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A critical analysis of recent research 
into the prediction of flyrock and 
related issues resulting from surface 
blasting activities
J. van der Walt1 and W. Spiteri1

Synopsis
Since 2010, a number of researchers have investigated the development of new models to generate 
accurate predictions relating to the risks from flyrock. The purpose of this paper is to summarize and 
analyse these recent studies in order to determine the validity of the findings as a global solution. 
Recent publications have proposed a wide range of potential approaches and techniques to predict 
or investigate flyrock. Several authors have proposed viable solutions based on assumed causative 
parameters and their impact as inputs. However, the results were concluded to be site-specific and could 
not be applied to other environments. Since the actual impact of blast design parameters on the risk of 
flyrock remains debatable, based on the varying assumptions made in recent research, it is important to 
use an objective methodology for evaluating the impact of design parameters as well as environmental 
considerations. The testing methodologies used to measure the actual flyrock distance are not scientific 
and are highly dependent on the scrutiny of the researcher. In order to present results that are objective 
and uncriticizable, an accurate, quantitative and objective method of measuring the travel distance of 
flyrock is required. 
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Introduction
Flyrock is the main cause of damage to equipment or infrastructure resulting from a blast and has 
fatally injured people in the vicinity of a blast (Bajpayee et al., 2003). Injury to mine employees as well 
damage to surrounding property or infrastructure can result in high financial and reputational penalties 
for a mine. It is, therefore, imperative that the risk of flyrock is minimized. In order to reduce flyrock 
and minimize the severe consequences associated with excessive flyrock, it is important to understand 
the phenomena and how various blast parameter contribute to it.  

The research relating to predicting the flight distances of flyrock prior to 2010, starting from a 
paper by Lundborg et al. (1975) has been reviewed in the 18th edition of the Blasters’ Handbook 
(ISEE, 2011). This prior research culminated in the principle of scaled depth of burial (SDoB), which is 
currently considered the most effective model for estimating the flight distance of flyrock (ISEE, 2011). 
However, several studies have indicated that flyrock, and the effect of various blasting (causative) 
parameters on the risk of flyrock in different environments, is still not well understood. These studies 
recommended that the existing prediction models be reviewed and that the effect of the causative factors 
on the projection ranges of flyrock should be investigated further, in order to gain an understanding of 
how these parameters can affect the risk posed by flyrock.  

Since 2010, a number of researchers have investigated flyrock and developed new prediction models 
in an effort to generate accurate predictions relating to the flyrock distance (i.e. the distance the flyrock 
is thrown from the blast). The purpose of this paper is to summarize and critically analyse these recent 
studies in order to determine the validity of the findings as a global solution, across all commodities and 
mining methods.  All of these research studies were focused on surface mining operations since flyrock 
is largely associated with surface blasting activities. 

The review of these studies served as a motivation for further work to develop a method to quantify 
the motion of flyrock, in order to develop a tool to accurately measure flyrock field data.  This research 
is currently being pursued by the Mining Engineering Department at the University of Pretoria.

This paper aims to achieve three main objectives, namely:

1.  To emphasise and support the statements made by previous researchers, i.e. that flyrock is a topic 
that is still not fully understood and that significant gaps in knowledge exist
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2.  To review the various methodologies, techniques, and 
technologies that have recently been used to develop flyrock 
prediction models

3.  To investigate and critically analyse the methods of testing or 
evaluating the proposed prediction models (if the models was 
evaluated during the studies) and evaluate the conclusions 
based on the results obtained. 

Literature review 
Most of the recent work relevant to flyrock has been done 
since 2010. Research studies conducted before 2010 has been 
amalgamated in the Blasters’ Handbook (ISEE, 2011) and 
will, therefore, not be reviewed in this paper. Several recent 
publications on flyrock have proposed models based on one of 
the following approaches.

1. Artificial Intelligence (AI) principles or techniques. 
 (a)   Artificial neural networks (ANNs). 

ANNs are developed in an attempt to imitate 
human thought processes. An ANN process 
consists of an input, weights, neurons (where the 
data is processed), and an output. ANNs are often 
the backbone of machine learning methodologies 
and can be combined with other systems such as 
fuzzy inference (Kukreja, et al., 2016).  

 (b)   Adaptive neuro-fuzzy inference system (ANFIS). 
An ANFIS is based on the principles of ANN but 
incorporates the principles of fuzzy logic inference. 
Therefore, instead of just incorporating the input-
output system flow of an ANN, ANFIS combines 
the ANN and the if-then rules of the fuzzy logic 
algorithms, allowing the system to model and 
interpret real-world scenarios (Prakash, 2014).

2.  Rock engineering systems (RES). 
RES was first introduced by Hudson (1992).  
Faramarzi, Mansouri, and Farsangi (2014) describe 
this as an interaction matrix that represents the various 
relevant parameters and their relationships. The 
purpose is to reduce the uncertainty in the system by 
evaluating the interaction of these parameters in order 
to determine the degree of influence of each parameter 
on the overall system.  

3.  Empirical- and statistical analysis. 
Empirical and statistical analysis have been the 
foundation of most of the prediction approaches since 
the 1980s. Lundborg et al. (1975) published one of the 
first papers that considered an empirical approach in an 
attempt to predict the maximum throw resulting from a 
blast. However, due to the vast number of variables and 
uncertainties that influence flyrock, modelling based on 
empirical approaches have not been favoured in recent 
studies.  

4.  Forensic or ballistics approach.   
In terms of the basic principles of physics and natural 
laws that are accepted globally, flyrock should follow 
the principles that apply to projectile motion. Flyrock is 
fragments of rock propelled by a force from an external 
energy source. The energy exerted on these fragments 
is converted into kinetic energy, based on the law of 
conservation of energy.  

These studies, categorized according to the authors’ 
approaches, are summarized chronologically beow, in terms of 
the aim or focus of the researchers and the final outcome of the 
study.    

Flyrock research based on AI principles
Numerous authors have presented concepts and techniques 
to predict or estimate flyrock or flyrock-related factors using 
AI principles. The main similarity between these proposed 
techniques is that the output of the system is highly dependent 
on the quality of the input parameters and the accuracy of 
estimation of these parameters. Note that the details pertaining 
to the algorithms used in these concepts or techniques are not 
discussed in detail.  This section only serves as an overview of 
the work conducted in an attempt to predict flyrock. 

1.  Monjezi, Amini Khoshalan, and Yazdian Varjani (2010) 
used a a neuro-genetic approach to predict flyrock 
and back-break in open pit blasting operations: The 
motivation for this study was the poor predictions 
resulting from the existing empirical models at that 
time. The authors used a feed-forward ANN (with a 
9-16-2 architecture) as the basis for their model and 
incorporated a genetic algorithm (GA) in an attempt to 
optimize the network parameters. 

