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A simulation model to study truck-
allocation options
by W. Zeng1, E.Y. Baafi1, and H. Fan2

Synopsis
We present a discrete event simulator, TSJSim (Truck-Shovel JaamSim Simulator), for evaluating 
the stochastic and dynamic operational variables in a truck-shovel system. TSJSim offers four truck 
allocation strategies: Fixed truck assignment (FTA), Minimizing shovel production requirement (MSPR), 
Minimizing truck waiting time (MTWT), and Minimizing truck semi-cycle time (MTSCT) including the 
genetic algorithm (GA) optimization and the frozen dispatching algorithm (FDA) optimization rules. 
Multiple decision points along the haul routes for all the trucks close to the decision points were included 
in the model. The simulation results indicate that the trends associated with production tons and queuing 
time utilizing the four truck allocation strategies (MSPR, MTWT, FDA, and GA) all demonstrated similar 
patterns as the fleet size varied. As the system fleet size increased, the system production tons under 
these strategies at first increased significantly and then remained relatively constant; the queuing time 
relating to these strategies showed a positive relationship with the system fleet size. The bunching time 
decreased when the truck allocation strategies were applied in the model. In the simulated truck-shovel 
network system with multiple traffic intersections, by assigning the trucks at the intersections, both 
productivity and fleet utilization increased.
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Introduction
For a truck-shovel system in an open pit mine, the truck haulage costs have been reported to exceed half of 
the total direct operating costs (Lizotte and Bonates, 1987). Truck allocation strategies have been applied 
to improve productivity and/or reduce operating cost by considering alternative truck-shovel assignments 
in real time in order to increase utilization of system resources (Alarie and Gamache, 2002). By allocating 
the optimal number of trucks to shovels, the waiting times of trucks in an over-trucked system as well 
as the idle times for shovels in an under-trucked system can be minimized (Baafi and Ataeepour, 1998). 
Furthermore, by re-routing trucks when traffic congestion occurs, costs associated with various delays can 
be minimized (Jaoua, Gamache, and Riopel, 2012b).

According to Alarie and Gamache (2002), the main forms of truck allocation are single stage and 
multistage systems. The single stage approach assigns trucks to shovels based on one or several criteria 
without considering any specific production targets or constraints. These criteria are usually heuristic 
methods based on rules of thumb (Alarie and Gamache, 2002), including fixed truck assignment (Lizotte 
and Bonates, 1987), minimizing truck waiting time (Baafi and Ataeepour, 1998), minimizing shovel idle 
time, maximizing truck momentary productivity, and minimizing shovel saturation (Kolonja, Kalasky, 
and Mutmansky, 1993). The multistage approach, on the other hand, consists of several stages or sub-
problems (Afrapoli and Askari-Nasab, 2017), which can be usually reduced to an upper stage (i.e., a 
production optimization problem) and a lower stage (i.e., a real-time dispatching problem). The upper 
stage aims to set production targets for every shovel according to specific operational constraints, while 
the lower stage assigns trucks to shovels to minimize the deviation from the production targets set by the 
upper stage. 

The approaches used to solve the production optimization problem in the truck-shovel dispatching 
models include linear programming (LP) (White and Olson, 1986; Lizotte and Bonates, 1987; Li, 1990; 
Gurgur, Dagdelen, and Artittong, 2011; Ta, Ingolfsson, and Doucette, 2013; Mena et al., 2013), nonlinear 
programming (NLP) (Soumis, Ethier, and Elbrond, 1990), goal programming (GP) (Temeng, 1997), and 
stochastic programming (Ta et al., 2005). 
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For the real-time dispatching problem, the model developed 
by White and Olson (1986) assigns trucks to shovels to minimize 
the deviation between the current path flow rate and the optimal 
path flow rate specified by the LP model. They created two 
assignment lists: the first for the trucks and the second for the 
paths. The dispatching is achieved by matching the ‘best truck’ 
from the truck list with the ‘neediest path’ from the path list 
considering the truck capacity, shovel digging rate, expected truck 
waiting time and travel time, and expected shovel idle time, etc. 
Elbrond and Soumis (1987) proposed a dispatching procedure that 
minimizes the sum of squared differences between the average 
waiting time of trucks and shovels as calculated from the haulage 
allocation plan and the forecast waiting times based on the current 
status of the mine operation. However, they did not consider 
the possibility of assigning more than one truck to a shovel in 
one decision-making step, and they also assumed that the truck 
fleet is homogeneous. Bonates and Lizotte (1988) proposed a 
dispatching method which takes the results from their developed 
simulator and compares these with an optimal production plan 
obtained from their LP model. The dispatching criterion with the 
smallest deviation of results from the optimum production target 
is chosen as the optimum dispatching rule. Li (1990) proposed 
a truck dispatching algorithm based on the difference between 
the actual truck interval time and the optimal truck interval time 
on a path to a destination. However, a significant disadvantage 
of this real-time dispatching model is that the truck waiting 
times at the destinations, especially at the shovels, are ignored. 
Temeng (1997) proposed a real-time dispatching model based 
on the transportation problem. In this model, needy shovels are 
defined as those shovels with current cumulative productions 
below the target obtained from their GP model. The number of 
trucks required by each needy shovel is determined by comparing 
the tonnage for each route required to maintain ore quality and 
stripping ratios with appropriate truck capacity. However, the 
model is not able to account for the truck waiting time, which 
depends on the previously allocated trucks, especially in an over-
trucked system. 

