THE COMPUTER MAPPING AND ASSESSMENT OF BOREHOLE AND SAMPLING DATA FOR STABLE MINERALS, PARTICULARLY AS APPLIED IN COAL MINING

By R. B. MacGillivray, ${ }^{*}$ B.S.c. (Eng.) (Rand) (Member), D. M. Hawkins, \dagger B.Sc. (Hons.) (Rand), F.S.S. (Visitor) and
M. Berjak, \ddagger B.Sc. (Hons.) (Rand) (Visitor)

Abstract

SYNOPSIS The paper describes a method of producing iso line plans using a mathematical technique for interpolating between boreholes, and its computer application. The iso line plans are used for assessing the value parameters of an ore body. The computer programme also produces means and standard deviations to supplement these iso line plans.

The mathematical techniques tested for the production of a satisfactory fit of the data were the polynomial, Fourier and moving average technique.

The iso line plans are used for assessing the quality of the ore and other salient features such as depth to the floor of the ore body at different points, with a view to deciding how best the ore may be mined.

The plans are plotted by the computer to any scale required.

INTRODUCTION

To assess the economic exploitability of an ore body many tedious and repetitive calculations must be carried out. Observations of borehole or development samples have to be processed yielding measures of ore reserve and quality in each sampled area, and also measures of the worth of the ore body as a whole and of variation in quality from section to section of the ore body.

The observations made on the ore (which we shall term 'value parameters') may embrace a variety of characteristics of the ore. Obvious value parameters are those directly related to the economics of mining, viz. assay values, ore body thickness and depth below surface. Other value parameters however may be almost as important. In the case of coal for example a purchasing contract may specify limits of acceptability on other value parameters such as calorific value, ash content or the percentage of volatile matter. In this case, a detailed study of these value parameters will also be crucial. This detailed study must include an assessment, not only of the body as a whole, but also the regional variation in value of the parameter. An obvious and satisfactory way of displaying this variation is by drawing iso lines of constant value parameter on a map of the ore body and supplementing this with the means and standard deviations of the value parameters taken over all boreholes. Such plans, considered together, show up the zones of significance. The relatively stereotyped nature of the operations involved in this process makes it amenable to computer solution. In order to produce iso line plans on the computer we require some mathematical formula for producing a 'valuation surface'-a mathematical

[^0]The computer mapping and assessment of borehole and sampling data for stable minerals, particularly as applied in mining-R. B. MacGillivray, D. M. Hawkins and M. Berjac
function for interpolating between boreholes. This paper deals with one such mathematical technique and its computer implementation. Originally it was developed for the valuation of coal fields and for this historical reason examples cited are of colliery data. Both the technique and the implementation are of potentially much wider application.

TECHNIQUES EXAMINED

A number of mathematical models for valuation surfaces are available and four have been considered for computer implementation.

The first is the 'triangle' method of linear interpolation. In this technique which is used frequently by mining engineers for manual surface fitting, the area is broken up into small triangles defined by boreholes. The value at any point within a particular triangle is estimated by linear interpolation of the values at the three boreholes defining the apices of the triangle. There are several objections to this model. One is that the decomposition of the area into triangles is subjective and that hence results are not reproducible. Another (and much more serious) objection from the statistical point of view is the implicit assumption that the value parameters are measured with perfect accuracy and that the cores obtained from the boreholes are representative of the areas nearby. In practice obviously neither assumption is justified thus no attempt was made to implement this technique.

A second approach which suggests itself is the use of a polynomial. The valuation surface is obtained as a polynomial in x and y co-ordinates. The value of this polynomial at any given point gives the predicted value of the value parameter at that point. The coefficients of the polynomial may be found by means of a traditional least squares fit based on the borehole values given or by the more modern minave and minimax fitting techniques. This technique has been implemented and tried in practical cases but results are, on the whole, disappointing. Polynomials of order 6 and less were found to be inadequate for representing data of the complexity quite commonly found, with the result that valuable information was simply 'smoothed out'. Further disconcerting properties of these least squares polynomials are that they are unduly influenced by boreholes near the periphery of the area considered, and that they must, by their very nature, become unstable at the edges.

