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Turning the tables—an interactive approach
to the traditional estimation of reserves

SYNOPSIS

by ISOBEL CLARK*

This paper reviews some of the traditional methods of reserves estimation based on lognormal distribution with
or without an additive constant. In the rush to computerize mine planning and grade control generaily, proven estima-
tion methods, such as Sichel's t, seem to have been overlooked.

By use of a personal microcomputer, the traditional methods were investigated thoroughly, the resuits being

tested against existing tables and figures.

The fitting of a lognormal distribution, including estimation of the additive constant, is discussed, and the calculation
of Sichel’s t estimator and its associated confidence limits is described in detail. Payability calculations for a lognormal

distribution are also covered briefly.

The advantages of personal computers, particularly speed and ease of use, are emphasized. This low-cost approach
permits detailed investigation of some of the assumptions and approximations inherent in the established methods
of calculation. Several disturbing discrepancies are revealed in various factors, and some generalized statements
made by previous authors are found to be over-simplistic.

Full details are given of acceptable approximations and computer algorithms, and concern is expressed over
the possible loss of proven methods under the welter of new, sophisticated computer software.

SAMEVATTING

Hierdie referaat gee 'n oorsig oor 'n paar van die tradisionele metodes om reserwes te beraam wat gebaseer
is op lognormaalverdeling met of sonder 'n additiewe konstante. In die stormloop om mynbeplanning en gehaltebeheer
oor die algemeen te rekenariseer, is beproefde ramingsmetodes, soos Sichel se ¢, blykbaar oor die hoof gesien.

Die tradisionele metodes is, met behulp van 'n persoonlike mikrorekenaar, deeglik ondersoek en die resultate
word met bestaande tabelle en syfers vergelyk.

Die passing van 'n lognormaalverdeling, insluitende die raming van die additiewe konstante, word bespreek en
die berekening van Sichel se t-beramer en sy geassosieerde vertrouenspeile word in besonderhede beskryf. Lonend-
heidsberekenings vir 'n lognormaalverdeling word ook kortliks gedek.

Die voordele van persoonlike rekenaars, veral spoed en maklike gebruik, word benadruk. Hierdie lagkostebena-
dering maak ’n uitvoerige ondersoek van sommige van die aannames en benaderings wat eie is aan die gevestigde
rekeningsmetodes, moontlik. Daar word verskeie verontrustende afwykingsverskille in verskillende faktore aan die
lig gebring, en daar word bevind dat 'n paar veralgemeende stellings deur vorige skrywers oorsimplisties is.

Verder word volledige besonderhede van aanvaarbare benaderings en rekenaaralgoritmes verstrek en kommer
uitgespreek oor die moontlikheid dat beproefde metodes verlore kan raak onder die warboel van nuwe, gesofistikeerde

rekenaarprogrammatuur.

Introduction

The development and availability of personal computer
power over the past few years have been phenomenal.
The proliferation of manufacturers, operating systems,
suppliers, and packages leaves the potential user breath-
less and (sometimes) bewildered. Whatever the choice of
hardware—or software—the trend worldwide seems to
be away from the giant mainframe computer towards the
minicomputer and microcomputer.

In this day of the ‘personal computer on every desk’,
perhaps it is time to re-appraise some of the techniques
that are traditionally carried out with pencil, calculator,
and definitive tables. These methods, which have proved
their value over many years of operation, can be emulated
on computers of any size. Why, one asks, has this not
been done?

The main resistance to computerization seems to have
been twofold. The inaccessibility and sheer cost of
calculating (say) a Sichel’s tlestirnator on a mainframe
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has been a major discouraging factor'. Secondly, the
need to acquire considerable computer expertise before
being able to operate such systems persuaded all but a
dedicated few to stay with the tried and trusted calcula-
tion methods. The advent of personal computers and the
benefits of ‘user friendly’ software have removed both
of these problems.

This paper discusses three of the typical tasks under-
taken at various stages of reserve estimation:

(a) the determination of lognormality of sample values
and the possible choice of an ‘additive constant’ for
the three-parameter lognormal;

(b) the calculation of Sichel’s 7 estimator and associated
confidence levels for two- or three-parameter log-
normals; and

(c) the calculation of pay limit/pay value/percentage
payability, which is generally undertaken with the use
of such graphs as Krige’s GRL20.

The purpose of this paper is simply to discuss the im-
plementation of the traditional practices on a digital com-
puter, as has been done at Geostokos, London. Some ad-
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vances in numerical techniques will be presented, but in
all cases the underlying theory remains the same as that
which has been proved in practice over the past forty
years.

The Lognormal Distribution

All the tasks described above relate to the application
of the lognormal distribution to sampling and estimation
problems. Traditionally, samples are assumed to come
from a lognormal type of distribution, sometimes modi-
fied by the introduction of a third parameter—the ‘addi-
tive constant’. The efficacy of this approach in practice
has been proved time and time again, particularly in its
application to the problems of the Witwatersrand gold
reefs. Other minerals too~—uranium, for example—have
been found to follow the three-parameter lognormal. This
has enabled workers to produce more reliable estimates
for grades and tonnages in these situations.

A typical approach to an estimation problem, then,
would be to estimate values for the parameters associated
with the relevant lognormal distribution and then to use
these values to carry out payability calculations for the
study area. The values that need to be estimated are the
additive constant (if any), the average value, and the
logarithmic variance of the distribution. Several methods
are available for this calculation, but this paper confines
itself to the traditional approaches that use logarithmic
probability plots and the  estimator developed by Sichel.

The Fitting of a Lognormal Distribution

In the late 1940s, the first ‘probability’ paper became
available®. This graph paper is used for the plotting of
data value (generally on the vertical axis) versus the per-
centage of samples below the data value (horizontal axis).
In the standard probability paper, the ‘value’ axis is
arithmetic. The percentage axis is constructed in such a
way that a set of samples from a normal (Gaussian) dis-
tribution produces a straight line. The data value cor-
responding to the 50 per cent point is taken as an estimate
of the mean of the distribution. The standard deviation
can be calculated directly from the slope of the line—the
usual procedure is to take the difference in value for the
84 and 16 per cent points and divide this by 2.

There is no clear indication of the first use of probabili-
ty paper in the mining industry, but this must have follow-
ed closely on the heels of its invention, since it was in
common usage by the 1950s’. For the lognormal
distribution, the arithmetic value scale is replaced by a
logarithmic scale. In this way, a set of samples from a
lognormal distribution will give a straight-line fit. The
50 per cent point is now the median, and the logarithmic
variance can be determined from the slope of the line,
as before.