Ouelhadj and Petrovic (2009) suggested that the intelligent 
metaheuristic searching methods, including the genetic algorithm, 
Tabu search (Wu and García de Soto, 2020), and simulated 
annealing, are more powerful and appropriate for complex system 
scheduling/control optimization than the simple heuristic rules. 
Pfeiffer, Kadar, and Monostori (2007) also demonstrated the 
performance improvement using a dynamic scheduling method 
based on a genetic algorithm. Jaoua, Gamache, and Riopel (2012a) 
proposed a metaheuristic model, using the simulated annealing 
(SA) algorithm to compute the near-optimal assignment in a 
truck-shovel dispatching system.

Discrete event simulation techniques have been widely 
used in the mining industry to `evaluate and analyse mining 
operations (Dindarloo, Osanloo, and Frimpong, 2015; Afrapoli 
and Askari-Nasab, 2017; Yilmaz  and Erkayaoglu, 2021.  Askari-
Nasab, Frimpong, and Szymanski (2007) developed an open 
pit production simulator to represent dynamic expansion of an 
open pit mine. Fioroni et al. (2008) developed a discrete event 
simulator that works with an optimization model to implement 
the short-term production plan. Ebrahim et al. (2015) used GPSS/
H® to develop a discrete event system simulation for a truck-
shovel system to investigate the environmental impact, taking 
into account mining haulage performance and production targets. 
Hashemi and Sattarvand (2015) developed a discrete event 

simulation model using Arena simulation software to evaluate 
the transportation system of a copper mine. Their model is 
able to monitor the material excavated from different operating 
benches and considers the -ore grade requirement. Upadhyay and 
Askari-Nasab (2017) developed a simulation optimization tool 
that interacts with a GP-based optimization model to generate an 
uncertainty-based short-term plan. 

As identified by Afrapoli and Askari-Nasab (2017), there 
are still many shortfalls in the existing real-time dispatching 
algorithms and models. Two major limitations are how to model 
close to reality and how to determine dynamic best path. For 
large open-pit mines, there is a large fleet of heterogeneous 
trucks hauling on a vast network of haul roads in the operation 
area. Most previous work on simulation of a truck-shovel system 
(Lizotte and Bonates, 1987; Kolonja, Kalasky, and Mutmansky, 
1993; Temeng, 1997; Baafi and Ataeepour, 1998; Hashemi and 
Sattarvand, 2015; Sofranko, Wittenberger, and Skvarekova, 
2015; Que, Anani, and Awuah-Offei, 2016) failed to capture the 
interaction between the individual vehicles as well as the influence 
of the dynamic traffic network environment on the real-time truck 
allocation. 

In this paper we present a discrete event simulation model, 
TSJSim (Truck-Shovel JaamSim Simulator) with the capabilities 
of evaluating the key performance indicators (KPIs) of a truck-
shovel system under the influence of truck allocation strategies. 
TSJSim considers not only the stochastic and dynamic operational 
elements of the network system, but also the interaction between 
the individual trucks in the traffic network environment. 

Main components of TSJSim
TSJSim was developed using an open source simulation 
software package, JaamSim (JaamSim, 2018). JaamSim provides 
the capability of developing new objects in the standard Java 
programming language. New objects can be programmed with 
3D graphics along with the Input Editor and Output Viewer, 
and can be dragged-and-dropped for direct usage. Twelve new 
objects were developed for modelling a typical truck-shovel 
mining network system. The main simulation model objects are 
OreGenerator, OreSink, OreEntity, Truck, Loader, Dump, Queue, 
Route, RouteIntersection, RouteSafeZone, Truck-allocationStrategy, 
and LoaderOperator. Further details about these model objects are 
provided in Zeng et al. (2016).,

In TSJSim, the dynamic interactions between the haul 
trucks (i.e., bunching) and between the trucks and the traffic 
environment (i.e., traffic intersection area and main route priority 
management) are implemented by the truck velocity module, 
the truck bunching module, and the intersection management 
module. Further details about these modules are provided in Zeng, 
Baafi,and Walker (2019 ).

TSJSim truck allocation approach
In this paper, a truck-allocation decision point is defined as 
the time or the spatial position at which a truck driver needs 
to make a decision as to what route to select so as get to a 
particular destination. This decision may occur before and after 
loading, before and after dumping, or when a truck arrives at an 
intersection.