A third, related approach involves the use of finite Fourier series rather than polynomials. These series have several advantages over the polynomial series. They are considerably more flexible and can give much better representations of complex surfaces. Further, they are better behaved at the edges. On the other hand, they are inclined to show the sharp discontinuities characteristic of Fourier series, and once again are not capable of representing very complex surfaces. On available evidence, the Fourier series, while better than polynomials, are often simply inadequate for accurate assessment of the borehole data.

In Figs. 1 and 2 comparative iso line plans of seam widths produced by a 6th order polynomial, and a 6th order finite Fourier series are shown. The positions and values (seam widths) of the boreholes are shown in Fig. 3 for comparison. The multiple correlation, which is a measure of the accuracy of the valuation surface in representing the data, is considerably higher for the Fourier than the polynomial surfaces, though both techniques suffer from comparison with the moving average technique discussed below. For example, it is clear that both have smoothed out some useful information-a serious shortcoming.

Fig. 1-6th order polynomial fit

VILLATIC*: SEAM A RAW G. 1 Ir.7E\%
Slar hilitr at specifitu cy

[A1k CS/Ct/te TIHE 16/32/4]

Fig. 2-6th order finite Fourier series fit

The computer mapping and assessment of borehole and sampling data for stable minerals, particularly as applted in mining-R. B. MacGillivray, D. M. Hawkins and M. Berjac

Fig. 3-Position and values of boreholes

The fourth and most satisfactory technique to date is the weighted moving average technique, pioneered in this country by Krige ${ }^{1}$. In this technique, the value over any area is estimated by a weighted average of nearby borehole values, the weights decreasing with distance. In terms of this very general definition, the 'triangle' technique is a form of weighted moving average using particularly simple (though subjective) weights. Krige's moving average was designed for the valuation of South African gold mines, where the basic data consist of not borehole, but development and stope samples. The sampling is done at regular intervals over the irregular grid of reef drives and raises, and the stope sampling along stope faces from time to time as these advance. Krige's technique breaks the ore body down into regular squares, and produces estimates of total reserve within each square from data in that and/or the squares in its vicinity. The technique makes efficient use of the regularity in the data, but also relies heavily on that regularity. The intensive sampling on gold mines is motivated by the extreme variability for which gold is notorious. Many other minerals have much more stable properties, and in such cases the regular grid of samples will generally be replaced by a much more haphazard set of borehole readings. In this case, Krige's technique in the form used on the gold mines breaks down.

Accordingly a more general moving average technique is proposed. This moving average does not depend for its success on any regularity in borehole data, and is accordingly well suited to valuation of the more stable minerals.

MOVING AVERAGE TECHNIQUE DEVELOPED

Suppose the observations consist of a set of n measurements r_{i} of the value parameter at co-ordinates x_{i}, y_{i} with $i=1$ to n. Suppose that we wish to derive an estimate r of the value parameter at some arbitrary point with co-ordinates x, y. The estimate proposed is:

$$
r=\frac{\sum_{i=1}^{n} \frac{r_{i}}{\left(a^{k}+d_{i} k\right)}}{\sum_{i=1}^{n} \frac{1}{\left(a^{k}+d_{i} k\right)}}
$$

where d_{i} is the distance from x_{i}, y_{i} to x, y and a and k are parameters whose physical significance is discussed below.
r is a weighted moving average of all the measurements. The functional form of the weights is particularly simple-the weights assigned to the measurements reducing exponentially as the distance from the borehole to the point predicted increases.

This predictor r does not suffer from any of the drawbacks to the other techniques mentioned above (though of course it has some peculiar to itself). The valuation surface makes allowance for errors of measurement; it is stable at the edges and is not unduly affected by peripheral observations; the surface is smooth but capable of representing data of any complexity; the use of the predictor does not require any systematic placing of observations within the ore field.

This technique has been proposed by Sharapov ${ }^{2}$ and is in use in the United States of America in the special case $a=0$. The more general case $a>0$ has not been found in the literature.