  The study concluded that the prediction results from the 
proposed model correlated with the measured flyrock 
distances. However, the methodology by which these 
‘actual’ flyrock measurements were obtained and the 
accuracy thereof was not discussed. The neuro-genetic 
ANN model proved to be superior to the existing 
empirical and statistical models. Stemming length and 
powder factor were concluded to be the most influential 
parameters.

2.  Monjezi et al. (2012) developed a model to predict 
flyrock using a feed-forward ANN with a 9-5-2-1 
architecture. The outcomes were compared with thoss 
from existing empirical and statistical models, and 
the influential input parameters investigated. The 
motivation behind this study was the insufficient 
prediction capabilities of existing models. The 
input parameters were similar to those used in the 
aforementioned study. However, since the objective 
was to identify the influential parameters, some of the 
parameters were designed to be outputs of the system, 
along with flyrock.  

  The study concluded by comparing the predicted flyrock 
with the measured flyrock. Again, the test methodology 
followed to obtain these ‘actual’ flyrock measurements 
or the accuracy thereof were not discussed. Similar to 
the 2010 publication, the ANN model was determined 
to be superior to the existing empirical and statistical 
models. Finally, the key influential parameters, based 
on this model, were identified as the powder factor, 
blast-hole diameter, stemming length, and charge mass 
per delay.

3.  Raina, Murthy, and Soni (2013) investigated the 
influence of shape on the travel distance of flyrock. 
The motivation was that kinematic equations can be 
difficult to apply to flyrock in different environments 
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due to the uncertainty of air resistance based on the 
weight, size, and shape of a fragment.  Air resistance or 
drag forms an essential component of motion analysis 
based on kinematic principles and cannot, therefore, be 
neglected. 

  The ANN model was made up of a 7-20-14-8-
1 architecture, and was developed based on data 
collected from 75 test blasts. Seventy-five concrete 
blocks were blasted with a single hole and varying 
blast parameters in an attempt to identify the influence 
of these parameters. The input parameters were the 
initial velocity of the fragment, launch angle, sphericity, 
and the weight, length, width, and thickness of the 
fragment.  

  The initial velocity, launch angle, and weight of 
individual fragments were considered key parameters 
in this investigation.  However, it was concluded that 
these are difficult to estimate in field conditions and 
further research and investigations were required. The 
authors noted that the effect of external factors such as 
the velocity of the air and specific weather conditions 
should also be investigated to determine their effect on 
the flyrock travel distance.  

4.  Ghasemi et al. (2014) applied artificial intelligence 
techniques for predicting flyrock distance. The aim 
was to develop and compare two predictive models 
based on AI concepts. The first model, based on ANN, 
was a feed-forward network with a 6-9-1 architecture. 
The second model, based on ANFIS, was described 
as consisting of ‘triangular, trapezoidal membership 
functions’ and was based on a Mamdani algorithm.  

  Both models were presented with six input parameters, 
i.e. blast-hole length, burden, spacing, stemming 
length, powder factor, and charge mass per delay. The 
results showed that both models were able to yield 
accurate predictions when compared to the measured 
flyrock distances. This is, however, dependent on the 
accuracy and reliability of the measurements. Similar 
to the previous two publications, there is no discussion 
relating to the measurement methodology. The ANFIS 
method proved to be the better, but the ANN still 
produced accepted results and was concluded to be a 
‘good tool to minimize uncertainties’ (Ghasemi et al., 
2014).  

5.   Marto et al. (2014) conducted a study on blast-induced 
flyrock prediction based on an imperialist competitive 
algorithm (ICA) and artificial neural network. The main 
objective was to predict flyrock by combining ANNs 
and ICA to produce a novel ICA-ANN prediction model. 
Seven input parameters were identified and determined 
to be influential to the system. These parameters are 
the blast-hole depth, burden-to-spacing ratio, stemming 
length, maximum charge mass per delay, powder factor, 
rock density, and the Schmidt hammer rebound number.  
The data from 113 blasts was recorded and the flyrock 
measured, but no discussion on the measurement 
methodology was presented. Predictions were first 
evaluated against the measured flyrock. The results 

from the developed ICA-ANN model were compared to 
that of other pre-developed ANN models and multiple 
regression analysis (MRA) results.

  The proposed ICA-ANN model did yield a tighter 
scatter of data-points, which implies that it presents an 
improved prediction capability compared to the other 
models. Marto et al. (2014) concluded their study by 
stressing that the models are dependent on the accuracy 
of the input parameters.  

6.   Trivedi, Singh, and  Gupta (2016) used to predict 
flyrock using ANN and ANFIS approaches to predict 
flyrock. The same input parameters were used 
for both approaches, namely linear charge mass, 
burden, stemming length, specific charge, unconfined 
compressive strength, and rock quality.  

  The proposed models were evaluated with data from 
125 blasts. As in the previous publications, the 
predictions from the proposed models were evaluated 
against the measured flyrock. The authors conducted 
visual observations of the blast and measured the 
landing positions of the fragments with a hand-held 
GPS. High-speed cameras were used to record the blasts 
and estimate parameters such as initial velocities and 
launch angles. The authors concluded that the ANFIS 
approach produced better results than the ANN model.  

7.   Armaghani et al. (2016a) proposed a method to predict 
flyrock using an empirical approach. The motivation 
for conducting this study was that existing empirical 
models are not adequate due to the complex nature of 
flyrock. ANN and ANFIS models were also developed 
in an attempt to reduce the uncertainties and solve the 
complex nonlinear functions derived by an empirical 
approach.  

  Two empirical formulae were presented that have been 
published. However, these empirical equations are 
often site-specific and cannot be used as a universal 
prediction model.  

  The authors developed an empirical graph using the 
maximum charge per delay and powder factor as 
the two main influential parameters. This study also 
concluded that AI techniques, such as ANN and ANFIS, 
are superior for developing a prediction model.   

8.   Raina and Murthy (2016) presented a study based 
on the ANN method’ with the aim of identifying 
the significance of different parameters in flyrock 
prediction. Blast data was collected from ten mines and 
analysed by means of ANN software, EasyNN-Plus©, 
in order to design, train, and validate a suitable ANN 
model. A feed-forward ANN model with a 20-16-6-4-1 
architecture was suggested as an optimized network. 
The key input parameters for this model were identified 
as burden (B), spacing (S), P-wave (primary wave) 
velocity (cpi), the density of the rock (ρr), the effective 
in-hole density of the explosives (ρee), and the charge 
length to hole depth ratio (lq/ld).  

  The study concluded with a spider graph illustrating the 
relative importance and sensitivity of the various input 
parameters. This graph is reproduced in Figure 1.  
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The main conclusion drawn from the above investigations 
is that implementing AI principles in prediction models yields 
improved results compared to existing empirical models.  
However, it is very important to note that all the aforementioned 
ANN or ANFIS models are highly dependent on the quality and 
accuracy of the input parameters.  

The methodologies followed to measure the actual flyrock 
distance are not elaborated on in any of the publications.  
Since each proposed method was evaluated against these 
measurements, some of the results and conclusions come into 
question, owing to the uncertainty regarding the accuracy of 
these measurements.  