Most of the previous simulation models assume one or two 
decision points in one truck cycle, either at the loading site or at 
the dump site or at both. For example, in DISPATCH (White and 
Olson, 1993), the trucks in the real-time dispatching list are those 
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that have completed or are about to complete dumping; Hauck 
(1973) assumed the unloading point to be the decision point for 
real-time truck dispatching; Jaoua, Gamache, and Riopel (2012a) 
used a specified regular time interval (the control horizon) to 
manage the time for dispatching instead of using a decision point.

In the TSJSim simulation model, multiple decision points 
in the haulage network system within a one truck cycle were 
considered to handle the complexity of the traffic network 
and the dynamic operational variables of a surface mine. The 
RouteIntersection object handles the assignment of the Truck on 
Route objects. Referring to a typical truck-shovel network system 
shown in Figure 1, an assignment is generated by the Truck-
allocation Strategy object to send the Truck to a loading site. This 
scenario applies as a loaded Truck completes dumping at Dump 
2. Moreover, this depends on the system status, e.g., the traffic 
conditions on the various Routes, the availabilities of the Shovels, 
the lengths of the Queues at the loading sites and the performance 
of the LoaderOperators. 

After hauling for a period of time, the Truck arrives at 
RouteIntersection a, which provides an opportunity for the Truck 
to make a decision either to turn left for Shovel 1 or to turn right 
towards other Shovels {Si, i = 2,3,4,5}. The system status when the 
Truck arrives at RouteIntersection a may be different from when 
the Truck was leaving Dump 2. If the Truck-allocation Strategy 
object regenerates a new truck-allocation solution at that moment, 
the assignment for the Truck may be different but could be more 
productive than the assignment when the Truck was leaving Dump 
2. After hauling from RouteIntersection a to b, the Truck then makes 
a further choice between Shovel 2, 3, 4 or 5. A similar decision is 
made when the Truck arrives at RouteIntersection c, which is the 
last intersection on the haul route. Thus, it is clear that in a truck-
shovel network system where the operational variables change 
continuously, the truck assignment decisions could be made at the 
decision points on the haulage network to optimize productivity.

In the TSJSim simulation model, the truck-allocation approach 
is implemented mainly by two objects: the RouteIntersection object 
and the Truck-allocation Strategy object. The RouteIntersection 
object specifies all the decision points on Routes as well as the 
associated possible truck-allocation paths at each decision point. 
The Truck-allocation Strategy object assigns a Truck object to a 
destination based on the specified truck-allocation strategy.

Truck allocation paths development
The total possible truck-allocation paths for the trucks to travel 
from the traffic intersections to all the loading sites or dump sites 
are specified and stored in a list referred to as the RoutePool list in 
the RouteIntersection object. For instance, Figure 2 shows an ideal 
truck-shovel haulage network layout with the decision points for 
the loaded trucks and the possible paths at the RouteIntersection 
objects. 

The RoutePool list at decision point D has two possible truck-
allocation paths, i.e., D – Dump 3 and D – Dump 4; the RoutePool 
list at decision point C contains three possible paths, i.e., C – 
Dump 2, C –D – Dump 3, and C –D – Dump 4; the RoutePool list 
at decision point B includes four possible paths, i.e., B – Dump 1, 
B – C – Dump 2, B – C – D – Dump 3, and B – C – D – Dump 4; the 
RoutePool list at decision point A has six possible paths, i.e., A – B 
– Dump 1, A – B – C – Dump 2, A – B – C – D – Dump 3, A – B –C 
–D – Dump 4, A –D – Dump 3, and A –D – Dump 4. To determine 
all the possible paths at each RouteIntersection, the route network 
is a tree structure that consists of the decision points and the 
destinations being the tree nodes, as shown in Figure 3. The 
decision points at the lowest level provide the direct routes to the 
destinations, e.g., decision point D relates to Dump 3 and Dump 
4. The decision points at the upper levels provide the routes to 
both other decision points and the final destinations. For instance, 
decision point C connects with Dump 2 and another decision 
point, i.e., D; decision point B connects with Dump 1, and another 
decision point, i.e., C; decision point A is connected with other 
decision points, namely B and D.

In TSJSim, the decision points are located with the spatial 
points on the Route objects, with each decision point at the 
RouteIntersection having its own RoutePool list. A recursive 
algorithm which consists of three embedded for-loops and one 
defined function was developed for generating all the possible 
truck-allocation paths at the various decision points. The function, 
named MethodofRoutePool with the three input parameters, calls 
itself recursively to determine the RoutePool lists.

                   [1]

where
inter =   RouteIntersection object which contains the intersecting 

Route objects
route =  Route object which consists of various spatial points
droute =   Truck-allocation path to which the Truck is assigned, 

consisting of various spatial points. 
The starting point of the path is at the RouteIntersection, 

and the ending point is at the Loader or the Dump or the next 
RouteIntersection.

Figure 4 illustrates the flow chart for the algorithm. The main 
aim is to check all the nodes and the associated Route objects of 
the tree structure from the top to the bottom.