As yet no general mathematical formula has been derived which would enable predictions of optimum values for a and k to be made, but values have been suggested
by trial and error. To gain some insight into the physical significance of a and k, let us consider the effect of varying their values.

If $k=0$, then all points carry the same weight. This yields a perfectly flat valuation surface, the prediction at any point being simply the average of the n measurements. As we increase k, so we increase the rate at which the weighting factor falls off with increasing distance. Thus, if the ore is of an unstable type then the measurements at distant boreholes will provide little information on the value at the point being predicted. In this case, we will use a large value of k to give low weight to such distant boreholes. If, on the other hand, the ore is a stable one, then we will not want the weights to fall off as sharply with increasing distance, and a smaller value of k will be used. Thus k is determined by the large scale stability of the ore.

The value of a on the other hand is determined by the magnitude of errors of measurement and of local variability of the ore. Imagine two boreholes close together. If $a=0$ then a prediction close to one of them will mirror the actual borehole measurement. If $a>0$ then this will not occur-any prediction, even at the location of a borehole will not ignore the evidence of other nearby boreholes but will take these borehole measurements into account. Thus a has the effect of a smoothing factor. By making $a>0$, we allow for the fact that our borehole measurements contain errors by always bringing into use the information from other nearby boreholes. Conceptually the use of the factor a is rather similar to moving all boreholes a fixed distance away from the point being predicted.

If all measurements are highly accurate, and all boreholes are closely representative of the immediately continguous area, then we require very little smoothing of the data, and should use a value of a close to zero. If there are larger errors or if there is a large measure of highly localized variability in the ore, then rather more smoothing is required, and a larger value of a should be used.

So much for the nature of a and k. The choice of actual value for either parameter is a difficult problem. It is hoped that mathematical geological deposition models will enable optimum values for a and k to be found, but in the meantime these models are not at hand and the problem must be tackled heuristically. This analysis has been partially completed for coal data. On the computer, part of the problem is easily solved by practical considerations. Only k values of $0,2,4,6 \ldots$ are economically feasible-any other values of k would be prodigal of computer time. Initial work suggested the use of $k=2$, but recently there have been indications that a value $k=4$ is, in many respects, better, and experimentation on k is continuing.

A tentative value for a is 200 ft . This choice has been made after a study of the plans produced using different values of a. Fig. 4, shows an iso line plan produced by the moving average technique using $k=2$ and $a=200 \mathrm{ft}$. The data are those used to illustrate the polynomial and finite Fourier techniques. If a is decreased, then a vast amount of spurious fine detail appears-if a is increased then even broad features of the plan are smoothed out.

Some theoretical analysis and experience in using the technique have led to the following comments and conclusions:
(a) The technique works best when the boreholes are drilled on a regular gridthis is to be expected of almost any interpolation scheme.

Fig. 4 -Moving average fit with $K=2$ and $A=200 \mathrm{ft}$

The computer mapping and assessment of borehole and sampling data for stable minerals, particularly as applied in mining-R. B. MacGillivray, D. M. Hawkins and M. Berjac
(b) In a 'data void', i.e. an area which has no boreholes near it, the prediction settles down to the average of the value parameter over all boreholes. This is a reasonable prediction in the absence of any information.
(c) Discontinuities such as dykes or faults, which can ruin a polynomial or Fourier fit, do not have an undue effect on the moving average. Near such a disturbance, some symptomatic crowding of iso lines may occur, but away from the discontinuity the predictor is unaffected.
(d) The valuation surfaces produced may be (and have been) used to pinpoint areas of interest at which further observations on the ore body should be made, and also to assist in the selection of shaft sites and mining layout.