In general, the procedure would be something like this:

(1) construct a histogram from the sample data;

(2) calculate ‘cumulative’ frequencies, i.e. number of
samples below a given data value;

(3) calculate the percentage of samples below a given
value;

(4) plot ‘data value’ on the logarithmic scale and ‘per-
centage of samples’ on the probability scale; and

(5) by eye, fit a straight line through the points.
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The judgement of whether the line ‘fits’ the points is
a subjective one. However, experience has shown that
there is seldom any ambiguity about the decision—it
either fits or it does not. The process can be refined by
the application of a statistical test, such as the X%, to
check the fit of the samples to the distribution.

The Third Parameter

Once probability plots came into common use, it soon
became apparent that the lognormal distribution did not
always fit the sample data. A common occurrence was
a sharp downturn in the data at the lower end of the
graph, giving significant deviation from the straight line.
In 1960, Krige® introduced a third parameter—the ad-
ditive constant—into the analysis. Instead of the sample
value being plotted on the logarithmic scale, the value
plotted was ‘sample value + constant’. This has the ef-
fect of raising the downturn so that the line straightens
out. The criterion for the ‘best’ value for the additive con-
stant is that in which ‘the plot of the points best resembles
a straight line’ (Krige’, p. 7). The process of estimating
the third parameter is not a simple one. The additive con-
stant must be included in the data value before it is plot-
ted on the logarithmic scale. This changes every point in
the graph—not just those off the line. Strictly, then, one
should plot a graph for each possible value of the ad-
ditive constant and then select that which gives the
‘straightest’ line.

Rendu® (p. 7) suggests an arithmetic means of arriving
at the additive constant based on the 50 per cent point
and two complementary percentile points. Current usage
favours the 16 and 84 per cent points for this calcula-
tion. This drastically reduces the amount of calculation
and plotting involved. However, Rendu notes that ‘It is
therefore important to check graphically that the cumu-
lative distribution of x+ 3 is lognormal’ (where x is
original sample value and # the constant). In other words,
one still has to decide whether the line is straight when
the third parameter is included in the analysis. If Rendu’s
formula 2.13 does not give a straight line, one must revert
to trial-and-error methods or reject the three-parameter
approach.

The Digital Computer

This process seems to be an ideal candidate for the
special abilities of a digital computer. The criterion for
the ‘best’ fit has been clearly stated as the straightest line.
The actual computation procedure is simple enough, but
is extremely tedious. The computer is the ideal tool to
carry out this type of repetitive calculation swiftly and
without error.

The process can be summarized simply as follows:

(a) choose an additive constant,
(b) construct a probability plot,
(c) fit a straight line through it, and
(d) measure deviations from the line.

This procedure can be repeated for many values of the
additive constant in a fraction of the time it would take
to tackle one value manually. The only numerical com-
plication is in the construction of the ‘probability’ axis.
Many algorithms are available for this. This author
favours the use of JRSS Algorithm 111 by Beasley and
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Springer’, which is a FORTRAN subroutine called
PPND-—‘Percentage Points of the Normal Distribution’.
This routine provides the standard normal deviate asso-
ciated with any given percentage of samples.

There are, of course, many methods of fitting a straight
line through a set of points. At Geostokos, we favour
the standard least-squares approach, choosing to mini-
mize the difference between the ‘percentage of samples’
and the ‘percentage of lognormal distribution’ below a
given data value. In fact, this measure can be used at both
stages:

(1) once an additive constant has been chosen, the best
line minimizes the difference between observed per-
centage and expected percentage;

(2) for a set of additive constants, the best line is the one
with the smallest minimum difference.

In plainer language, the set of parameters that ‘best
resembles a straight line’ is the set that produces the
smallest differences between the observed percentage and
the expected percentage as measured by the sum of
squares of these differences.

A Computer Program

In our computer implementation of this method, we
work on the assumption that the data really do come from
a three-parameter lognormal distribution. This may
sound trite, but few computer programs are written to
argue with a user who is determined to apply an inappro-
priate analysis.

The practical consequence of this assumption is that,
if successive values are taken for the additive constant,
the line will gradually straighten out until the correct value
is reached and then start to curve again in the ‘opposite’
direction; that is, there is a best-fit line somewhere. In
practice, we have programmed our software to stop if
the additive constant becomes larger than the largest
sample value and a minimum has not been reached. This
is an arbitrary (but sensible) stopping rule.

Our program chooses a starting value for the additive
constant, and successively raises this by increments until
a minimum has been found and passed. To save unneces-
sary computation, a fairly large increment is chosen. This
increment is then reduced, and the region around the sup-
posed minimum is searched for a more precisely defined
minimum. This process can be repeated until the required
precision is reached. We have found that a starting in-
crement equal to around one-tenth of the first histogram
interval gives a satisfactory compromise between speed
of operation and the number of repetitions required.

Timings for this sort of procedure vary considerably.
A histogram with a large number of intervals and a high-
value additive constant will take the longest run time. The
example given as Figure 5 by Krige’ (p. 7) takes less
than 10 seconds on a standard IBM PC without copro-
cessor. An example with 120 intervals and an additive
constant half way through the range may take up to 2
or 3 minutes.

Perhaps it is worth noting that, if one does not have
enough samples to build a histogram, the above process
works equally well on ungrouped sample data.

A Statistical Approach
The technique described above is the traditional ap-

JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY

proach and merely emulates on a computer what analysts
would normally do by hand. The computer chooses suc-
cessive additive constants and checks which one gives a
set of points that most resembles a straight line.

However, there are many other ways of trying to solve
the same problem. For example, in the late 1960s Sichel'
studied (at some length) generalized moment methods for
moderate to large sets of samples. He pointed out that,
for small sample sets from this sort of distribution, or-
dinary moment methods can be distinctly unstable.

One statistical approach to the problem of fitting a
three-parameter lognormal distribution to a set of sample
data is briefly discussed here. Using exactly the same ap-
proach as the traditional one, the aim is to minimize the
difference between the observed percentage of samples
below a given value and that predicted by a distribution
model. In fact, as described above, the sum of the squared
differences is minimized.

Now, one has a set of observed percentages and can
specify the distribution model by giving values to the three
parameters—mean, variance, and additive constant. This
is the classic least-squares problem. The only difficulty
is that the classic least-squares approach does not give
a set of linear equations that can be solved for the ‘best’
values of the three parameters. Instead, it gives a set of
equations that are non-linear. The non-linear least-
squares (NLLS) problem has been discussed fully else-
where'"'"? and is very simple to implement on a com-
puter. The application of the NLLS approach to the
three-parameter lognormal fitting is described in Adden-
dum 1.

There are two practical implications in the application
of the NLLS method. Firstly, this kind of ‘iterative’
method requires a ‘starting point’—that is, one has to
provide first guesses at the values of the parameters.
Secondly, it can be seen in practice and proved in theory
(MacDonald, personal communication) that the NLLS
method tends to be less influenced by erratic values in
the tail of the distribution and more by the whole shape
of the curve. This is a distinct contrast to either moment
methods or probability plotting. We have found a happy
compromise in the use of probability plots to provide the
initial estimates for the NLLS routine.