Figure 1—Decision points at intersections in a truck-shovel network 
system Figure 2—RoutePool and decision points
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The outermost for-loop function loops through all the 
RouteIntersection objects in the truck-shovel network system. For 
the ith RouteIntersection object, i.e., inter (i), the MethodofRoutePool 
(inter, route, droute) is implemented to determine RoutePool 
(i), which is the RoutePool list at inter (i). The parameter 
route temporarily saves the Route object that was passed from 
the previous MethodofRoutePool function (if any), and the 
parameter droute temporarily saves the paths already generated 
by all the previous MethodofRoutePool functions (if any). For 
example, consider the RoutePool list at RouteIntersection A in 
Figure 2. Suppose the MethodofRoutePool function is used for 
RouteIntersection C. Then the current route parameter would 
be Route 2 and the current droute parameter would be the path 
A-B-C (Figure 3). The initial values of route and droute are set to 
null, since the starting point of the truck-allocation path at the 
RouteIntersection contains no previous Route objects or paths 
(e.g., Node A in Figure 3). The MethodofRoutePool (inter, route, 
droute) has an inner for-loop function which loops through all 
the Route objects at inter (i), i.e., all the intersecting routes at the 
intersection. Within this for-loop, route (j) is compared with the 
route to check for new branches at the intersection. If route (j) 
and the route input parameter are two different Route objects, 
then a new truck-allocation path, i.e., droute (j), is initiated and 

replaced by droute. After that, the third for-loop function loops 
through all the points on Route (j) to check whether to add point 
(n) to droute (j) or to implement another MethodofRoutePool for 
inter (i+1) (the next intersection). Depending on the location of 
point (n) on Route (j), the following three conditional statements 
are executed to control the recursion:
➤   If the decision point at inter (i) is connected with a 

destination, and point (n) is located between inter (i) and the 
destination, then point (n) is added to droute (j).

➤   If the decision point at inter (i) is connected with another 
decision point, and point (n) is located between inter (i) and 
inter (i+1) on route (j), then point (n) is added to droute (j).

➤   If point (n) is the decision point at inter (i+1) on route (j), 
then the MethodofRoutePool is implemented with inter (i+1), 
route (j) and droute (j) as the input parameters.

In the case where multiple decision points exist in the system, 
the spatial points between inter (i) and inter (i+1) are first added 
to droute (j) at inter (i). Then the second MethodofRoutePool 
for the next decision point at inter (i+1) is implemented. This 
process continues until the last MethodofRoutePool function is 
implemented for the last decision point at the bottom of the tree 
structure. In the implementation of this last MethodofRoutePool, 
if the spatial points of the droute (j) are between the last decision 
point and the destination, then the droute (j) for the Route object 
at inter (size of inters -1), i.e., the last RouteIntersection object, 
is added to RoutePool (i). After that, the algorithm executes the 
second last MethodofRoutePool for inter (size of inters -2), i.e., the 
second last RouteIntersection object. This process continues until 
the first MethodofRoutePool is executed, thus solving RoutePool (i) 
at inter (i) by examining all the decision points from the top to 
the bottom of the tree structure. By following the above recursive 
process, all the RoutePool lists of the RouteIntersection objects are 
generated.

Figure 3—Tree structure of decision points on haul routes

 Figure 4—RoutePool algorithm flow chart
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Truck allocation strategy
In TSJSim, the truck allocation decision is made by applying 
the multi-trucks-at-a-time approach, i.e., the trucks close to 
the decision points at the loading sites, dump sites, and traffic 
intersections are all considered in the truck allocation process. For 
modelling purposes, the truck-shovel haulage system is divided 
into the following three areas:
➤  Load Area is an area near the loader. Empty trucks haul 

toward the loader within this area. Trucks forming a queue at 
the loader and those trucks being loaded are all considered.

➤  Dump Area is an area near the dump. Loaded trucks haul 
towards the dump within this area. The queuing trucks at the 
dump and the trucks dumping are all considered.

➤  Intersection Area is an area near the intersection. Trucks 
hauling inside an intersection area and those trucks waiting 
outside the intersection area are all considered.

An example is shown, in Figure 5. When Truck 1 finishes 
loading and is ready for an assignment, in Load Area 1, Truck 2 is 
waiting, and Truck 3 is travelling empty to Loader 1. In Load Area 
2, Truck 4 also travels empty to Loader 2. In the Intersection Area, 
Truck 5 is hauling a load to Dump 1 and Truck 6 is waiting outside 
the intersection area according to the passing priority rule (Zeng, 
Baafi, and Walker, 2019). These trucks are all close to the decision 
points. Hence Trucks 2, 3, 4, 5, and 6 as well as any other trucks 
that have already been assigned to respective dump sites could 
potentially influence the assignment of Truck 1 to a designated 
dump site. 

Four truck-allocation strategies are developed as part of 
TSJSim model:
➤  Fixed truck assignment (FTA) — each truck is assigned to a 

fixed shovel and dump at all times. This truck-allocation 
rule serves as a baseline for comparing and evaluating the 
effectiveness of other truck-allocation strategies. 

➤  Minimizing truck waiting time (MTWT) — the truck is 
assigned to the shovel or dump that is expected to generate 
the least amount of expected truck waiting time. The truck 

being loaded or dumping and the trucks in the queue are 
considered when estimating the total expected truck waiting 
time.

