and computing
event probabilities
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It is able to automatically ingest new data from instruments or
external databases. Hazard occurrence or other relevant event
conditions are input automatically or manually. Most importantly,
the data management system maintains an explicit model of

the mine, digitized in time and space, and provides the required
mappings between input data streams, the 4D mine model, and
output forecasts of rock engineering conditions or events.

The data management system is directly connected to a model
server, in this implementation a run-time version of the SKUA-
GOCADe® modelling engine, and an analytics server which can
apply Al rules to new data to deliver updated reports (typically
hazard assessment reports). The model server is set up to
compute required variables automatically, on user demand or on
a set schedule (e.g. daily). It operates under the control of the
data management system, which queues required computations,
supplies the input data, triggers the model server to run one of
many pre-defined scripts, and receives output as newly computed
observations on its internal representation of the mine model at
all relevant locations (%, y, 2 ¢).

Examples of computations that can currently be automatically
run by the model server to update properties on the mine model
(feature vector observations) include:

» Interpolate rock quality variables in a block model based
on a variety of simple interpolation and geostatistical
estimation techniques

Interpolate time-windowed seismic source properties
Compute time-windowed seismic event density

Compute maximum seismic PPV over given time windows
Compute proximity to contacts and structures

Compute proximity to intersections of any groups of faults,
dykes, geological contacts

Interpolate ground deformation

YYVYVYY

\

Compute deviatoric stress

Compute fault-slip tendency

Compute extraction ratio based on mine infrastructure
wireframes

» Compute wedge and planar joint failure parameters using
kinematic bench analysis.

An example of the web browser user interface illustrating a
sample list of computations set up on an automatic schedule for
an actual case study is illustrated in Figure 2.

The computations illustrated in Figure 2 serve to populate
the 4D mine model data structure with calculated values for each
observation type. The calculations are customized per site to
account for the many specific parameters that typically must be
set per computation (e.g. length of time windows), as well as the
frequency of update per data type.

Figure 3 also shows a screenshot from the system’s web
browser interface. It is showing a view of its internal data
fusion table, which is a tabular display of the values of system-
computed observations on individual mine model points (x,

), z) for a given user-selected time ¢. The rows of this table
correspond to individual feature vectors. The complete table is
the input to the Al algorithms. The output of the Al algorithms
is a probabilistic estimation of the given condition being
analysed (e.g., rockfall or slope failure). The output estimation
is in an additional, time-varying quantity on each mine model
point (x, y, z t), describing how the probability of manifesting
the condition is varying across space and time. Figure 4 is a
screenshot from the web browser interface showing a subset
of rules, output from the Al algorithm, which are applied to the
mine model points to determine, in the particular case study
example shown, relative probability of rockburst occurrence
across a mine. For the example shown in Figure 4, the rockburst

Yvy

System-computed properties
= I Category
%l of | atior
© Data sot explore Next calculatio
Schedule N
Category
e T
A
BT Category
2T ~
LT
B
F s
Category
Last calculation
Next calculation
Schedule
Category
Last calculation
\ zoomed

Figure 2—Geoscience INTEGRATOR web interface screenshot illustrating the automated scheduling of several computations used in the application of Al-based

geohazard assessment
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Figure 3—Geoscience INTEGRATOR web interface screenshot illustrating the table of feature vectors (also known as the data fusion table) for a case study. Each
row of the table corresponds to one feature vector, with only four observations (columns in the table) selected for display. The table is shown for a selected time
and area of the mine. The Al algorithms act on the complete table
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Figure 4—Screenshot from the Geoscience INTEGRATOR web browser interface showing a subset of rules output from an Al algorithm at a case study mine site
where the objective was dynamically updating a model of rockburst hazard (in this case weekly), based on an automated update of several input data streams

probability forecast is automatically updated weekly, but the
schedule can be arbitrarily set to whatever is appropriate for the
mine site. It is important to note that, without such an automated
system, updating these computations is extremely laborious. Our
experience over the years as consultants, initially carrying out
these computations manually, was that the computations were
sufficiently burdensome that mines would carry out updates
typically annually, and at most quarterly, essential rendering the
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system a tool for mid to long-term planning rather than a tactical
operational guide to current areas in the mine that warrant
concern.

Figure 5 shows a final, reportable operational output from the
system. Once the Al rules (illustrated in Figure 4) are applied,
the relative rock-burst probability can be displayed as a property
on the individual mine model points. The case study example
shown is for one mine level only, with relative probabilities
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Figure 6—A 3D visualizer client called Geoscience ANALYST connects directly to the Geoscience INTEGRATOR server, enabling 4D query of the data management
system to display hazard assessment results (as shown here with warmer colours indicating greater rockburst hazard probability) or any of the underlying data,

model components, linked files, documents, and images

above a set threshold shown as large symbols as well as warmer
colours for emphasis. The mine-level display can be captured

in a PDF report and automatically dispatched on a schedule to

a defined email group, or a trigger-alert can be set up if a given
threshold is exceeded. All of the underlying variables, as well as
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the final output hazard assessment result, at each mine model
point can be visualized for inspection and validation. All model
components, variables, and hazard assessment results can also
be easily visualized in 3D using the data management system’s
3D visualizer client application (See Figure 6).
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Figure 7—Schematic representation of data flow from independent data sources (top) to the data management system (centre), with connection to the serv-
er-based 3D spatial modelling engine for updating the 4D model in response to new data (right), input-output to the analytics (Al or machine learning) system

(bottom), and finally hazard assessment reporting (left)

In practice, this system can be easily set up at mine site on
conventional hardware or as a cloud-hosted deployment (both
have been done). Data sizes are manageable with large, but not
extraordinary, demands required on storage capacity. Whether
deployed on site or cloud-hosted, Geoscience INTEGRATOR can
be connected to multiple data sources at the mine site in several
ways. Users can manually update slowly changing data such as
mine infrastructure geometry or block models through a manual
drag-and-drop into specified folders on the file network system
for automated import. These monitoring folders can also be
used for machine-to-machine communication, typically as csv
files automatically output from monitoring systems (such as
microseismic or ground deformation). The system can also be
customized to pull directly from third-party databases (such as
production databases). Because all data relevant to the hazard
assessment is contained within this single data warehouse,
it provides a single point from which to query and access any
relevant data. In fact, some mine sites use the system for this
data warehouse purpose alone. Figure 7 provides a schematic
representation of the data flow.

Conclusion

Al can be successfully applied to complex mining geomechanics
problems. Doing so requires focusing on the primary challenge

of setting up the problem rather than on the Al algorithms
themselves, most of which will provide value if the problem

is propetly set up. Developing the proper inputs for Al in rock
engineering requires mapping the complex, 4D mine and earth
model system to a proper data structure in which the many multi-
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disciplinary factors in play can be co-located in space and time.
Doing so in a practical, operational sense requires implementation
of a 4D data management system coupled with a powerful spatial
modelling engine (the model server) and the Al algorithms (the
analytics server). Inputs and outputs must be automated to
support systematic update at a frequency that is operationally
useful for tactical decision-making by operators.
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