IMPLEMENTATION

As mentioned earlier, this technique was developed for use in a suite of computer programmes for the assessment of ore fields. It has been embodied in a FORTRAN IV programme written for use on the University of the Witwatersrand IBM System 360 Model 50 computer. The programme is a flexible one, and can handle up to 10 distinct value parameters on any one run. It provides the option of using the moving average technique or a polynomial or finite Fourier series of any order up to 6. (This upper limit can readily be extended.) The programme performs many functionssome of them optional. Fairly comprehensive checks are made on the input data and data errors found are listed out on the printer. Fig. 5 shows an actual error listing. Each type of error is assigned a severity-for example, a borehole whose co-ordinates lie outside the prespecified range raises an error severity of 2 . The user specifies the error severity that he is prepared to tolerate, and if an error of higher severity is encountered, the programme completes the error cheking, then terminates.

IPRLT UATA ERKCK LISTING

The computer mapping and assessment of borehole and sampling data for stable minerals, particularly as applied in mining-R. B. MacGillivray, D. M. Hawkins and M. Berjac

Certain basic statistics of the value parameters are computed-maxima, minima, means, standard deviations and intercorrelations and these are listed out as in Fig. 6.

Other information available on request includes an analysis of the degree of association between the actual borehole data and the valuation surface. Fig. 7 shows part of a listing of actual observations, the values predicted by the fitted surface, and the errors of prediction. Fig. 8 shows a prediction error histogram. This is invaluable to the statistician studying the properties of the valuation surface. Also available is some other information of a more specialist nature for use in developing mathematical geological models.

The runs are relatively inexpensive. On the University installation, there is an overhead (almost constant) of about R5 for reading in and checking the data. Thereafter the cost of the plans is:
(a) 6th Order polynomial: R3 per square foot of plan.
(b) 6th Order Fourier series: R4.50 per square foot of plan.
(c) Moving average: R4 per square foot per 100 boreholes.

These figures are approximate, and are in any event marginally dependent on a number of other factors.

Fig. 6-Basic statistics of observations
valuavion seav a
** hovimg aterage pif test data **