➤  Minimizing shovel production requirement (MSPR) — the 
shovels have predefined production targets and the trucks 
are assigned to the shovel with the maximum shortfall 
between the planned production and the ongoing simulated 
production. 

➤  Minimizing truck semi-cycle time (MTSCT) — two 
optimization methods, i.e., the genetic algorithm (GA) and 
the frozen dispatching algorithm (FDA), were developed to 
implement MTSCT.

Definition of the truck semi-cycle time
One of the measures of the productivity and efficiency of a truck-
shovel mining system is the truck cycle time. In a complete truck 
cycle, the truck departs from a loader toward a dump site and 
then returns from this area back to a loader. The complete truck 
cycle time includes the loading time, hauling time from the loader 
to the dump site, queuing time at the dump site, dumping time, 
hauling time from the dump site to the same loading site or to 
another one, and queuing time at the loading site. One complete 
truck cycle includes two destinations:
➤  The departure destination, which is the planned destination 

of a truck when departing. If a truck is leaving a dump site, 
then a loading site would be the departure destination; if a 
truck is leaving a loading site, then a dump site would be the 
destination for the departing truck.

➤  The returning destination, which is the destination that 
a truck will return to after arriving at the departure 
destination. If a truck is leaving a dump site, then a dump 
site would be the destination for the returning truck. If a 
truck is leaving a loading site, then a loading site would be 
the destination.

Due to the influence of the ongoing truck allocations within 
the entire system, the further the truck travels, the more time 
the truck will spend on the route, and the more difficult it is to 

Figure 5—Load, dump, and intersection areas
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estimate the complete truck cycle time. The estimated queuing 
times at returning destinations vary more than those at departure 
destinations. If the complete truck cycle time is considered, 
the varying estimated queuing times at the return destinations 
may bias the truck allocation decision-making process for the 
departure destination.

In the TSJSim simulation model, a truck semi-cycle time is 
defined as the sum of the time durations for a truck travelling 
from the origin (i.e., a loader, dump or intersection) to its 
destination (i.e., a dump or loader site) plus the time for queuing 
and loading or dumping at the departure destination. The 
influence of the returning destination is not included in the truck 
semi-cycle time. The objective of the truck allocation algorithm 
is to obtain the assignment with the minimum estimated truck 
semi-cycle time.

Components of truck semi-cycle time
The estimated semi-cycle time for a truck at the decision point is 
expressed as:

[2]

where
etab  =  estimated semi-cycle time for a truck to travel from origin 

a, i.e., a loader, dump, or intersection, to destination b, i.e., a 
dump site or loading site

ethb  = estimated hauling time to arrive at destination b
etqb  = estimated initial queuing time at destination b
etpb  =  estimated processing time (loading time or dumping time) 

at destination b
For the ‘potential truck’ close to a decision point, which 

is hauling to or waiting at a loader, dump, or intersection, the 
estimated semi-cycle time is:

 [3]

where
etha =   estimated hauling time to arrive at origin a, if the truck is 

still hauling etqa = estimated initial queuing time at origin a, 
if the truck needs to queue

etpa =   estimated processing time (loading time or dumping time) 
at origin a

Suppose one truck just finishes dumping and is ready to be 
assigned to a loader. There could be n shovels in the network 
system, i.e., {s1, s2, s3, … , sn} and m trucks that need to be allocated 
in this assignment, i.e., {t1, t2, t3, … , tm}. The estimated semi-cycle 
time for each truck to reach the next decision point at a loader 
(when the truck finishes loading) can be expressed by Equation 
[4]:

[4]

where
ET =   matrix of estimated semi-cycle times for assigning m trucks 

to n shovels
etsjti =  estimated semi-cycle time for truck ti to arrive at shovel sj 

and to finish loading

If the estimated semi-cycle time of each truck is independent 
of all others, then the solution for ti equals the minimum 
estimated semi-cycle time in {ets1ti, ets2ti, ets3ti,…, etsnti}, i.e., min{ets1ti, 
ets2ti, ets3ti,…, etsnti}. However, the estimated semi-cycle times are not 
independent of one another because the trucks interact with each 
other in the truck-shovel mining network system. The interaction 
between the trucks includes the bunching effect on the haul route, 
the passing priority in the intersection area, and most importantly, 
queuing at the loader or dump site. 

The estimated queuing time expressed in Equations [2] and 
[3] is an initial value which is the combined result of the present 
queue length at a loader or dump and the estimated hauling time. 
However, the actual estimated queuing time is not only influenced 
by the queue length, but also varies according to the truck-
allocation. In TSJSim, optimization, methods were designed to 
change the estimated queuing time to reflect the influence of truck 
allocation decisions. As more trucks are assigned to the same 
loader or dump, the estimated queuing time increases, and the 
resultant increase in the estimated semi-cycle time is considered 
in the truck assignment. 