Flyrock research based on rock engineering principles
Faramarzi, Mansouri, and Farsangi (2014) describe this as 
an interaction matrix that represents the various relevant 
parameters and their relationships. Hudson (2014) mentions 
that the effective parameters that drives specific circumstances 
are selected and the interactions between these parameters are 
considered in the matrix. The purpose is to reduce the uncertainty 
in the system by evaluating the interaction of these parameters 
and determining the degree of influence of each parameter on the 
overall system.  

This degree of influence of each parameter is described by 
allocating weights, also known as coding, to the matrix. This 
can ultimately be used to derive a cause-and-effect graph from 
the system. Additional detail regarding RES is outside the scope 
of this project; however, this approach may hold some potential 
for minimizing the uncertainties relating to flyrock and flyrock 
prediction.  

Only one publication (Faramarzi, Mansouri, and Farsangi, 
(2014) could be identified that implements this method to predict 
flyrock risk. The authors used data from 57 blasts and applied 
13 input parameters – the burden, maximum instantaneous 
charge, powder factor, spacing-to-burden ratio, stemming-to-
burden ratio, stiffness factor, time delay, blast-hole diameter, 
the velocity of detonation (VoD), blast-hole deviation, burden-
to-hole diameter ratio, and RMR. Most of these parameters were 
measured on the bench with a measuring tape.  

Flyrock travel distance was the only output of the system.  
The distances were measured after each blast and used to 
evaluate the performance of the proposed RES. Faramarzi, 
Mansouri, and Farsangi (2014) described the measuring 
methodology as properly cleaning the mine area prior to the blast, 
visually observing the flight path of the rock fragments, and 
measuring the landing positions with a hand-held GPS.  

The authors concluded that the RES methodology is superior 
to other methods such as the multivariable regression analysis, 
and has better predictive capability. However, similar to most of 
the proposed predictive models, the RES model presented in this 
study was site-specific and cannot be used as a general solution.  

Flyrock research based on empirical and statistical 
analysis
Empirical and statistical analysis have been the foundation of 
most of the prediction approaches since the 1980s. Lundborg 
(1975) published one of the first papers that considered an 
empirical approach in an attempt to predict the maximum throw 
resulting from a blast. However, due to the vast number of 
variables and uncertainties that influence flyrock, modelling 
based on empirical approaches has not been favoured in recent 
studies, although some researchers still conduct studies based on 
this approach.

Empirical and statistical approaches to develop flyrock 
prediction models have been proposed since the early 1980s.  
However, due to the significant progress in technology over the 
past two decades, only recent concepts and techniques proposed 
(publications from 2010) are summarized for the purpose of this 
review.  

1.   Ghasemi et al. (2012) described the development of an 
empirical model for predicting the effects of controllable 
blasting parameters on flyrock distance. The authors used 
data from 150 blasts and analysed this data by means of 
a dimensional approach. The large data-set presented the 
advantage of improving the overall accuracy of the system. 
However, all of the blasts were from a single mining 
operation and the results of this study can be considered 
to be very site-specific.

Figure 1—The relative importance and sensitivity of the variables for throw and flyrock (Raina and Murthy, 2016)
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The data collected formed the input parameters to the 
dimensional analysis and included the burden (B), spacing (S), 
stemming length (St), blast-hole length (H) and diameter (D), 
powder factor (P), and mean charge mass per delay (Q). These 
input parameters were measured on the bench using a measuring 
tape.  

The flyrock distances were also measured as evaluation 
criteria for the proposed model. The measurement data was 
acquired through visually observing the flyrock thrown from a 
blast and measuring the landing positions with a hand-held GPS.  
The fragments that were thrown the farthest distance from the 
blast were found to be 10 cm in diameter.

Ghasem, et al. (2012) proposed a model based on the 
assumptions that the influential parameters discussed above, 
resulting in a flyrock function: 

Flyrock distance (Fd) = ƒ(B, S, St, H, D, P, Q)
This function resulted in the following empirical formula:

[1]

with
B = burden 
S = Spacing
St = Stemming length 
H = Blast-hole length 
D = Blast-hole diameter 
P = Powder factor 
Q = Mean charge mass per delay

It is important that, again, this model is very site-specific.  
The validity of this equation was evaluated by means of Monte 
Carlo simulation. However, the authors noted that the validity of 
this prediction model depends on the range of the data and the 
quality of the samples and measurements taken. 

Ghasemi et al. (2012) concluded by stating that, based on 
the sensitivity analysis, the stemming length, spacing, blast-
hole length and diameter, and the powder factor showed a direct 
relationship to the flyrock distance, whereas, the burden and 
mean charge mass per delay showed an indirect relationship to 
flyrock distance. This was a counter-intuitive result since it would 
be logical to assume that burden and charge mass per delay 
would directly influence the distance travelled by rock fragments 
(Ghasemi et al., 2012). This may indicate a flaw in the proposed 
system.

2.   Armaghani et al. (2016b) conducted a study that 
combined multiple regression analysis (MRA) and Monte 
Carlo simulations of quarry blasting’. The main purpose 
was to develop a prediction model based on MRA and 
simulate flyrock using Monte Carlo (or probability) 
simulations.

The study utilized data from 62 blasts. The input parameters, 
consisting of  the burden (B), spacing (S), stemming length 
(ST), blast-hole depth (HD), maximum charge mass per delay 
(MC), the powder factor (PF) and rock mass rating (RMR) 
were measured by means of a measuring tape. As in the study 
summarized previously, the flyrock was measured by cleaning the 
blast area prior to the blast, visually observing the flyrock thrown 
from the blast, and recording the landing positions with a hand-
held GPS. 

In order to run simulations of flyrock using Monte Carlo 
simulations, an empirical equation is required to describe the 
relationship between the input parameters and the output.  
Armaghan, et al. (2016b) therefore used software (SPSS, version 
16) to generate this empirical equation, based on MRA. The 
resulting equation is:  

[2]

with
Fd = Flyrock distance
B = Burden  
S = Spacing 
ST = Stemming length 
HD = Blast-hole depth 
MC = Maximum charge mass per delay 
PF = Powder factor 
RMR = Rock mass rating

The primary goal of the Monte Carlo simulations was to 
quantitatively determine the uncertainties and variabilities when 
exposed to certain risks. The secondary goal was to investigate 
the major drivers of this uncertainty and variability (Armaghani 
et al., 2016b).  

The results of this study favour the empirical equation based 
on MRA above previously published empirical models. The 
Monte Carlo simulations presented promising results, although 
the credibility of these results is highly dependent on the quality 
of the input parameters. The authors concluded that the powder 
factor was the most influential parameter. It is important to 
note that, similar to the previously proposed models, this model 
remains site-specific and is not a generalized solution.  