The Additive Constant

Krige’ has noted that the choice of additive constant
seems to have little effect on the final estimate of the
average value. This is true when the average value is
estimated directly from the probability plot or when
NLLS is used. However, the logarithmic variance can be
unduly influenced by a change in additive constant—by
up to 50 per cent in some cases. In addition, if the con-
stant chosen is used in a Sichel’s f type of estimation, the
average grade may also be affected, since the optimal
estimator depends heavily on the logarithmic variance of
the samples.

Table I shows a set of 15 (simulated) samples from a
three-parameter lognormal distribution with an additive
constant of 100. Table II shows the effect of feeding dif-
ferent additive constant values into a Sichel’s ¢ computa-
tion. One interesting feature of the results is that the
logarithmic variance declines steadily as the additive con-
stant rises. The other point of interest is that, despite this
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feature, the estimated mean value stabilizes once the ‘true’
value of the additive constant has been reached. Have
we, perhaps, struck another empirical tool in deciding the
value of the additive constant?

TABLE ]

A TEST SET OF DATA FOR THE INFLUENCE OF THE ADDITIVE CON-
STANT ON VARIOUS PARAMETERS CALCULATED DURING A SICHEL

1 ANALYSIS
10,05 50,64 124,60
183,53 185,63 279,78
299,92 308,07 422,94
542,88 573,18 584,20
750,38 811,24 828,54
TABLE 11

THE INFLUENCE OF THE ADDITIVE CONSTANT ON SICHEL'S ¢
ESTIMATOR AND OTHER PARAMETERS

Additive Estimated Logarithmic Lower Upper
constant average variance 95% pt 95% pt
0 500,7 1,422 300,5 1258,6
10 460,9 1,088 2944 993,7
20 4433 0,909 2927 882,9
30 432,8 0,790 292,1 818,8
40 426,0 0,702 292,0 776,4
50 421,1 0,633 2921 745,7
60 417,4 0,577 2924 722,4
70 414,6 0,531 292,6 704,0
80 4122 0,491 292.9 689,1
90 410,4 0,456 293,2 676,7
100 408,9 0,426 293,5 666,2
110 407,6 0,400 293,8 657,3
120 406,5 0,376 294,0 649,5
130 405,5 0,355 294,3 642,7
140 404,7 0,336 294,5 636,8
150 404,0 0,318 294,7 631,4
160 403,4 0,303 2949 626,6
170 402,8 0,288 295,1 622,4
180 402,3 0,275 2953 618,5
190 401,9 0,262 295,5 614,9
200 401,5 0,251 2956 611,7

In short, then, the choice of additive constant for small
sets of samples could be crucial if a more ‘objective’
estimator of the average grade-~say, Sichel’s t—is to be
used and if confidence levels are to be calculated. Al-
though the estimator and (strangely enough) the lower
confidence levels stabilize fairly quickly, the logarithmic
variance and the upper confidence level change signifi-
cantly with the choice of additive constant. This would
also affect any later calculations on recovery or payabili-
ty, since these depend almost exclusively on the logarith-
mic variance.

Thus, the extra effort of obtaining ‘good’ estimates of
the logarithmic variance will be repaid in more accurate
confidence levels and pay limit calculations.

Estimation of Maximum Likelihood

The previous discussion covered two approaches to the
fitting of a lognormal distribution to a set of sample data.
The use of probability paper to fit a straight line—either
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empirically or by Rendu’s shortcut—is essentially an in-
tuitive least-squares approach. The other method put for-
ward for consideration was an iterative NLLS approach,
requiring initial estimates for the parameters involved in
the lognormal model.

Almost forty years ago, Sichel*" first put forward his
method for the estimation of maximum likelihood for the
average value of a lognormal distribution and for con-
fidence limits associated with this estimator.

The criterion of maximum likelihood is (in simple
terms) a method of finding the model distribution from
which samples are ‘most likely’ to have come. It can never
be emphasized too much that meéasures of probability
{like least squares) calculate the likelihood of samples
coming from a given model population. They do not
calculate the probability that the model fits the data but
rather that the data fit the model. This is not at all the
same thing, especially when it comes to the evaluation
of such concepts as confidence intervals.

Sichel, then, evolved the theoretical background to an
estimator of the average of the lognormal distribution and
associated confidence levels on this estimator. This theory
has been substantiated by almost forty years of practical
use, the major developments over the years being updated
and more accurate tables for the various factors. The pro-
duction of Sichel’s tables, specifically those given in the
1966 paper’, was programmed expertly by Vera Marting.
However, no details on the computer algorithms or ap-
proximation techniques are given in the paper.

The tables currently in use are those published by
Wainstein' in 1975, which have been copied and quoted
in many other papers and textbooks (e.g. Rendu®,
David"). Although Wainstein extensively described his
computerization of the Sichel r approach, his quoted com-
puter costs and timings were prohibitive and seem to have
discouraged other workers from tackling the same prob-
lem. With timings such as 61 minutes to produce a single
A(T) integration on an IBM mainframe, Wainstein need-
ed to use approximation techniques to obtain his final
tables for the y factors. The computerization that is fully
described here is a workable compromise between mathe-
matical exactitude and response time on a microcom-
puter. The results can be shown to achieve an accuracy
0f 99,998 per cent for all the factors, provided that there
are at least five samples in the data set. For four samples,
the accuracy achieved was only 99,98 per cent.

Sichel’s 1 Estimator

The mathematics of Sichel’s maximum likelihood esti-
mator are extensively documented in Sichel’s own papers
and by Wainstein'. For completeness, the bare bones of
the mathematics are given in Addendum 2. In this part
of the paper, the discussion is couched in intuitive terms
and slanted towards the implementation of this establish-
ed estimation method on microcomputers,

Sichel’s ¢ estimator was developed for a two-parameter
lognormal distribution. This is discussed in detail in this
section of the paper, with an indication at the conclu-
sion of how the estimates should be adjusted in the three-
parameter case. Sichel’s notation is used throughout, ex-
cept where this conflicts with the notation (Krige’s)
established earlier in the paper.

The first stage in this type of estimation is to take the
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logarithm of each sample value. For simplicity, the natu-
ral logarithm (log, or in) is taken. The use of logarithms
to the base 10 simply leads to the introduction of an un-
necessary constant. The average of these logarithmic
values is calculated (5, as is the sample variance (V). It
is emphasized that ¥ is the sample variance since it is the
average squared deviation from the sample mean. This
is the maximum likelihood estimator for the logarithmic
variance; it is, however, a biased estimator for the loga-
rithmic variance, By tradition, then, ¥ has always been
used in Sichel estimation rather than the unbiased esti-
mator {s9).