Optimization methods for searching for the optimum destination 
with MTSCT
The genetic algorithm (GA) seeks the near-optimal solution by 
selecting the best solution and its neighbour, and then replacing 
the worst solution by the selected neighbour until the end of 
iterations (Gosavi, 2015). The general process structure of the GA 
is suitable for solving computationally complex problems (Alipour 
et al., 2017) and it has been used to tackle complex open-pit 
production scheduling problems due to its ability of producing 
near-optimal solutions within a short timeframe (Muke, Nhleko, 
and Musingwini, 2021). 

In this paper, the GA and a newly designed algorithm based 
on the general structure of the GA, i.e, the frozen dispatching 
algorithm (FDA), were developed to solve the truck allocation 
problem, respectively.

Genetic algorithm (GA)
In TSJSim, the decision variables (Trucks) are stored in a 
list named truckListDV, {t1, t2, t3, … , tm}, and their values or 
destinations, (at shovels or dump sites) are stored in a list named 
DVV, {s1, s2, s3, … , sn}. The size of the solutionList is set to the 
number of destinations in the system, {SL1, SL2, SL3,…, SLj,…,SLn}. A 
solution, SLj, consists of m elements for all the decision variables. 
The element value is the estimated truck semi-cycle time: 

[5]

where
SLj  = jth solution, j ∈ [1,n]
etsjti  =  estimated truck semi-cycle time ti to destination point sj, i 

∈ [1,m]
Let r denote the iteration number of the algorithm and rmax the 

maximum number of iterations to be performed. Set r = 1 and rmax 
= a constant value depending on the size of the model. There is no 
rule to determine an optimal iteration number and it is usually set 
by the permissible amount of computer time. The GA steps are as 
follows:
➤   Calculate the function value for each solution, i.e., f(SLj), 

which is the accumulated estimated semi-cycle times for all 
the trucks. The steps for calculating f(SLj) are as follows:
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 −   Rank etsjti in SLj in ascending order. In the new SLj, t1 will 
be the first truck to arrive at destination sj, t2 the second 
truck, and ti the ith truck.

 −   Modify the estimated queuing time of each semi-cycle 
time element. When ti arrives at sj, if the shovel is still 
loading ti-1, i.e., the expected arrival time of ti is less than 
the expected departure time of ti-1, then the queuing 
time is added to etsjti. −   Sum all the modified semi-cycle time elements in SLj, 
namely,

[6]

➤   Compare and rank SLj in solutionList according to f(SLj). 
Denote the minimum by SLmin and the maximum by SLmax. 
Randomly select a neighbour of SLmin, and call it SLnew, i.e., 
new = min + a random integer{-1,1}. Replace SLmax by SLnew, in 
other words, SLmax = SLnew. Referring to Figure 6, suppose 
SLmin is SL2 and SLmax is SL4. Initiate SLnew by reproducing 
SLmin, and then replace all the elements in SLnew with the 
elements in the neighbouring solution list. For instance, the 
replacement for ets2t1 can be either ets1t1 or ets3t1, depending on 
the generated random number.

➤   Increment r by 1. If r = rmax, return SLmin as the optimum 
solution and STOP. Otherwise, go back to step 1. 

Frozen dispatching algorithm (FDA)
The FDA module was originally designed for the TSJSim model 
based on the actual behaviour of a truck-shovel mining system. 
The FDA’s basic steps are summarized below:
➤   Select the element with a minimum value or element in list 

ETti = {ets1ti ets2ti ets3ti ... etsnti}, i ∈[1,m], and store the element(s) 
of which the destination is sj in list ETsj, j ∈ [1,n]. For example 
in Figure 7, suppose ets1ti is the minimum element in ETti = 
{ets1t1 ets2t1 ets3t1 ... etsnt1}, and ets1t2 is the minimum element in 
ETt2 = {ets1t2 ets2t2 ets3t2 ... etsnt2}. Then ets1t1 and ets1t2 are stored in 
ETs1. If ets3t3 ets2t1 is the minimum element in ETt3 = {ets1t3 ets2t3 
ets3t3 ... etsnt3}, then ets3t3 is stored in ETs3.

➤	   Compare and rank the elements stored in ETsj, j ∈ [1, n]. If 
the minimum element in ETsj, j ∈ [1, n], is etsjtx, meaning the 
truck tx is supposed to be the first truck to arrive at sj and 
there will be no increase in queuing time for tx at sj, then the 
value of etsjtx will not be changed. This assignment is ‘frozen’ 
and tx will be assigned to sj. For example, in Figure 7, the two 
elements, ets1t1 and ets1t2 in ETs1, are compared and ranked. If 
ets1t2 is the minimum element, then ets1t2 is ‘frozen’ (shaded 
block) and t2 will be assigned to s1. ETs3 contains only one 

element, ets3t3. Thus, ets3t3 is ‘frozen’ (shaded block) and t3 will 
be assigned to s3.