3.   Dehghani and Shafaghi (2017) attempted to address 
the inadequate predictive capability of existing empirical 
models by using a combination of differential evaluation 
(DE) and dimensional analysis (DA) algorithms. DA 
is defined as an engineering method that is used to 
create equations that will satisfy the analysis of complex 
multivariable systems. DE is defined as an optimization 
algorithm based on the evolution strategy of individuals in 
a population

The methodology involved collecting data from 300 blasts 
and measuring and recording both the input parameters and 
the resulting flyrock. The input parameters considered were the 
blast-hole diameter (D) and length (L), number of blast-holes 
(NB), spacing (S), burden (B), ANFO charge mass (Q), stemming 
length (St), powder factor (PF) and specific drilling (SD) 
(Dehghani and Shafaghi, 2017). Data was collected in the same 
manner as in the studies discussed previously.  

The resulting equation obtained from DA is:  

[3]

With  
Fd = Flyrock distance
D = Blast-hole diameter  
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L = Blast-hole length 
NB = Number of blast-holes 
S = Spacing 
B = Burden 
Q = ANFO charge mass 
St = Stemming length 
PF = Powder factor 
SD = Specific drilling

The relatioship obtained from DE is presented in Equation [4]. 

[4]

With 
Fd = Flyrock distance
D = Blast-hole diameter  
L = Blast-hole length 
NB = Number of blast-holes 
S = Spacing 
B = Burden 
Q = ANFO charge mass 
St = Stemming length 
PF = Powder factor 
SD = Specific drilling

Both of these equations are site-specific.  
Dehghani and  Shafaghi (2017) concluded that the DE 

equation yielded more accurate results than the DA equation. A 
sensitivity analysis showed that the powder factor and stemming 
length were the most influential parameters in both models. 
The authors recommended further research to investigate the 
principles of physics, incorporation of the pressure measured in 
the rock, trajectory in the air, and the influence of fragment size 
and shape on the travelling distance.  

4.   Hasanipanah (2017) used a regression tree technique to 
develop a model for prediction of blast-induced flyrock. 
The regression tree technique is broadly defined as a 
simple and understandable structure for decision-making. 
Data was collected from 65 blasts, with the important 
parameters being blast-hole length (HD), spacing (S), 
burden (B), stemming length (ST), maximum charge 
mass per delay (MC), and the powder factor (PF). The 
input parameters and the output (flyrock distance) were 
measured in a similar way to previous studies.  

The developed regression tree model consisted of 52 nodes, 
with the powder factor as the root node. A multiple linear 
regression (MLR) model was also created, using SPSS (version 
16) software, in order to conduct a brief comparative analysis 
between the performance of both models. The equation created 
during the development of the MLR model is:

[5]

with 
Fd = Flyrock distance
HD = Blast-hole diameter  
S = Spacing 
B = Burden 

ST = Stemming length 
PF = Powder factor 
MC = Maximum charge mass per delay 

Hasanipanah (2017) concluded that the regression tree model 
produced more accurate predictions compared to the MLR model, 
but both models were able to predict flyrock travelling distance. A 
sensitivity analysis of the models showed that the powder factor 
and the burden were the most influential parameters.  

In each of the publication summarized, it is emphasised 
that the proposed models are site-specific and cannot be used 
as universal models. The important thing to notice is that the 
empirical equations presented differ significantly. This could be 
due to the site-specific input parameters used in each model; 
however, it does bring into question the validity of the proposed 
models.  

Flyrock research based on ballistics principles
According to the fundamentals of physics, the same principles 
that describe projectile motion should be applicable to flyrock. 
Flyrock is fragments of rock propelled by a force from an 
external energy source. The energy exerted on these rock 
fragments is converted into kinetic energy, based on the law of 
Conservation of Energy. As stated in Newton’s Second Law of 
Motion, the fragment maintains its motion unless it is subjected 
to an external force. Therefore, a system based on physics or 
a ballistics approach may possess the potential to accurately 
estimate flyrock distance. 

Three consecutive articles were published from 2011 to 
2015 by research teams led by Saša Stojadinović , driven by the 
need to develop a prediction model based on forensic analysis.  
Stojadinović , Pantović, and Žikić  (2011) stressed that the scaled 
depth of burial (SDoB) approach of estimating flyrock behaviour 
is favoured across the mining industry, but it applies only to 
normal or expected flyrock. ‘Wild’ or unexpected flyrock due to 
bad blasting practices or unexpected geological factors was never 
considered and requires a forensic analysis.

These three articles are summarized chronologically. 

1.   Stojadinović , Pantović, and Žikić  (2011 published the first 
article in the series, titled ‘Prediction of flyrock trajectories 
for forensic applications using ballistic flight equations’.  
The objective was to develop a method of determining 
the maximum throw of flyrock in order to estimate safe 
distances.

Flyrock was considered to be a projectile (Figure 2), allowing 
the investigators to derive a numerical solution from ballistics 
flight principles (also known as projectile motion principles).  

This numerical solution is presented for motion in the x- and 
y-directions and is given in Equations [6] and [7] respectively.  

                                         
[6]

[7]

with 
x
..

 = acceleration in the x -direction (m/s2)
y
..

 = acceleration in the y -direction (m/s2)
C1 =  a constant equal to the product of the density of air, the 

cross-sectional  area of the projectile, and the drag coefficient 
(ρair.A.CD)
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v = velocity of the projectile (m/s)
θ =  angle between the velocity vector and the horizontal axis 

(degree or °)
m = mass of the projectile (kg)
g = gravitational force (N) 

Data was collected from a mining operation using the blast 
design and bench conditions as input parameters. The flyrock 
(output) was measured by means of visual observation of the 
blast, measuring landing positions, and recording damage to 
surrounding structures and equipment (Stojadinović , Pantović, 
and Žikić  2011).  

The assumptions applied to this analysis were:

 ➤   A launch angle of 45° reults in a maximum throw
 ➤   Launch velocity was calculated based on an equation 

presented by past publications.  

According to the equations, the launch velocities are 
dependent on the size of the fragment, and ranged from 55 m/s 
for a 0.5m diameter fragment to 150 m/s for a 0.05 m diameter 
fragment. 

Stojadinović , Pantović, and Žikić  (2011) concluded that 
this forensic approach is better suited for post-incident analysis 
since the results are highly dependent on the accuracy of the 
input parameters, such as actual launch velocity and launch 
angle.  In a final comment, the authors noted that aerodynamic 
drag has a crucial influence on the trajectory and overall motion 
of flyrock fragments. Therefore, further research is required for 
incorporating an accurate drag coefficient into the equations. 