Development of the likelihood theory reveals that the
‘best’ estimator of the average value of the lognormal
distribution is the anti-logarithm of the logarithmic
average rultiplied by a factor that depends on the
number of samples (n) and the logarithmic sample
variance (V). This factor is referred to as v,(¥) in all the
literature. The mathematical expression for v, (V) is a
summation of an infinite series of terms involving » and
V. This presents few computation difficulties except for
the usual ones of rounding error and stopping rules.

The first problem concerns the number of terms ac-
tually to be summed, i.e. what is the approximation to
infinity in this context? We use the simplistic approach.
Once the next term to be added to the series becomes
smaller than our ‘precision’ criterion, we stop. We have
found that a figure of 0,000001 (10~% is adequate to re-
produce all the published figures. The use of smaller
figures seems to have no effect on the calculations.

The second problem, especially with microcomputers,
is the possible rounding error introduced by the calcula-
tion of the individual terms in the summation. Three
figures are raised to powers, and two factorial type ex-
pressions must be evaluated. We have taken the simple
precaution of using a recurrence relationship to calculate
the next term in the series from the previous one. The
expression is given in Addendum 2.

The execution time for the calculation of v, (V) is
negligible, even on a microcomputer. We have not car-
ried out any detailed timing runs for this factor.

Confidence Levels

The real computational difficulties are encountered in
the evaluation of confidence levels for the Sichel’s ¢
estimator. Although the r estimator is the ‘best’ estimate
for the true average value of the lognormal distribution,
it is often vital to know just how accurate this estimator
is. The traditional approach to this question has been the
production of ‘confidence levels’, These calculations give
an idea of how ‘close’ the estimate could be to the true
value. This permits the association of a measure of con-
fidence to (say) the payability of an area to be mined.

The classical approach to the calculation of confidence
levels is as follows:

(1) establish what estimator to use for the parameter,

(2) derive the probability distribution of that estimator,

(3) specify a level of risk that is acceptable,

{4) find the corresponding percentage point on the dis-
tribution of the estimator, and

(5) measure how far this is from the ‘true’ {expected)
value of the parameter.
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Sichel’s papers™® detail the form of the estimator
(described above) and derive the probability distribution
theoretically. The problem is merely to program this on
the computer. The mathematics is given in Addendum 2,
The implementation is discussed here only in the simplest
terms.

The estimator (£) is a statistic calculated from a given
number of sample values (n). Another set of n samples
would give a different set of values, which would yield
a different f value. A hundred such sample sets would
yield a hundred potentially different ¢ values. However,
these ¢ values would present some sort of predictable
behaviour, because the distribution the samples come
from is known and there are always the same number of
samples. Mathematically, then, Sichel derived a formula-
tion for the distribution that would be expected if lots
of t statistics could be produced. In fact, the distribu-
tion he obtained was for a function of ¢ that he denoted
T (Addendum 2). Sichel calls this probability distribu-
tion of T values, A(7).

The probability density function (p.d.f.), A(T), shows
the distribution of possible T values with respect to the
‘true’ average value of a lognormal distribution for a
given number of samples. The p.d.f. A(7) depends on
two major factors: n, the number of samples used in the
estimation, and ¢°, the logarithmic variance of the log-
normal distribution; that is, a different » will give a dif-
ferent shape to A(T) (Fig. 1). So will a different o* (Fig.
2). Here is the first real problem in the calculation of con-
fidence levels for a Sichel’s ¢ estimator. One generally
knows how many sample values one has. However, very
rarely does one know the true logarithmic variance of the
whole distribution.

Both Sichel and Wainstein mention this problem. Sichel
states that the A(7) distributions are virtually identical
in the region 0,3 < ¢ < 1,5 and suggests that the selection
of ¢#=0,7 is an acceptable compromise. Wainstein pro-
duces a table comparing the percentage points actually
obtained if ¢* is assumed to be 0,7 when it is not. He
concludes that the decrease in accuracy is negligible within
the above range. Wainstein makes no recommendations
as to what action to take if (say) ¢*=3,0. Some simple
comparisons on the resulting ¢ factors for ¢*=0,7,
@=0,3, ¢=1,5, and o*=nV/(n— 1) are shown in Table
111

Table 111 lists a subset of the usual range of V¥ values
and a fixed number of samples (10), and illustrates the
differences for the upper 95 per cent confidence level. It
can easily be seen that the ¢ factors change with the
assumed value for the ‘true’ logarithmic variance. A
smaller true variance leads to a smaller ¢ value. This
makes some sense since, if the original values are less
variable, the estimates of the mean should also be less
variable. A closer inspection of the values in Table 111
shows that, for small ¥V (small observed variance), the
differences between the columns are minor, amounting
to 1 per cent at most. For ‘usual’ values of V, around
0,6, or 0,8, with ¢*=0,3 instead of 0,7, the ¢ value is
over 6 per cent lower; at o*=1,5 there is a similar dis-
crepancy. The use of the ‘best unbiased estimator’ of o
(s*=n V/{n—1)) obviously gives around the same value.
For an observed sample variance of 1,5, the differences
mount to between 12 and 13 per cent. At V'=2,0, there
is a 12 per cent difference between ¢° = 0,7 and ¢*=0,3.

OCTOBER 1987 297




0,4

e
W
L

0,24

Probability density function 4(7)

0,1+
n H T T T T H T T = ¥ T -
-5 -4 -3 -2 -1 0 1 2 3 4 5
Variable T
Fig. 1—Calculated values of the probability density function A(7) for logarithmic variance 0,7 for
5 samples - ------- 20 samples
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Fig. 2—Calculated values of the probability density function A(7) for 5 samples when the logarithmic variance is
0,2 0 e 0,7 .. 1,5
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TABLE III
¥ FACTORS FOR SICHEL’S s ESTIMATION FOR 10 SAMPLE VALUES AT
95% CONFIDENCE

V 02=0,7 =03 P=15 oat=nV/(n—1)
0,01 1,081 1,075 1,090 1,070
0,10 1,292 1,268 1,325 1,251
0,20 1,455 1,415 1,508 1,405
0,40 1,754 1,684 1,850 1,713
0,60 2,066 1,962 2,211 2,059
0,80 2,410 2,265 2,614 2,465
1,00 2,798 2,604 3,074 2,951
1,50 4,033 3,667 4,565 4,658
2,00 5,803 5,163 6,760 7,453

For ¢*=1,5, the difference is 16,5 per cent, and for
=5, 28 per cent.

It would appear, then, that changes in the assumed
value of the true logarithmic variance can affect the cal-
culated ¢ factors by up to 30 per cent in situations that
are hardly extreme. For the lower confidence levels, which
are perhaps more important in practice, the discrepan-
cies are not so high, although they are still significant.
To assume a blanket value of 0,7 for the true variance
when we provide tables for observed variances between
0,01 and 3 seems a little unrealistic. It is felt that this ques-
tion of the assumed variance has been dismissed too light-
ly in the past and warrants further in-depth investigation.
However, that is not within the scope of the present
paper.