botehote	coordimates		SEW MITM	OBSERTED READIMES Rel Mind	putic	dita	uasme plat	unsmac.y.	MSME0 15 s	uSiky montiles	may c.v. cone ony
2124C6	60922•0	24095*0	113000	100000	12.30	20.10	$80 \cdot 90$	13.70	12.70	13040	12.30
	$1 * 1$	1308	118073	$95 \cdot 17$	12.03	21.11	78.41	13.61	12.51	11.09	12.67
			-5.73	4.83	0.27	-1.01	$2 \cdot 49$	0.09	0.19	$2 \cdot 31$	-0.37
2x5	59224.0	2428400	78.00	$87 \cdot 20$	10.60	28.20	71.50	13.00	15.90	9.60	12.20
	3.4	1.6	83-88	97.23	$10 \cdot 60$	28.95	65.28	13.32	14*19	12.53	11.50
			$-5 * 88$	-4003	-0.00	-0.75	6.22	-0.32	$1 \cdot 71$	-2093	0.70
2×53	59085.0	2481300	98.00	94.90	$11 \cdot 10$	26.20	66020	13070	12.80	12.90	11.70
	$9 \cdot 8$	$0 \cdot 6$	$84 \cdot 27$	89.60	10.75	28.02	64*93	$13 \cdot 71$	12.64	12.82	11.71
			13.73	$5 \cdot 30$	0.35	-1.82	1.27	-0.01	$0 \cdot 16$	$0 \cdot 08$	-0.01
2x54	5926700	24835*0	71000	88.70	$10 \cdot 20$	31.00	59020	13.90	11.50	13030	11.50
	10.0	1.9	75.98	$86 \cdot 08$	10-39	29.77	63.30	13.75	12.46	$12 \cdot 17$	12*04
			-4098	2062	-0.19	1.23	-4.10	0.15	-0.96	1613	-0.54
2x5 5	59437.0	20810.0	39000	71.80	10.10	30.60	69.50	14.10	11.20	12.80	14010
	9.7	$3 \cdot 1$	74.02	84.37	10.33	29.99	63.75	13.74	12.55	11.71	12*27
			-35002	-12.57	-0.23	0.61	5.75	0.36	-1.35	1.03	$1 \cdot 83$
2xs7	5443200	24810.0	91000	78.00	8.80	37.30	47.20	13.50	13030	8.00	11.30
	9.7		$73 \cdot 96$	84.40	10.33	30.01	63.71	13.74	12.54	11.78	12.26
			17.04	-6.40	-1053	7829	-16.51	-0.24	0.76	-3.78	-0.96
2x<9	$59685 \cdot 0$	24696.0	104000	94.20	11.60	23.30	74.80	13.50	14.00	13.10	12*30
	8.4	4.9	$88 \cdot 82$	97.60	10.77	27.57	70.62	13.37	14.43	12.32	12.30
			15.18	6.60	$0 \cdot 83$	-4.27	$4 \cdot 18$	0.13	-0.43	0.78	0.00
2x510	5978500	2457500	81.00	75.50	9.60	33.10	67.10	13.20	15.20	11090	12.50
		$5 \cdot 7$	93080	89.90	10.99	26.62	72.54	$13 \cdot 22$	$15 \cdot 21$	12.53	12.22
			-12*80	- 13040	-1.39	6.48	-5.94	-0.02	-0.01	-0.63	0.28
21511	5963440	24:72:0	135.00	94.80	11.50	24.70	73.70	13.40	15.20	14.20	12.10
	$2 \cdot 1$	4.6	114.15	93.80	11.48	24.32	75.58	13.35	14.62	13081	12.21
			20.85	1000	0.02	$0 \cdot 38$	-1.89	0.05	0.58	0.39	-0.11
2×512	59828.0	2442200	13300	100.00	11.50	24.70	67.20	13000	$16 \cdot 70$	14.20	11.50
	$5 \cdot 1$	6.0	102•14	90.18	10.97	26.77	71.35	13.23	15.17	12.99	12.18
			30.86	9.82	0.53	-2.07	-4.15	-0.23	1.53	1021	-0.68
2×513	5923800	24402-0	54.00	$100 \cdot 00$	10.30	31030	53.30	13.60	13.60	14.10	10.30
	$5 \cdot 8$	1.7	80.33	89.47	10.70	28.40	66007	13.12	13.92	12.92	11.47
			-26.33	10.53	-0.40	2.90	-12.77	0.18	-0.32	1418	- $2 \cdot 17$
21516	6011800	2458日00	138.00	100.00	12.30	20.50	$80 \cdot 20$	13.30	15420	13080	12.30
	7.1	$8=0$	106044	$95 \cdot 12$	11.91	22004	79*28	13.35	14.49	12.75	12.52
			31.56	4088	$0 \cdot 39$	-1.54	0.92	-0.05	0.71	1.05	-0.22
2×518	60090*0	2408300	125000	90.40	11.20	25.50	75.00	13.20	14.60	13080	12.40
	1.0	7.8	132038	94.14	11.70	23.00	75.39	13.41	13.87	13.50	12.40
			-7.38	-3.74	-0.50	2.50	-0.39	-0.21	0.73	0.30	-0.00
2×519	5940000	2439200	92.00	100.00	11.90	22060	76.40	$13 \cdot 10$	16.00	13.80	11.90