A key aspect of the conclusion of this article is a discussion 
of the relationship between the size of a fragment and the drag 
force exerted on it. Stojadinović , Pantović, and Žikić  (2011) 
stressed that the acceleration of the fragment is dependent on the 
drag and the mass of the fragment, and the drag is dependent on 
the cross-sectional area of the fragment and its velocity squared. 
However,, the acceleration is also inversely dependent on the 
mass of the fragment, due to its inertia. Therefore, a smaller 
fragment with a smaller cross-sectional area and higher velocity 
will experience a larger drag force and, due to its smaller mass, 
will not be able to overcome these drag forces. This means that 
smaller fragments will not travel long distances (Stojadinović , 
Pantović, and Žikić  2011). Larger fragments, with more mass, 
have the potential to overcome the drag forces and travel further. 
However, lower travel velocities will also limit the travel distance.  
It can, therefore, be assumed that there is an ideal fragment size 

that can travel the maximum distance, which is the focus of most 
of the studies conducted. 

2.   In 2013, Stojadinović  et al. published a sequel article 
describing a new model for determining flyrock drag 
coefficient. By comparing previous prediction models 
proposed throughout the years, the authors argued that 
implementing ballistics principles to predict flyrock is 
the most precise approach. However, the drag exerted 
on the rock fragments plays a significant role in the total 
travelling distance of the fragments. The main objective of 
this study was, therefore, to improve the ballistic approach 
by increasing the accuracy of the drag coefficient estimate.

From the previous article (2011), Stojadinović  et al. (2013) 
deduced the following:

 ➤   The fragments that will travel the maximum distance range 
between 20 cm and 35 cm in diameter.

 ➤   Launch velocity is the most influential factor to be 
considered in a ballistics approach, and can be up to  
150 m/s. Launch velocities of 350 m/s and 430 m/s have 
been recorded but, according to the final argument in the 
previous article, the maximum recorded launch velocity 
would not result in the maximum travel distance.   

 ➤   The launch angle resulting in maximum throw ranges from 
35° to 43°, taking the effect of drag into account.  

Initially, it was planned to use a wind tunnel to evaluate the 
drag forces, but this idea was abandoned due to the complicated 
procedure involved (Stojadinović  et al., 2013). Therefore, the 
the blast was recorded with high-speed cameras (480 × 360 
resolution). The known blast design parameters in the footage 
were used as control points and equipment in the field of view 
was used as scaling items (Stojadinović  et al., 2013).  

The video footage was divided into individual frames and 
imported into CAD software in order to analyse the flyrock 
motion. The exact measuring technique is not discussed in the 
article. A key problem with this methodology was that the image 
quality was extremely poor, especially when magnified. The 
authors decided to measure the estimated centre points of the 
pixelated clouds thought to be the rock fragments. The initial 
purpose of this technique was to gather data on the launch 
velocity of the flyrock. However, the data could be used for the 
purpose of this study as well (Stojadinović  et al., 2013).

The drag coefficient was calculated by analysing the 
movement of the fragment at terminal velocity. The main 

Figure 2—Basic forces that act on flyrock fragments during its flight (Stojadinović, Pantović, and Žikić, 2011)
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problems experienced by the research team were determining the 
size and trajectories of the individual fragments (Stojadinović  et 
al., 2013).  

The equations presented in the 2011 paper were used to test 
the results, using the following initial conditions for a vertical 
shot:  
 ➤   t0 = 0 seconds
 ➤   v0 = 200 m/s
 ➤ ��θ0 = 90°.

A vertical shot was considered since it was the most likely 
situation in which to measure a fragment’s motion at terminal 
velocity. 

The final expectation was that the same, or a similar, 
drag coefficient would have been calculated for different rock 
fragments. However, this was not the case. The drag coefficient 
results did not yield a unique value.  This could have been due 
to the influence of the shape of the fragment (Stojadinović  et al., 
2013). Measurement error could also have contributed to the 
unexpected results, due to the poor quality of the images. 

Stojadinović  et al. (2013) concluded that since the drag 
coefficient is a very important input parameter to the ballistics 
equations, this drag coefficient should vary with changes in 
launch angle and fragment size.  

3.   The final article in this series was published in 2015. The 
motivation behind this study (Stojadinović  et al., 2015)
was that most prediction models require an accurate 
launch velocity as a key input. All of the previously 
proposed models are highly dependent on the quality 
and accuracy of the input parameters. The main objective 
was, therefore, to develop an adaptive system application 
capable of predicting the launch velocities of flyrock.  

Data was collected from a total of 36 blasts at three mining 
operations. The methodology followed for measuring and 
recording the input parameters as well as the output (flyrock) 
was the same as in Stojadinović  et al., 2013). The input 
parameters considered were divided into technical and natural 
parameters.
 ➤ Technical input parameters: 
 • Blast-hole diameter, length, and inclination
 • Stemming length
 • Stemming factor
 • Specific stemming
 • Burden
 • Spacing
 • Volume of rock broken per blast-hole
 • Inter-hole delay;
 • Number of free faces
 • Charge mass per delay
 • Powder factor;
 • Explosives density
 • Velocity of detonation
 • Volume of gaseous products of detonation.
 ➤ Natural input parameters:
 • Rock density
 • Compressive and tensile strength
 • Presence of groundwater.

An ANN model with a 19-8-6-1 architecture was developed 
using a Peltarion synapse, described as a fuzzy algorithm for 

used optimization (Stojadinović  et al., 2015). The predictor 
that formed part of this system demonstrated the potential for 
predicting the initial velocity of flyrock fragments. However, 
Stojadinović  et al. (2015) emphasised that the predictor in 
this system was only a concept and not fully developed. The 
authors concluded that this was due to the similar geology at the 
three mining sites, resulting in a lack of diversity in the data. 
They stated that this lack should be viewed as an opportunity 
for future research towards the ultimate goal of developing a 
universal prediction model.  

Critical analysis of recent studies in the literature review 
Several prediction models have been proposed in recent research 
studies based on various techniques. However, all these studies 
concluded that the respective models are primarily site-specific. 
Based on the the techniques used to develop the prediction 
models, the accuracy and reliability of the results are highly 
dependent on the quality and accuracy of the input parameters, 
as well as the postulated effect of these input parameters on 
the desired output (i.e. the weighting assigned to any input 
parameter in a model).

The following analysis is structured to address the three 
objectives of this paper.  The first analysis emphasises the gap 
in knowledge and understanding of the flyrock phenomena by 
considering the most recent research in the field (i.e. objectives 
1 and 2). Note that the aim of this first phase of analysis is not 
to evaluate the accuracy of the models. The second analysis is 
focused on evaluating the techniques used to assess the accuracy 
of the prediction results from each of the proposed models 
(objective 3).    

Analysis and evaluation of the recent flyrock prediction 
methodologies 
The first phase of this analysis is aimed at achieving the first 
two objectives stated at the beginning of this paper, and was 
conducted according to three distinct aspects, namely:

1.   The approach or technique implemented to generate or 
develop a result

2.   The input parameters considered in each study’s model or 
solution 

3.   The factors or blast parameters that were assumed to be 
the most influential or primary causative parameter(s) of 
the proposed models. 

The different techniques used to develop flyrock prediction 
models in recent research studies are summarized in Figure 
3, which shows that AI techniques have been most favoured, 
followed by empirical and ballistics approaches.   