Calculation of A(T)

As stated above, the probability density function for
T, A(T), is a function of the number of samples used (n)
and the true logarithmic variance (¢®). The value of
A(T) for a specific value of T is an involved expression
in T, n, and ¢, and is given in Addendum 2. In fact, it
involves an integration of a complicated function over
the range zero to infinity. The calculation of this func-
tion on a computer, then, depends on the numerical
evaluation of this integral.

There are many methods of numerical integration—
sometimes known as quadrature (Abramowitz and
Stegun®). In all these methods, the formula is evaluated
at intervals over the range of integration. These values
of the function are combined in a weighted average,
which approximates the integral. Intuitively, the smaller
the interval, the more accurate the numerical approxima-
tion. However, the smaller the interval, the longer the
calculation time. One must decide, then, what interval
achieves the necessary precision on the integration with-
out making the calculation time prohibitive.

In this particular integration, there is also the problem
of when to stop integrating, i.e. what is the approxim-
ation to infinity. There are three decisions to be made,
then:

(a) what method of numerical integration to use,
(b) what interval for discrete approximation to use, and
(c) what approximation to infinity is sufficient.

Although it would be possible to choose these factors
based on strict mathematical criteria, we have chosen to
do so empirically. We chose as our criterion those fac-
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tors which produce a probability density function that
is accurate to five figures (99,999 per cent). We feel that
this is adequate for all normal usage.

Abramowitz and Stegun® (Section 25.4) give around
three dozen different methods of numerical integration
and their associated precisions. We experimented with
five of these and found little difference between the final
accuracies achieved. Finally we settled for the extended
Simpson’s Rule, which satisfied our operating criterion.

The selection of an approximation interval is, of
course, tied into the integration method chosen. We
found that an interval of 0,010 was sufficient for n>5.
Some loss of precision was experienced for n=4 (99,98
per cent) and more for n=3 (99,64 per cent). However,
we could not obtain any improvement on this by taking
smaller intervals in the integration. This may be a reflec-
tion of the instability of the mathematics for n< 5, rather
than computational problems'”. It was decided that an
interval of 0,010 was adequate for normal usage, 0,005
being used for further investigative purposes.

Detailed investigation revealed that the number of in-
tervals needed—or the range of integration—depends
greatly on n. The higher the value of n, the lower the
range of integration needed. We decided on a fixed range
that would serve all n values. This means that more com-
putation is carried out than is needed for large n values.
However, we feel that the time saved by altering the range
would be offset by testing for the range actually required.
The final decision was to take the value 5,0 as our ap-
proximation to infinity. At an interval of 0,010, this
means 500 intervals. For an interval size of 0,005, we need
1000 intervals.

Our main timing runs were carried out on our in-house
microcomputer, an Alpha Micro 1000 machine. This
system is approximately four years old, and was one of
the first systems based on the M68000 16-bit chip. We
use a FORTRAN 77 (full) compiler. However, the ap-
proaches described can be implemented in any high-level
scientific language. All timings are ‘real time’ not CP
time—that is, the actual subjective time taken to run the
calculations on a one-user machine.

Timings need to be split into two parts. There is an
‘overhead’ time in calculating the multiplicative factors
at various intervals. This remains fairly constant at
around 19 seconds for odd values of », and 24 for even
values. The difference is caused by the calculation of the
7 function in the overall constant (Addendum 2). Once
the overhead calculations have been carried out, single
values of A(7) can be calculated in under a second (for
values in the tails), with some points taking upwards of

.5 seconds (central values for n<10).

' Insummary, we evaluate the probability density func-
tion of T using the Extended Simpson’s Rule numerical
integration method. We integrate over a range 0 to 5 using
an interval of 0,005 for our investigations. This gives
better than 99,98 per cent for all n>3. All of this evalua-
tion was carried out with ¢*=0,7.

Evaluation of Confidence Levels

We can now evaluate (and graph) the probability den-
sity function for the T statistic from a given number of
samples. We can, therefore, investigate the likely dif-
ference between our estimator (or rather, this function
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of it) and the actual ‘true’ value for the average value
over the study area.

The principle of confidence intervals is one that is very
easy to express mathematically, but a little more difficult
to explain intuitively. Effectively, we wish to make a state-
ment along the lines ‘our best estimate for the average
is. .., but we can only be p per cent confident that the
true value is above . . .>. Without going into the lengthy
ramifications, this reduces in practice to finding the value
of T below which p per cent of the distribution lies, say
T..
pNow, given a value of T, we can work out how much
of the distribution is above it by integrating under the
function A(7). This is purely a repetition of our previous
problem. After extensive (empirical) evaluation, we chose
to use the simplest trapezoidal integration method: a
range of [~ 20, 10] to approximate the actual range of
(— o0, + o) for n>5 and [—40, 30] for n<35; an inter-
val size of 0,10 over the whole range. With these choices,
a complete integration over the whole range takes 878
seconds for n=35, 549 seconds for n= 10, and 471 seconds
for n=20.

For confidence levels, we have the reverse problem:
what T corresponds to a given area under A(7). Sichel’
gives no indication of how he solved this problem. Wain-
stein’s approach was to evaluate the integral of A(T) for
a set of specified T values. He then interpolated between
these, using a parabolic curve-fitting technique. Wain-
stein himself says, ‘However, it must be emphasised that
this method is not optimal’. We have implemented a
method that removes the approximations used by Wain-
stein and produces the ¢ factors to any desired level of
precision.

Our procedure is as follows:

(a) select the interval size and approximation to infinity,

(b) integrate over successive intervals until the next one
would take us over p per cent,

(¢) change to one-tenth of the current interval size, and

0,050

o

I,

Probability density function A(7)
(=
©
2
7

(d) repeat until the interval size has become smaller than
the required precision.

This procedure is illustrated in Fig. 3 and is as precise
as one can get with a numerical technique. No real ap-
proximations are included in the process as we ‘home in’
on the correct value for 7.

It is a little difficult to give definitive computer tim-
ings for this process, since it depends on both » and p.
Table IV gives a set of timings on the Alpha Micro for
some possible values of both. These can be used as
relative timings for other machines. These timings are for
single confidence levels only. A value for ¢* of 0,7 has
been used throughout. The timings (and costs) for pro-
ducing confidence levels are significantly affected by dif-
ferent values of ¢*. Some examples have been included
in Table IV.