	53407	3.5	90.92	92.85	$10 \cdot 87$	27.56	68.62	$13 \cdot 31$	14.66	13.23	11.68
			1.08	7.15	1.03	-4.96	7.78	-0.21	1.34	0.57	$0 \cdot 22$
2×520	5908400	2451400	$96 \cdot 00$	70.70	12.10	21000	79.50	13.60	12.90	12.90	11.40
	$5 \cdot 2$	0.6	78.88	$86 \cdot 15$	10.92	27.30	67.40	13.48	13.53	12082	11046
			$7 \cdot 12$	-15.45	1.18	-6.30	12. 10	0.12	-0.63	$0 \cdot 08$	-0.06
21522	$60220 \cdot 0$	24088.0	133000	91.70	11.80	22.30	75.50	13.70	12.20	14080	12080
	1.1	$8 \cdot 8$	133.53	$94 \cdot 19$	11.74	22084	75.32	13.46	13.62	$13 \cdot 71$	12-43
			-0.53	-2.49	0.06	-0.54	$0 \cdot 18$	0.24	-1.42	1009	$0 \cdot 37$
2x524	6037700	2439400	144.00	$100 \cdot 00$	12.10	21.10	75.60	13.40	13.70	12000	12.10
	$4 \cdot 7$	9.9	121.41	98.26	12•11	21.03	70.36	13.50	12.85	11.15	12.32
			22.59	$1 \cdot 74$	-0.01	0.07	$5 \cdot 24$	-0.10	0.85	$0 \cdot 85$	-0.22
$2 \mathrm{xc4}$	5933100	24374.0	89.00	89.90	10.60	28.50	68.60	13.30	14.90	13060	11080
	4.5	$2 \cdot 4$	84.02	92.45	90.68	28.62	65.76	13.34	14.33	12.93	11046
			4.98	-2056	-0.08	-0.12	$2 \cdot 86$	-0.04	0.57	0.67	$0 \cdot 34$
$2 \mathrm{xC5}$	5951100	24116.0		95.80	12.70	\$7.80	90.60	13.50	13.70	14.70	
	1.4	3.7	108.30	93.99	11.44	24.58	75.04	13.37	14.45	13080	$12 \cdot 13$
			-12.30	$1 \cdot 81$	$1 \cdot 26$	-6.78	15.56	$0 \cdot 13$	-0.75	0.90	1.07
2xcs	5964000	24467.0	93.00	83.90	10.20	30.50	69.00	13.20	15.20	12.40	12.10
	$5 * 6$	4.6	96.89	90.14	10.86	27.38	70.44	13.25	15.09	12.96	12.04
			-3.89	-6.24	-0.66	$3 \cdot 12$	- 1044	-0.05	0.11	-0.56	0.06
2xc9	59323.0	24640.0	80.00	87.50	10.40	29.40	69.30	13050	13080	13060	11090
	$7 \cdot 7$	$2 \cdot 3$	76.30	87.41	10.43	29.60	64.34	13.59	13.30	12.70	11.77
			3.70	0.09	-0.03	-0.20	4.96	-0.09	$0 \cdot 50$	0.90	0.13
2 xCl 2	60102.0	24243.0	134000	100.00	12.00	21.80	74.60	$13 \cdot 30$	$15 \cdot 10$	13070	
	- 2.9	7.9	$127 \cdot 22$	94.49	11.72	22094	75.51	1,3043	13.96	13.53	12.39
			6.78	5.51	0.28	-1.14	-0.91	-0.13	1.14	$0 \cdot 17$	-0.39
2 Cc 13	60013.0	24453.0	82.00	80.50	10.40	2910	70.60	13060	13.00	13.50	12.90
	$5 \cdot 4$	$7 \cdot 3$	106.43	93-12	11.53	23.93	75.70	13.32	14.66	13.04	12.39
			-24.43	-12.62	-1.13	5.17	-5.10	$0 \cdot 28$	-1.66	0.46	0.51
2xcls	5993800	2454100	55.00	100000	12.40	19080	88.20	12080	17.00	10.40	12.40
	7.7	6.8	91.95	91.92	11.37	24071	75.46	$13 \cdot 20$	15*24	12.35	12.38
			-36.95	8.08	1.03	-4.91	11.74	-0.40	1.76	-1.95	0.02
$2 \mathrm{xC21}$	59940.0	2400200	140000	95*70	11.90	21070	76.20	13030	13.90	11030	
		8.8	131.28	93.76	11.59	23.46	75.16	$13 \cdot 32$	14.14	12.89	12.35
			8.72	1.94	0.31	-1.76	1.04	-0.02	-0.24	-1059	0.05
2 Cc 23	5966500	2400400	135000	91.10	10.90	$26 \cdot 80$	72.30	13.30	14.40	13.70	12.00
	0.0	4.8	122.54	93.44	11.47	24.22	75.94	13036	14.44	13.74	12.26
			12.46	-2.34	-0.57	$2 \cdot 58$	-3.64	-0.0\%	-0.04	-0.04	-0.26
$2 \times \mathrm{C} 24$	59013.0	24953.0	94.00	100.00	11.70	23.70	68.20	$13 \cdot 20$	14.00	10.40	11.70
		0.1	87.56 6044	93009 6.91	11007 0.63	26.60 -2690	67.46 0.74	$13 * 25$ -0.05	14008 -0.08	11931 -0.91	11.76 -0.06