➤	   Consider the elements in ETsj,  j ∈ [1, n], that are not ‘frozen’. 
The truck with the minimum estimated time duration should 
arrive at the destination first and cause other ‘unfrozen’ 
trucks in ETsj to wait on the condition that they arrive at the 
destination before the already assigned truck finishes loading 
or dumping. Therefore, the expected queuing time is added 
to other elements in ETsj. To add the queuing time, first add 
the queuing time to the second minimum element (e.g., ets1t1 
in Figure 7) and then repeat steps 1 and 2. If:

 −    ets1t1 is still the minimum element in ETt1, this element 
would be ‘frozen’.

 −    ets2t1 is the minimum element in ETt1, since it is the only 
element in ETs2, it would be ‘frozen’. 

 −    ets3t1 is the minimum element in ETt1, it would be 
compared with other ‘unfrozen’ elements in ETs3 to 
decide whether it is the second minimum element in 
ETs3. 

After the second minimum element is ‘frozen’, the third 
minimum element in ETsj is considered. This process continues 
until all the elements in ETsj are all ‘frozen’.

Comparison of truck allocation strategies
The following two sensitivity analyses were evaluated using the 
TSJSim model.
➤	 	The influence of the truck allocation strategies on the KPIs 

in the case where the truck-shovel matches varied.
➤	 	The influence of multiple truck-allocation decision points on 

the KPIs of the truck-shovel system.

Truck allocation strategies where the truck-shovel matches 
change
A simplified simulation model was established using TSJSim. This 
model was validated using field data collected by Shaw (2012) 
at a truck-shovel mining operation in Western Australia. The 
mining operation, known as Easter Ridge OB23/25, consists of four 
loading sites, named S4C, P3WC, P3EC, and P4, and four dumping 
sites, P1ED, P3WD, P4WD and ROM dump (Figure 8). The routes 
between P3WC, S4C, and the ROM dump were selected for this 
sensitivity analysis. The fleet in the system comprises Shovel 1 
working at P3WC with associated trucks (named fleet 1, made up 
of CAT 785Cs) and Shovel 2 serving S4C with associated trucks 
(named fleet 2, made up of Komatsu 860Es). The main operational 
inputs are shown in Table I.

Four truck allocation strategies were considered. They are 
Fixed Truck Assignment (FTA), Minimizing Shovel Production 
Requirement (MSPR), Minimizing Truck Waiting Time (MTWT, 

Figure 6—The genetic algorithm (GA) method Figure 7—The  frozen dispatching algorithm (FDA) method
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and Minimizing Truck Semi-cycle Time (MTSCT), which included 
GA and FDA optimization. The simulation results included system 
production, truck queuing time, and bunching time.

The total fleet size varied from 10 to 19 so that the truck-
shovel match changed from both shovels under-trucked, to one 
shovel under-trucked and the other over-trucked, and then to both 
shovels over-trucked.

The assumptions for the model implementation are as follows:
➤	 	The trucks are not allowed to overtake each other along the 

routes
➤	 	The simulation model performs eight hours per shift during 

one simulation run, using a hot seat shift changeover, 
without considering other operational delays in the system

➤	 	Each design experiment is implemented with 100 simulation 
replications.

The simulation results are as follows.

System production tons
Figure 9 shows the relationship between the system shift 
production tons and the system fleet size using the four truck-
allocation rules, i.e., MSPR, MTWT, GA, and FDA.

The MSPR, MTWT, GA, and FDA rules demonstrated similar 
increasing trends in shift production tonnages. Production using 
FDA remained higher compared with other rules. The trends can 
be divided into the following stages:
➤	 	Fleet size ∈ [10,11]: When both Shovel 1 and Shovel 2 were 

under-trucked, as the fleet size increased from 10 to 11, the 
shift production tonnages increased. 

➤	 	Fleet size ∈ [12,16]: When Shovel 1 was under-trucked and 
Shovel 2 was over-trucked, as the fleet size increased from 12 
to 14, the shift production tonnages continued to increase. 
When the total fleet size exceeded 14, i.e., six CAT 785Cs and 

eight Komatsu 860Es in the system, the shift production 
tonnages remained stable. 

➤	 	Fleet size ∈ [17,19]: When both Shovel 1 and Shovel 2 were 
over-trucked, all the shift production tonnages remained 
stable as the total fleet size increased from 17 to 19. 

Queuing time
Figure 10 shows the trends of total queuing time (includes 
times at shovel and dump) versus the system fleet size using the 
truck allocation rules. The MSPR, MTWT, GA, and FDA rules 
all resulted in similar trends with respect to the queuing times. 
The queuing times showed a stable increasing trend as the 
fleet size increased. When the fleet size increased from 12 to 16 
(when Shovel 1 is under-trucked and Shovel 2 is over-trucked), 
the queuing times had similar increasing rates as when fleet size 
increased from 17 to 19 (when both shovels are over-trucked). The 
queuing time using the FDA rule remained lower than queuing 
times generated using other rules. 

Bunching time
Figure 11 illustrates the trends of bunching times versus the fleet 
size using the truck allocation rules, ,., FTA, MSPR, MTWT, GA, 
and FDA. The bunching times using the MSPR, MTWT, GA. and 
FDA rules were all less than the bunching time when using the 
FTA rule, meaning that the bunching effect in the model was 
reduced when the truck allocation rules were applied.