TABLE 1V
TIMING IN SECONDS FOR SINGLE CONFIDENCE LEVELS CALCU-
LATED FOR VARIOUS VALUES OF n AND p

-

-2,7 -2,6

Percentage points
Number of Log variance
samples o p=25% p=35% p=10%
5 0,3 61
5 0,7 93 122 137
5 1,5 138 177 225
10 0,3 71
10 0,7 126 131 157
10 1,5 201 209 272
i5 0,3 63
15 0,7 119 136 134
15 1,5 211 221 239
20 0,3 62
20 0,7 128 142 145
20 1,5 240 242 242
e,
/_/,/»/‘/ T ]
-2,5 -2,4 -2,35  -2,319
Variable T T,

Fig. 3—lllustration of the search for 5 per cent confidence level given 10 samples—iterative calculation of the area under p.d.f. A(T)
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TABLE V
¥ FACTORS FOR SICHEL'’S f ESTIMATION FOR 10 SAMPLE VALUES ASSUMING o?=0,7

Percentage points

vV (V) 1,00 2,50 5,00 10,00 50,00 90,00 95,00 97,50 99,00
0,01 1,0050 0,933 0,944 0,952 0,962 1,001 1,059 1,081 1,104 1,135
0,02 1,0100 0,907 0,921 0,933 0,947 1,002 1,085 1,117 1,151 1,197
0,04 1,0202 0,871 0,890 0,907 0,926 1,003 1,123 1,172 1,222 1,292
0,06 1,0304 0,844 0,868 0,887 0,910 1,005 1,154 1,216 1,280 1,371
0,08 1,0407 0,822 0,849 0,871 0,897 1,006 1,182 1,256 1,333 1,444
0,10 1,0510 0,803 0,832 0,856 0,885 1,607 1,208 1,292 1,382 1,511
0,12 1,0615 0,786 0,817 0,844 0,875 1,009 1,231 1,327 1,428 1,577
0,14 1,0720 0,771 0,804 0,832 0,866 1,010 1,254 1,360 1,473 1,640
0,16 1,0826 0,756 0,792 0,821 0,857 1,012 1,276 1,392 1,517 1,702
0,18 1,0934 0,743 0,780 0,811 0,849 1,013 1,298 1,424 1,560 1,764
0,20 1,1042 0,731 0,769 0,802 0,841 1,015 1,319 1,455 1,603 1,825
0,30 1,1595 0,678 0,723 0,762 0,809 1,022 1,420 1,605 1,812 2,132
0,40 1,2171 0,635 0,685 0,728 0,781 1,030 1,518 1,754 2,025 2,453
0,50 1,2770 0,598 0,652 0,699 0,758 1,039 1,617 1,907 2,246 2,796
0,60 1,3394 0,565 0,623 0,674 0,737 1,049 1,718 2,066 2,480 3,168
0,70 1,4044 0,537 0,597 0,651 0,718 1,059 1,823 2,234 2,731 3,574
0,80 1,4719 0,510 0,573 0,630 0,701 1,070 1,932 2,410 3,000 4,021
0,90 1,5420 0,486 0,551 0,610 0,685 1,081 2,047 2,598 3,290 4,514
1,00 1,6150 0,464 0,531 0,592 0,671 1,093 2,167 2,798 3,604 5,058
1,10 1,6908 0,444 0,512 0,575 0,657 1,106 2,294 3,012 3,945 5,662
1,20 1,7695 0,425 0,495 0,560 0,644 1,120 2,427 3,241 4,315 6,331
1,30 1,8515 0,408 0,478 0,545 0,633 1,134 2,569 3,486 4,717 7,073
1,40 1,9365 0,391 0,463 0,531 0,621 1,149 2,718 3,750 5,155 7,898
1,50 2,0248 0,376 0,449 0,518 0,611 1,165 2,877 4,033 5,633 8,815
1,60 2,1164 0,362 0,435 0,506 0,601 1,182 3,045 4,337 6,154 9,834
1,70 2,2116 0,348 0,423 0,495 0,592 1,200 3,224 4,664 6,722 10,968
1,80 2,3194 0,336 0,411 0,484 0,584 1,218 3,413 5,016 7,341 12,231
1,90 2,4128 0,324 0,399 0,474 0,576 1,238 3,615 5,395 8,018 13,636
2,00 2,5192 0,313 0,389 0,464 0,568 1,258 3,829 5,803 8,758 15,200

A program can be written to order the percentage
points and take advantage of the integrations already
covered. This sort of approach was used to produce
Table V, which is a complete table of ~,(¥) and ¢, fac-
tors for n=10. This table requires 829 seconds to com-
plete on the Alpha Micro. Extra lines can be added to
the table at a marginal extra time of around 1 second per
line.

In that case, the timings would be affected (severely)
by the choice of values for ¢*. If we chose to put *=n
V(n—1), for example, the timing for the same table is
18,929 seconds, i.e. over 5 hours.

A full set of tables such as Table V can be obtained
from the author. In those tables, V values are taken up
to 3,0.

Other Advantages of Computerization

Traditionally, Sichel’s ¢ approach has been used to
estimate the average value of a two- (or three-) parameter
lognormal distribution and associated confidence limits.
Tables, published by Sichel and Wainstein, have eased
this task by providing figures for specified numbers of
samples (n) and logarithmic sample variances (V). Where
the user had values that were not shown on the tables,
linear interpolation was considered sufficient.

One of the major advantages of computerization—
apart from the speed and reliability of its arithmetic
(sic)—is that we obtain the correct result for any value
of n and V. No interpolation is needed, since the integrals
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are evaluated for each particular case. Table VI shows
some comparisons between linear interpolation and direct
evaluation. We have chosen to compare the ‘actual’ ¢
factors when n=8 with those obtained using linear in-
terpolation between n=35 and n=10. This example was
inspired by the illustrative calculation in Rendu’s book?,
which uses 8 samples with a calculated logarithmic
variance of V'=0,0445.

Table V1 is for the upper 95 per cent confidence limit
only, and shows the percentage difference between the

TABLE VI
¥ FACTORS FOR SICHEL’S ¢ ESTIMATION FOR UPPER 95%
CONFIDENCE ASSUMING ¢#=0,7

n=8 Difference
14 n=5 n=10 n=8 Interpolated %y
0,01 1,165 1,081 1,099 1,115 1,43
0,02 1,243 1,117 1,144 1,167 2,08
0,04 1,364 1,172 1,211 1,248 3,07
0,0445 1,388 1,182 1,225 1,265 3,26
0,06 1,467 1,216 1,267 1,316 3,89
0,10 1,653 1,292 1,364 1,437 5,32
0,20 2,088 1,455 1,575 1,708 8,46
0,50 3,568 1,907 2,189 2,571 17,48
1,00 7,618 2,798 3,491 4,726 35,40
1,50 15,601 4,033 5,446 8,660 59,03
2,00 31,473 5,803 8,472 16,071 89,69
3,00 124,149 12,142 20,641 56,945 175,88
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actual and the interpolated figure—100 (actual-inter-
polated)/actual. The results are rather disturbing. For
Rendu’s example, interpolating between columns carries
a penalty of over 3 per cent error. This seems a little
disturbing. As the logarithmic variance rises, so does the
error when linear interpolation is used. At the desired 0,7
level, the error has mounted to 24 per cent. At ¥=0,9,
which is cited by Krige® as the usual value, the error is
over 30 per cent. This must cast some grave doubts on
the use of the tables as quoted by Rendu®, David", and
others. This was one of the major factors in our decision
to use a different layout (Table V) in presenting the ¢
factors. This kind of presentation makes it very tricky
to interpolate between values for different n.