Fig. 7-Moving average fit test data in mining-R. B. MacGillivray, D. M. Hawkins and M. Berjac.

To date the suite contains two other programmes. The first, also written in FORTRAN IV is used for automatic selection of a mining width in cases where several strata are found in the ore body. All possible widths are studied, and the most satisfactory according to a given criterion is selected. The other programme, written in $\mathrm{PL} / 1$ is specific to coal fields. It is used to investigate the association between
common value parameters of coal. A second PL/1 programme under development will be used for comprehensive data checking and for the prediction of missing information according to regression techniques. Another planned extension is the shifting of the iso line planning from the line printer to a digital incremental plotter. Other facilities and programmes may be added as the need for them arises.

APPLICATION OF THE PROGRAMME TO THE COAL MINING SITUATION

There could be four main reasons for opening a coal mine in South Africa today. These are-to supply a power station, to supply an oil from coal plant, to supply the commercial market and to supply special metallurgical coals. All four of these markets may have different quality requirements. Any previous prospecting in a particular coal field may not have been undertaken specifically for any one of these quality requirements. Under the circumstances, certain value parameters may be missing from the previous borehole information. If the opportunity should arise for opening of a captive colliery to supply a power station for example, the mining engineer may be more interested in the raw coal than washed coal values. Some of these may be missing from these previous borehole analyses, especially if certain areas of the coal seam in question contain high quality coal. Using regression techniques and the information that is given for the previous boreholes, many of these values can be reasonably well estimated. Some of the values which show high correlation and therefore lend themselves to prediction are calorific value from ash percentage, washed ash percentage from raw ash percentage and percentage yield from raw ash percentage. Table I shows a typical borehole analysis of a coal seam. It will be noticed that while all the washed coal values are recorded only the raw ash percentage is given. In some cases, the raw coal values may have been entirely left out or if the coal is of poor quality the washed coal values may have been excluded.

To produce the required plans and information the borehole data shown in Table I are punched on to cards. These are fed into the first PL/1 programme which produces the regression curves mentioned above. From these regression curves, missing information is then predicted. This is currently done by hand, but when the second PL/1 programme is complete, it will take over this function. The borehole cards are then fed into the seam selection programme.

If so requested, this programme will attempt to select an optimum mining width; otherwise it will regard the entire seam fed in as the mining width. If manual selection is desired, this may be achieved by removing the data cards corresponding to bands in the seam which it is feasible to exclude from a mining point of view. Exclusion of these bands could have the object of improving quality or mining conditions.

For the selected mining width the programme calculates the average of each value parameter at the boreholes. A summary is printed showing these borehole values, and is transferred to punched cards. Finally, these summary cards are fed into the surface fitting programme for the calculation of the required iso value lines.

The print outs produced by the computer, can be used as they are. However, it has been found that transferring the computer information to plans showing known important geological or surface features is more satisfactory. Fig. 9 shows an iso value plan prepared in this fashion. Any other desired set of iso line plans may of course be plotted and so far the technique has been used to plot 'iso-ash', 'iso calorific value', 'iso volatile' and 'iso width' lines as well as floor contours, middling contours and depth below surface contour lines.