However, it is important to note that not all of these models 
were created with the view of estimating flyrock distance as the 
primary output (Table I).  

Two publications (highlighted in Table I) focused more on 
determining or estimating contiguous parameters, but was 
considered in this review since the research still related to flyrock 
and flyrock prediction. The related two models are not considered 
in the following analysis; however, some key information can still 
be deduced.  

Empirical techniques
Empirical approaches have been proposed since the early 
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1980s, but recent empirical approaches have still proven to be 
inadequate. Empirical models tend to be very site-specific, taking 
into consideration variables specific to the site geology and blast 
design. These models cannot, therefore, be used as a generic 
approach to predicting flyrock.  

AI techniques
ANN and other AI concepts have proven effective in minimizing 
the uncertainties related to flyrock. However, it is apparent 
that the architecture of these models has evolved significantly 
with time (Table II). These networks have become increasingly 
complex, i.e. taking more input parameters into account and 
processing them over more hidden layers. This indicates that 
there still are several uncertainties related to flyrock, as well as 
which blast parameters directly influence the risk of flyrock and 
to what degree.    

Finally, the ANN prediction models are highly dependent 
on the input parameters and their estimated influence on the 

desired output (Fd). Considering the level of uncertainty regarding 
these input parameters and how much they contribute to flyrock 
behavious, some errors can be expected in these models. The 
testing methodology applied by researchers now becomes 
critical in order to determine what these error(s) are and the 
magnitude(s) thereof.  

Figure 3—Techniques used in the recent flyrock prediction studies

   Table II

  ANN architecture of proposed models
   Publication (in chronological order) ANN architecture 

   Monjezi, Amini Khoshalan, and Yazdian Varjani (2010) 9-16-2
   Monjezi et al. (2012) 9-5-2-1
   Raina,Murthy, and Soni (2013) 7-20-14-8-1
   Ghasemi (2014) 6-9-1
   Raina and Murthy (2016) 20-16-6-4-1

   Table I

  Outputs or deliverables per publication
   Publication Primary deliverable Secondary deliverable

   Monjezi, Amini Khoshalan, and Yazdian Varjani A(2010) Flyrock distance Back-break
   Stojadinović, Pantović, and Žikić (2011)  Flyrock distance N/A
   Ghasemi, Sari, and Ataei (2012) Flyrock distance N/A
   Monjezi et al. (2012) Flyrock distance Influence of certain blast parameters
   Stojadinović et al. (2013) Flyrock drag coefficient N/A
   Raina, Murthy, and Soni (2013) Flyrock distance Influence of shape of flyrock fragment
   Ghasemi et al. (2014) Flyrock distance N/A
   Marto et al. (2014) Flyrock distance N/A
   Faramarzi, Mansouri, and Farsangi (2014) Flyrock distance Flyrock risk
   Trivedi, Singh, and Gupta (2015) Flyrock distance N/A
   Stojadinović et al. (2015) Flyrock launch velocity N/A
   Armaghani, et al. (2016a) Flyrock distance N/A
   Raina and Murthy (2016) Flyrock distance Influence of certain blast parameters
   Armaghani et al. (2016b)
   Flyrock distance (2016b) N/A
   Dehghani and  Shafaghi (2017) Flyrock distance N/A
   Hasanipanah et al. (2017) Flyrock distance N/A
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Ballistics principles:
The application of ballistics to flyrock prediction may not be 
an ideal solution due to the varying environments; however, it 
presents exciting new opportunities. An object, in this case a 
fragment of rock, moving through the air will behave according 
to Newton’s three Laws of Motion. The established ballistics 
formulae are based on these laws. Ballistics should, therefore, be 
a viable and accurate method of analysing the motion of flyrock.  

There are some pertinent considerations put forward in the 
studies incorporating ballistics concepts (Stojadinović , Pantović, 
and Žikić  2011; Stojadinović  et al., 2013, 2015), namely:

 ➤   The influence of drag or air resistance is significant but is 
often neglected.

 ➤   The effect of the shape of the fragment on the drag force 
experienced is unknown. 

 ➤   The influence of external factors such as weather 
conditions has not been investigated.

 ➤   The fragments that will likely travel the furthest distance 
(i.e. small enough to experience a large launch velocity 
but big enough to overcome some of the drag force) range 
between 10 cm and 35 cm in diameter. 

 ➤   The launch angle that will allow a fragment to travel a 
maximum distance is not 45°, as would be expected, but 
rather ranges between 35° and 43° when taking the drag 
force into account. 

Parameters considered as causative inputs to the  
proposed models
The input parameters considered in the publications are 
noticeably variable (Figure 4), while some remain consistent 
when similar techniques are applied (see Figures 5–8). Some of 
the input parameters are considered in most of the publications, 
while others are unique to specific studies. Charge mass per 
delay, powder factor, burden, spacing, stemming, and blast-hole 
properties are the most popular input parameters.  

Referring to Figure 5, it is evident that most of the ANN 
models incorporate similar causative factors, although some 

models do include unique inputs. The models developed from 
AI techniques incorporate more inputs than those in the other 
approaches. Since it is still uncertain which blast parameters 
contribute to flyrock and to what degree, it is always beneficial to 
consider as many parameters as possible. However, the influence 
(or weight) assigned to each of these parameters is not described 
in all of the proposed models and cannot, therefore, be analysed 
or commented on.  

The inputs considered in the models based on empirical and 
statistical techniques are summarized in Figure 6. It is evident 
that, similar to the ANN models, various authors considered 
similar input parameters. This may be due to the use of similar 
background formulae or algorithms to build the models. However, 
the number of inputs is distinctly less that the number of inputs 
in the ANN models.   

Three of the publications reviewed were based on ballistics 
principles, but only one focused on flyrock travel distance as its 
primary output. Therefore, only the input parameters considered 
in this single paper are summarized in Figure 7. 

Similar to the ballistics approach, only one publication 
developed a model based on rock engineering principles. The 
input parameters for this model are summarized in Figure 8. 
Compared to the previous two graphs, the author considered 
more input parameters. It is also important to emphasise that 
this model also includes unique inputs such as the velocity of 
detonation (VoD).  

From these graphical summaries of the various inputs 
considered in the recent proposed flyrock prediction models, 
it seems that there are some parameters that are accepted as 
being causative to flyrock. However, the variability between the 
prediction models using similar techniques, the additions of 
parameters unique to some models, and the assumed influence 
of each parameter on the desired output illustrate that the impact 
of various factors on flyrock behaviour is not an exact science. It 
will, therefore, be very difficult to apply a single model to multiple 
environments with the existing body of knowledge relating to 
flyrock.  