Linear interpolation is also used when V is not exactly
equal to one of the values given on the table. In Rendu’s
example, ¥'=0,0445. Checked against Table VI, inter-
polation between V'=0,04 and V=10,06 leads, at most,
to a difference of 1 in the third decimal place, for all
columns in the table. This, at least, is a little more
reassuring.

In short, the use of a computer to evaluate Sichel’s ¢
estimator and its associated confidence limits results in
greater speed, arithmetic accuragy and, above all, the
elimination of the approximations that are necessary
when tables and graphs are used.

Pay Value and Payability Calculations

The third technique that is discussed in this paper is
the method of calculating ‘pay’ and ‘percentage payabili-
ty’ values once the lognormal distribution—two- or three-
parameter—has been established. In the estimation of ore
reserves, it is generally acknowledged that material below
some economic cutoff or ‘pay value’ will not be mined
or included in the declared reserves for the mine. The two
techniques discussed in the two previous sections are for
the complete distribution and for the estimation of the
parameters for the ‘best’ lognormal distribution. This sec-
tion discusses briefly the results of applying one or more
pay limits to the distribution, and hence to the mine area.

It is perhaps worth noting that the problems of con-
verting from a ‘sample’ distribution to a block or stope
distribution are not covered. It is a well-documented fact
that block and stope values tend to be less variable than
those measured on relatively small samples. This will, of
course, affect the calculation of the percentage payabili-
ty and the average value of the ore. The calculation of
block factors is not within the scope of this paper. How-
ever, the procedures described here can be applied to any
lognormal distribution provided values for the three para-
meters can be provided: the average value of the whole
distribution, the logarithmic variance, and the additive
constant (if any).

It is assumed that there are stable estimates for the
parameters of the lognormal distribution, which has been
derived from the samples. This is a complete distribution
including material that will not be mined under normal
circumstances. If a pay limit is applied to this model, all
the material below the pay limit will be rejected as ‘un-
pay’, and only material above the pay limit will be added
into the calculated reserve. The values of interest are the
average value of the material that will be mined, and the
proportion of the deposit that lies above the pay limit.
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There have been two main approaches to these calcula-
tions. In 1962, Krige'® produced a graphical representa-
tion between the four quantities: pay limit/mean value,
pay value/mean value, logarithmic variance, and percent-
age payability. The definition of any two of these quan-
tities permits the direct calculation of the other two. This
graph is in widespread use in the industry and can be
regarded as definitive.

Other authors (e.g. David") have preferred to give the
mathematical relationship and suggest that users calculate
each result directly. In this approach, which is detailed
in Addendum 3, the user must supply the parameters of
the lognormal distribution and the pay limit to obtain the
pay value and the payability. In addition to the mathe-
matics, the user needs a table of the cumulative normal
{Gaussian) distribution function. This is generally the first
table in any set of statistical tables or textbook. To com-
puterize this approach is the work of a moment, requiring
only a routine for the normal function. Many algorithms
are available for this function (e.g. Abramowitz and
Stegun®, p. 931). Algorithms such as 26.2.19 give up to
seven significant figures in precision, in a range of six
standard deviations on either side of the mean value.

One advantage of the graphical approach over the
simple calculation is that the user can (say) define the
desired pay value and read off the pay limit that must
be applied to reach this goal. Similarly, the user can define
payability and obtain the relevant pay limit and pay value.
The latter can be carried out by a program simply by
reversing the mathematics and using an algorithm for the
inverse of the normal distribution function—such as the
PPND discussed in the first section of this paper. It is
much more difficult to calculate the results starting with
a desired pay value, since the mathematics is complicated
by two normal inverses. The usual answer to this, in prac-
tice, is to calculate the results for several pay limits and
‘home in’ on the desired pay value.

As far as timings are concerned, it is more efficient to
use the (b) form of the mathematics given in Addendum
3. There is a very small overhead in the calculation of
the logarithmic mean and in square-rooting the logarith-
mic variance. Apart from that, the timing costs should
be constant per pay limit. On the Alpha Micro, single
calculations of pay limits take around 0,03 seconds each.
On any IBM PC (without coprocessor) the results appear
on the screen with no perceptible pause. The entire
GRL20 graph can be recreated in around 6 seconds on
the Alpha Micro excluding the physical plotting time
{which will depend on the plotter used).

The Additive Constant (Again)

The first section of this paper discussed the estimation
of the third parameter—the additive constant. Krige states
that the estimation of the mean value is robust with regard
to the additive constant. We confirmed this empirically
with a particular set of sample values. We also found that
the lower confidence limit was stable, but that the loga-
rithmic variance and the upper confidence limit were not.
It would seem, then, that the choice of additive constant,
within reasonable bounds, does not affect the final esti-
mate of average value or of a lower confidence level on
this estimate. Some concern has to be shown about the
effect on the upper confidence limits but, since these are
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rarely used in practice, the problem is not of paramount
importance.

However, we must accept that the estimate of the loga-
rithmic variance changes considerably with the additive
constant. As the constant rises, the logarithmic variance
drops. In the calculation of pay limit/ pay value/payabili-
ty, the logarithmic variance is of great importance for
there is not a single term in the calculation that does not
depend on it. In the GRL.20 graph there are separate lines
for different variances. Perhaps it would be valuable to
give an example of the effect of the choice of constant
on the payability figures.