  Table I 

   Operational input parameters for truck-allocation 
evaluation

  Parameter Value

  Material density (kg/m³) 2 788
  Material swell factor 1.05
  Shovel bucket fill factor 0.9
  Shovel bucket capacity (m³) 15
  Shovel operater work cycle time (s) Normal (25, 10)
  Shift duration (h) 8
  Truck type CAT 785C, Komatsu 860E
  Safe bunching distance (m) 25
  Dumping time (s) Normal (35, 11) for CAT 785C,  
 Normal (46, 12) for Komatsu 860E

Figure 8—Layout of haul routes for the validated model

Figure 9—Relationship between production tons and fleet size relative to 
truck-allocation rules

Figure 10—Relationship between queuing time and fleet size relative to 
truck-allocation rules
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Multiple decision points effect
A truck-shovel haulage network system with multiple traffic 
intersections was constructed. Figure 12 illustrates the model 
layout, which consists of three loading areas, three dumps, and 
four traffic intersections along with the associated routes. There 
are 21 trucks (11 CAT 785Cs and 10 Komatsu 860Es) and three 
shovels of the same type in the system. The main operational 
inputs are shown in Table II .
Two cases were considered in the sensitivity analysis:
➤	 	Trucks were assigned only at loading areas and dumping 

areas and the decision points at traffic intersections were not 
considered.

➤	 	Trucks were also assigned at the decision points located at 
traffic intersections.

The Minimizing Shovel Production Requirement (MSPR), 
the Minimizing Truck Waiting Time (MTWT), and the Frozen 
Dispatching Algorithm (FDA) were considered for the sensitivity 
analysis. The simulation outputs included the system shift 
production tons and the total lost time, i.e., the sum of total 
queuing time and total bunching time.

Figure 13 illustrates the system shift production tons using 
the MSPR, MTWT, and FDA rules. If the decision points at the 
intersections were not considered, the system shift production 
tons using the MSPR, MTWT, and FDA rules were 63 114 t, 79 
684 t, and 80 577 t, respectively. If the decision points at the 
intersections were considered, the system shift production tons 
using the MSPR, MTWT, and FDA rules increased to 70 196 t, 82 
090 t, and 85940 t, respectively. 

Figure 14 illustrates the total lost times using the MSPR, 
MTWT, and FDA rules. If the decision points at the intersections 
were not considered, the total lost time using the MSPR, MTWT 
and FDA rules was 3 271 minutes (54.5 hours), 2 147 minutes 
(35.8 hours), and 1 679 minutes (28.9 hours), respectively. If the 
decision points at the intersections were considered, the total lost 
time using the MSPR, MTWT, and FDA rules decreased to 2 781 
minutes (46.4 hours), 1 513 minutes (25.2 hours), and 1 168 minutes 
(19.5 hours), respectively. 

By considering the decision points at the intersections in 
the simulation model, both the system productivity and the fleet 
utilization significantly improve. According to the observation, 
the intersection decision points should be considered in the truck 
allocation decision-making process.

Conclusions
A realistic discrete event truck-shovel JaamSim simulator 

(TSJSim) was developed and integrated with the traffic module 
and the truck allocation module. The truck allocation module 
considers multi-trucks-at-a-time and multi-decision-points in 
the truck allocation strategy. The frozen dispatching algorithm 
and genetic algorithm were developed for the truck allocation 
optimization. The sensitivity analyses were designed and 
implemented based on the TSJSim simulation model. The 
inferences drawn from the truck-allocation evaluation models are 
summarized as follows.
➤	 	In the simulated truck-shovel system with two fleets: the 

changing trends for the production and queuing times 
utilizing the four truck-allocation strategies (MSPR, MTWT, 
FDA, and GA) all demonstrated similar patterns as the fleet 
size varied. As the system fleet size increased, the system 
production tons under these truck-allocation strategies 
at first increased  significantly and then remained stable. 
The queuing time under these truck allocation strategies 
showed a positive relationship with the system fleet size. 
The bunching time decreased when the truck allocation 
strategies were applied in the model. 

➤	 	In the simulated truck-shovel network system with multiple 
traffic intersections, both productivity and fleet utilization 
increased by assigning the trucks at the intersections. Thus, 
the multiple decision points along the haul routes should be 
considered in the truck allocation decision-making process.

Generally, the optimum fleet size for a truck-shovel system 
is determined using the MF (s) of the loader(s). Yet, when truck 
allocation strategies are applied, the number of trucks assigned 
to the loaders, the loader cycle times, and the truck cycle times 
may vary owing to flexible truck assignments. This issue is 
remedied with TSJSim, which can evaluate the influence of the 
truck allocation strategies on KPIs when the system fleet size is 
changed.

Figure 11—Relationship between bunching time and fleet size relative to 
truck-allocation rules

Figure 12—Layout for the multiple decision points model
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Figure 14—Total lost times with and without decision points