Figure 4—Input parameters considered in all models (regardless of the approach or technique used)
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Figure 5—Input parameters considered in models where AI techniques were used

Figure 6—Input parameters considered in models where empirical and statistical techniques were used

Figure 7—Input parameters considered in models where Ballistics techniques were used
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Key influential parameters
In most of these studies, a sensitivity analysis was conducted to 
identify the most influential or significant input parameter(s), 
based on the proposed model. These parameters are summarized 
in Figure 9. It is important to note that due to differences in the 
input parameters between the models, the sensitivity analyses 
and, therefore, the most influential parameters, may be indicated 
as outliers in Figure 9. This is only intended as an overview of 
which parameters are interpreted as essential by the authors of 
the papers.   

Based on Figure 9, the powder factor and stemming length 
seem to be the key parameters relating to flyrock, which is what 
one would expect. However, the burden is not highlighted as 
a critical parameter, which is contradictory to the face burst 
mechanism of flyrock. This summary of the fundamental 
causative parameters and the disregarding of the importance 
of burden also support the argument that the effect of blast 
parameters on flyrock is not fully known or understood.  

Considering the recent work conducted in flyrock prediction 
or investigating the effect of certain parameters on flyrock 
travel distance, it can be concluded that implementing ballistics 
principles to analyse flyrock motion is the best method to 
understand flyrock behaviour. However, a lot of uncertainty 
exists in terms of how external forces, such as drag, impact 
the travelling distance of flyrock. The effect of the shape of 
a fragment on the drag force, as well as the effect of various 
weather conditions, can be investigated through wind tunnel 
tests.  

ANN and ANFIS approaches hold significant potential for 
further refining (i.e. minimizing the related uncertainties) of a 
flyrock prediction model. However, the impact and relevance of 
the input parameters must be estimated accurately in order to 
achieve accurate predictions. 

Analysis of the testing methods used to evaluate the out-
put results for each prediction model
It is essential that any model or prototype be thoroughly tested.  

Figure 9—Most influential causative (or input) parameters 

Figure 8—Input parameters considered in models where rock engineering principles were used
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The test results are assessed by (as a minimum) comparing 
them to baseline data or ‘actual’ measurements. The purpose of 
this second phase of analysis is to critically analyse the testing 
methodologies used in the recent publications, which allowed the 
authors to draw conclusions regarding the efficiency and accuracy 
of the proposed models.  

Unfortunately, most of the publications did not include a 
discussion on the testing methodologies used to acquire baseline 
or actual data. Only the testing methodologies discussed in 
the publications are analysed. The testing methodologies are 
summarized in Table III.

Visual observation of the blast and the resulting flyrock 
were the most popular methods used to collect ‘actual’ field data. 
The ‘actual’ flyrock distances (Fd) were measured by estimating 
the landing positions of some of the fragments through visual 
observation. These estimated landing positions were then 
measured using a hand-held GPS device. Even though this 
methodology may seem to be sufficient, it may not be the most 
scientific approach and the data acquired may be prone to error.  

The subjectivity of the visual observation of flyrock 
trajectory may result in different researchers interpreting the 
landing positions differently. Visual observation can refer to 
video recordings of the blast or simple observation by eye. At 
increased distances form the blast, the error in visual estimation 
may increase significantly. To increase the accuracy of visual 
estimation some form of scale or control should be included 
within the observer’s field of view. Two publications referred 
to the controls used in the respective test methodologies as 
the known blast design parameters visible, i.e. the burden and 

spacing. However, no discussions were included describing the 
correction factors considered (if any) relating to the different in 
visual planes, distances to the respective targets, influences of 
different lighting, etc.  

An additional error should also be expected from the hand-
held GPS device. These devices are not used by professional 
surveyors due to the error associated with the measurements, but 
are designed to give approximate coordinates or locations. Some 
of these hand-held GPS devices can include errors ranging from  
5 m to 10 m in the x, y, and zdirections (Hussein, 2016).  

Considering the cumulative errors from both the subjective 
estimation of the flyrock landing positions and the inherent error 
associated with hand-held GPS devices, the actual measurements 
against which the proposed models were evaluated may deviate 
significantly from the real positions.  

In three publications, the researchers included high-speed 
photography in the testing methodologies. However, these 
publications did not aim to investigate flyrock distances, but 
rather the launch velocity of fragments and the drag coefficients.  
The use of high-speed photography cannot, therefore, be 
analysed in terms of evaluating the flyrock travel distances. 

Conclusion
Several authors have proposed viable models for predicting and 
analysing flyrock based on assumed causative parameters as 
inputs and their impact on flyrock as weights assigned to each 
input. However, all of these papers concluded that the respective 
models were site-specific and could not be applied to other 
environments.

   Table III

  Testing methodologies used to evaluate the results obtained from the respective models
   Publication Testing methodology

   Monjezi et al. (2010) No discussion on testing methodology.

   Stojadinović, Pantović, and Žikić (2011)  Flyrock was visually observed during the blast and the estimated landing positions were measured using a hand-held  
 GPS and observation of damage to surrounding infrastructure or equipment (if possible).  

   Ghasemi, Sari, and Ataei (2012) The bench and immediate blast area were cleaned of debris.  
 Flyrock was visually observed during the blast and the estimated landing positions were measured using a hand-held GPS.

   Monjezi et al. (2012) No discussion on testing methodology.

   Stojadinović et al. (2013)  High-speed cameras were used to record the blast. The blast design parameters were used as knowns within the footage to  
   (output: flyrock drag coefficient) record estimated measurements of the landing positions of the flyrock. No discussion was included on the correction factors used. 

   Raina, Murthy, and Soni (2013) No specific discussion on testing methodology.  The input parameters for the models were determined from controlled test blasts  
 using concrete blocks and single short holes. 

   Ghasemi et al. (2014) No discussion on testing methodology.

   Marto et al. (2014) No discussion on testing methodology.

   Faramarzi, Mansouri, and Farsangi (2014) The bench and immediate blast area were cleaned of debris.  Flyrock was visually observed during the blast and  
 the estimated landing positions were measured using a hand-held GPS.

   Trivedi, Singh, and Gupta (2015) Flyrock was visually observed during the blast and the estimated landing positions were measured using a hand-held GPS.   
 High-speed cameras were used to estimate the launch velocities and launch angles of some of the flyrock. 

   Stojadinović et al. (2015)  High-speed cameras were used to record the blast. The blast design parameters were used as knowns within the footage to record  
   (output: flyrock launch velocity)  estimated measurements of the landing positions of the flyrock. No discussion was included on the correction factors used.

   Armaghani et al. (2016a) No discussion on testing methodology.

   Raina and Murthy (2016) Blast data were collected from mines, however, there was no specific discussion on type of data or data acquisition methodology.

   Armaghan, et al. (2016b) The bench and immediate blast area were cleaned of debris.  Flyrock was visually observed during the blast and the estimated  
 landing positions were measured using a hand-held GPS.

   Dehghani and  Shafaghi (2017) No discussion on testing methodology.