The computer mapping and assessment of borehole and sampling data for stable minerals, particularly as applied in mining-R. B. MacGillivray, D. M. Hawkins and M. Berjac
TABLE I
TYPICAL BOREHOLE ANALYSIS

Thickness in.		Analysis of raw coal (air-dry basis)							Size of coal washed	S.G.	Float yield	Analysis of float (air-dry basis)					
Excluded	Sampled	Cal. val. lb/lb	$\stackrel{\%}{\mathrm{H}_{2} \mathrm{O}}$	$\begin{gathered} \% \\ \text { ash } \end{gathered}$	\%ol mat.	$\begin{gathered} \% \\ \text { Fix. } \\ \text { carb. } \end{gathered}$	Sw. No.					$\begin{array}{\|c\|c} \text { Cal. } & \\ \mathrm{Val} \\ \mathrm{lb} / \mathrm{lb} & \% \\ \mathrm{H}_{2} \mathrm{O} \end{array}$	$\begin{gathered} \% \\ \text { ash } \end{gathered}$	\% mat.	$\begin{gathered} \% \\ \text { Fix. } \\ \text { carb. } \end{gathered}$	Sw. No.	
	$22 \frac{1}{4}$	Seam:	Main	$22 \cdot 0$				$\begin{aligned} & \text { AFT } \\ & 1,320 \end{aligned}$	C) (On -1 in.	(oats)	$83 \cdot 7$	$\begin{array}{\|l\|l} 11.63 & 1.6 \end{array}$	$20 \cdot 2$	$32 \cdot 8$	$45 \cdot 4$	1	$1 \cdot 62$
	$\begin{gathered} 24 \\ 17 \end{gathered}$			$\begin{aligned} & 35 \cdot 2 \\ & 13 \cdot 6 \end{aligned}$				$\begin{aligned} & 1,310 \\ & 1,240 \end{aligned}$	$\left\lvert\, \begin{aligned} & -1 \mathrm{in} . \\ & -1 \mathrm{in} . \end{aligned}\right.$	$\begin{aligned} & 1 \cdot 58 \\ & 1 \cdot 58 \end{aligned}$	$32 \cdot 8$ $93 \cdot 3$	$\begin{array}{\|l\|l} 11 \cdot 37 & 2 \cdot 0 \\ 13 \cdot 14 & 2 \cdot 1 \end{array}$	$\begin{aligned} & 20 \cdot 4 \\ & 11 \cdot 9 \end{aligned}$	$\begin{gathered} 27 \cdot 5 \\ 35 \cdot 0 \end{gathered}$	$\begin{aligned} & 50 \cdot 1 \\ & 51 \cdot 0 \end{aligned}$	- ${ }^{\frac{1}{2}} 1$ 3	$\begin{aligned} & 1.80 \\ & 1.75 \end{aligned}$
												$\begin{gathered} \% \mathrm{P} . \text { in coal } \\ \mathrm{A}_{1} 0.007 \\ \mathrm{~B}_{1} 0.008 \\ \mathrm{C}_{1} 0.008 \end{gathered}$					

Fig. 9

CONCLUSIONS

A technique has been developed for fitting a reasonable valuation surface to irregular borehole or development data, and has been embodied successfully in a computer programme. This programme has been used effectively in the valuation of coal fields, and it has been found that the technique, apart from fulfilling the function for which it was designed, has cast some light on the problem of siting shafts and further boreholes. Both the technique and the implementation are under further development.

The authors wish to thank the head of the Coal Division of Rand Mines Limited for permission to publish this paper.

REFERENCES

1. Krige, D. G. 'Two-dimensional weighted moving average trend surfaces for ore valuation.' Proc. Symposium on Mathematical Statistics and Computer Application in Ore Valuation, S.A. Min. Metall., 1966, p.p. 13-79.
2. Sharapov, I. 'Contribution to the theory of the consistency of ore deposits.' Transactions of the Scientific Coal Institute Perm. Fasc. 4., 1962.

NOTICE.

The Institute has received requests for copies of 'Uranium in South Africa', Vols. 1 and 2, but is unable to supply, as all copies have been sold out. If any members have copies they wish to dispose of it would be appreciated if they would contact the Secretary, P.O. Box 1183, Johannesburg. Telephone 834-1271.

[^0]: *Assistant Technical Manager, Rand Mines Limited.
 \dagger Department of Statistics, University of the Witwatersrand.
 \ddagger Operations Research Department, Rand Mines, Limited.