   Hasanipanah et al. (2017) Flyrock was visually observed during the blast and the estimated landing positions were measured using a hand-held GPS.
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Since the actual impact of blast design parameters on the 
risk of flyrock is debatable, based on the variable assumptions 
made in these publications, it can be concluded that flyrock is 
still not well understood. The biggest gap in knowledge seem to 
be the uncertainties concerning which blast and environmental 
parameter contribute to flyrock, and to what degree. These 
uncertainties open an opportunity for developing new models 
for analysing the flyrock when it occurs, rather than predicting it 
beforehand.

The techniques used to measure the actual distance travelled 
by the rock fragments (flyrock) in these studies are subjective 
and highly dependent on the scrutiny of the researcher. Obtaining 
objective data is critical in any investigation. Since the results of 
the proposed models were evaluated by comparing the predicted 
and measured (or actual) data, some margin of error can be 
expected from the findings, based on the transferred error from 
the testing methodology.

In order to present results that are objective and 
uncriticizable; an accurate, quantitative, and objective method of 
measuring the actual travel distance of flyrock is required. The 
main recommendation from this study is that the potential for 
developing such a measuring tool, which will yield unbiased field 
data, be investigated. Such a tool can be used to evaluate the 
results from existing and future flyrock prediction models.    

Acknowledgement 
This work was carried out under the auspices of the AELMS 
Chair in Innovative Rock Breaking Technology and Visualising 
of New  Results using Virtual Reality at the Mining Engineering 
Department of the University of Pretoria. The authors would like 
to specifically acknowledge AECI Mining Explosives (formerly 
known as African Explosives Limited or AEL) for their continued 
support throughout this study.

References
ArmAghAni, D.J., TonnizAm, E., hAJihAssAni, m., and AbAD, s.V.A.n.K. 2016a. 

Evaluation and prediction of flyrock resulting from blasting operation using 

empirical and computational methods. Engineering with Computers, vol. 32,  

no. 1. pp. 109–121.

ArmAghAni, D.J., mAhDiyAr, A., hAsAnipAnAh, m., and FArADonbEh, r.s. 2016b. Risk 

assessment and prediction of flyrock distance by combined multiple regression 

analysis and Monte Carlo simulation of quarry blasting. Rock Mechanics and 
Rock Engineering, vol. 49, no. 9. pp. 3631–3641.

bAJpAyEE, T.s., bhATT, s.K, rEhAK, T.r., mowrEy, g.L., and ingrAm, D.K. 2003. Fatal 

accidents due to flyrock and lack of blast area security and working practices in 

mining. Journal of Mines, Metals and Fuels, vol. 51, no. 11/12. pp. 344–350.

DEhghAni, h. and shAFAghi, m. 2017. Prediction of blast-induced flyrock using 

differential evolution algorithm. Engineering with Computers, vol. 33, no. 1.  

pp. 149–158.

FArAmArzi, F., mAnsouri, h., and FArsAngi, m.A. 2014. Development of rock 

engineering systems-based models for flyrock risk analysis and prediction of 

flyrock distance in surface blasting. Rock Mechanics and Rock Engineering, 

vol. 47, no. 4. pp. 1291–1306.

ghAsEmi, E., Amini, h., ATAEi, m., and KhALoKAKAEi, r. 2014. Application of artificial 

intelligence techniques for predicting the flyrock distance caused by blasting 

operation. Arabian Journal of Geosciences, vol. 7, no. 1. pp. 193–202.

ghAsEmi, E., sAri, m., and ATAEi, m. 2012. Development of an empirical model for 

predicting the effects of controllable blasting parameters on flyrock distance in 

surface mines. International Journal of Rock Mechanics and Mining Sciences, 

vol. 52. pp. 163–170.

hAsAnipAnAh, m., FArADonbEh, r.s., ArmAghAni, D.J., and AmniEh, h.b. 2017. 

Development of a precise model for prediction of blast-induced flyrock using 

regression tree technique. Environmental Earth Sciences, vol. 76. p. 27 (10).

huDson, J.A. 1992. Rock Engineering Systems: Theory and Practice. Ellis Horwood, 

Chichester.

huDson, J.A. 2014. A review of Rock Engineering Systems (RES) applications 

over the last 20 years. Rock Characterisation, Modelling and Engineering 

Design Methods. Feng, X., Hudson, J. A., and Tan, F., (eds). . Ellis Horwood, 

Chichester: pp. 419–424.

hussEin, z.E. 2016. Improving the accuracy of handheld GPS receivers based on 

NMEA file . Journal of Engineering, vol. 22, no. 5. pp. 162–174.

ISEE, 2011. Flyrock. Blasters’ Handbook. Stiehr, J.F. (ed.). International Society of 

Explosives Engineers, Cleveland, OH, Chapter 15: pp. 383–410.

KuKrEJA, h., bhArATh, n., siDDEsh, C.s., and KuLDEEp, s. 2016. An introduction to 

artificial neural network. International Journal of Advance Research and 

Innovative Ideas in Education, vol. 1, no. 5. pp. 27–30.

LunDborg, n., pErsson, p. A., LADEgAArD-pEDErsEn, A., and hoLmbErg, r. 1975. Keeping 

the lid on flyrock in open-pit blasting. Engineering and Mining Journal,  

vol. 176. pp. 95–100.

mArTo, A., hAJihAssAni, m., ArmAghAni, D.J., mohAmAD, E.T., and mAKhTAr, A.m. 2014. 

A novel approach for blast-induced flyrock prediction based on imperialist 

competitive algorithm and artificial neural network. The Scientific World 

Journal, vol. 5. doi: 10.1155/2014/643715

monJEzi, m., Amini KhoshALAn, h., and yAzDiAn VArJAni, A. 2010. Prediction of flyrock 

and backbreak in open pit blasting operation: a neuro-genetic approach. 

Arabian Journal of Geosciences, vol. 5, no. 3. pp. 441–448.

monJEzi, m., mEhrDAnEsh, A., mALEK, A., and KhAnDELwAL, m. 2012. Evaluation of 

effect of blast design parameters on flyrock using artificial neural networks. 

Neural Computing and Applications, vol. 23, no. 2. pp. 349–356.

prAKAsh, A. 2014. ANFIS (Adaptive Neural Fuzzy Inference Systems). [interview] 14 

September 2014.

rAinA, A.K. and murThy, V.m.s.r. 2016. Importance and sensitivity of variables 

defining throw and flyrock in surface blasting by artificial neural network 

method. Current Science, vol. 111, no. 9. pp. 1524–1531.

rAinA, A.K., murThy, V.m.s.r., and soni, A.K. 2013. Relevance of shape of fragments 

on flyrock travel distance: An insight from concrete model experiments using 

ANN. Electronic Journal of Geotechnical Engineering, vol. 18. pp. 899–907.

SAS Institute Inc., 2019. Artificial intelligence: What is it and why it matters. 

https://www.sas.com/en_za/insights/analytics/what-is-artificial-intellegence.

html[accessed 3 September 2019].
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