Table II gives the estimated average and logarithmic
variance calculated according to Sichel’s ¢ procedure on
the set of data in Table I and assuming various additive
constants. The variances change from over 1,4 with zero
constant to 0,25 with a constant of 200. These sample
values were simulated from a distribution with an additive
constant of 100; at that level, the logarithmic variance
is estimated at 0,426. We chose a set of pay limits be-
tween 300 and 1000 to apply to the distribution. The cal-
culations were performed for additive constants of 0, 50,
100, 150, and 200, and the results are shown in Tables
VII and VIIL

TABLE Vi
COMPARISON OF PAY VALUES WHEN DIFFERENT ADDITIVE
CONSTANTS ARE ASSUMED

Additive constant

Pay limit 0 50 90 100 110 150 200
300 978 699 652 645 639 6195 605
400 1148 818 759 749 741 716 697

500 1316 938 869 858 848 818 794

600 1480 1059 981 968 957 922 894

700 1642 1181 1094 1079 1067 1028 996

800 1802 1303 1207 1192 1178 1135 1100

900 1961 1425 1322 1304 1290 1243 1204

1000 2118 1547 1436 1417 1401 1351 1310
TABLE VIII

COMPARISON OF PAYABILITY VALUES WHEN DIFFERENT ADDITIVE
CONSTANTS ARE ASSUMED

Additive constant

Pay limit 0 50 90 160 110 150 200

300 43 49 51 52 52 53 35
400 34 37 38 38 38 39 40
500 28 28 28 28 28 29 29
600 23 21 21 21 21 21 21
700 19 16 16 15 15 15 15
800 16 13 12 1 11 11 10
900 14 10 9 9 8 8 7
1000 11 8 7 7 6 6 5

The first thing shown by the tables is that the assump-
tion of no additive constant has a much greater effect
than the assumption of an erroneous one. For example,
at a pay limit of 300, there is a discrepancy of around
330 in the pay value and 9 per cent in the payability, as
compared with the ‘correct’ value of 100 for the third
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parameter. This gap widens as the pay limits rise. Our
first conclusion must be that, if the values are three-
parameter lognormal, some value must be used for the
additive constant.

Closer inspection of Tables VII and VIII show that the
percentage payability varies little with the additive con-
stant. At most, the deviation from the ‘expected’ value
is around 3 per cent, and this is for a low cutoff of 300.
The more disturbing factor, perhaps, is that the mean
value changes significantly. Taking additive constants
ranging from one-half to twice the correct value, we find
differences in the average value of 7 to 9 per cent.

It would seem, then, that the effort of finding a good
estimate of the third parameter—the additive constant—
will be repaid with a significant increase in the precision
of the payability calculations.

Conclusion

The aim in this paper was to illustrate the implemen-
tation of some of the traditional methods of reserve
estimation on today’s microcomputers. The main advan-
tages of this type of computing power are the low costs—
both in purchase and in operating—and the ease of ac-
cessibility to those with a minimum of computer exper-
tise. All of the illustrative examples and conclusions
reached in this paper were produced on an in-house Alpha
Micro at no extra cost to the company. This machine runs
at about the same speed as an IBM PC AT without a
coprocessor. With the coprocessor, the AT runs about
2,75 times faster (Williams ef al.'"). Obviously, timings
are faster on minicomputers such as a Vax system. How-
ever, costs tend to rise also, since these machines are
multi-user and tend to have well-developed accounting
packages. The major point in favour of using a PC, then,
is the very fact that it is designed to be ‘personal’—a
single-user, low-cost, friendly system.

It has been shown that, for the most part, the tech-
niques described in this paper present few problems in
being converted to a computer form. Where decisions
have to be made, e.g. on what approximations to accept,
our approach has enabled us to evaluate many alterna-
tives to make sure that the results really are optimum.
We have found that the more traditional ‘table and graph’
approach can lead to some fairly major errors if not used
with caution. We have also raised some questions that,
we hope, will stimulate further consideration of some of
the accepted approximations.

Finally, perhaps the author should reveal the real pur-
pose in submitting this paper. Since the use of computers
became widespread in the mineral industry, there has been
a certain amount of pressure to take advantage of this
by the use of more mathematical, more sophisticated,
more complex, more costly, and more erudite techniques
for the estimation of reserves. One has only to look at
the development of Matheronian Geostatistics over the
last twenty years for ample illustration of this process.
Presented as a simple objective mathematical formula-
tion of Krige’s empirical work in the early 1960s by
Matheron®, it blossomed to fill textbooks by the late
1970s (e.g. David") and has since branched into at least
three opposing schools of thought promoting their own
variations of Ordinary Kriging, Simple Kriging, Disjunc-
tive Kriging, Multivariate Gaussian Kriging, Probability
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Kriging, Indicator Kriging, and so on ad infinitum. All
of these techniques, of course, are impossible without
computers and very difficult without the appropriate
software.

Although these methods are invaluable in their place,
the more traditional proven methods have been over-
shadowed by the welter of theory, application, and con-
troversy surrounding the newer techniques. It is time,
perhaps, that the established methods be seen to resume
their place as valuable weapons in the armoury of modern
reserve estimation.
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Addendum 1: The Method of Non-linear Least Squares

Observations are available on n independently observed
sample points for two variables ¥ and x. A model is
postulated in which y is thought to be a function of x,
modified by a purely random ‘error component’. That is,

Y = F(xi;G) + €

where 6’ = {6, 0,, 6,, ..., 8, is a vector of k unknown
parameters to be estimated, and ¢, is the random com-
ponent of y, i=1,2,3 ..., n. The function F(x;8) is a
non-linear function of §, which cannot be linearized.

‘To.estimate # by the method of least squares, the
criterion

a D’i - F(x;;e)]z

must be minimized with respect to each of the 6. In
linear least squares, this process results in a set of
simultaneous equations that can be solved directly for the
optimum result. In the non-linear case, an iterative or ap-
proximation method must be adopted.

If a close approximation can be made to 8, say .,
then the Gauss—Newton iterative method can be applied
(cf. Draper and Smith, 1967). By a Taylor series approx-
imation, the problem reduces to a set of equations:

D-A8 = g,
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where

_ aF(x;6,)
T

N
and D is a k-by-k matrix defined as

g = X OFLs6)  OFxi6) 23 k
Jp — 1 80 >< 80 . E) 3y CRCER NS Y

i P p=1,2,3,...,k

The solution of this set of equations results in a vec-

tor, Af, which can be used to generate a new approxima-
tion to 6:

8, = 6, + Af.

This procedure is repeated until no further improve-
ment can be made in the sum of squares. If the original
6, is not close enough to the optimal 8, the procedure
may result in a local (rather than a global) minimum.

For the three-parameter lognormal, defining:

Lvi - F(x|;90)] Jz 192»3: s

f, = p = average of logarithmic values
8, = o = standard deviation of logarithms
6, = B = additive constant,
the probability density function is
1 1 (n (+0) - w’
H = ——————exp {—
0 V27 o(t+B) P 2068
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For the present purposes, F(x;f) is defined as
Fx:0) = [* v dt,

Q
and the partial derivatives of F{x;8) have to be found, i.e.

Fx;0)  0(2)
o g
OFx;0) _ _ z6(2)
do g

OF(x;0) _ _¢(2)
aB o(x+06)’

where ¢(2) is the probability density function for the stan-

dard normal (Gaussian) distribution, and z = (In (x+ ()
- w/a.

The following constraints are imposed in practice: the
additive constant (3) may not become negative, and the
standard deviation (¢) may not become negative. Other-
wise, the solution is not constrained. The average sam-
ple value is found by the usual back-transformation:

X=-exp@+ 05 - B

The logarithmic variance—more commonly quoted
than the standard deviation—is, of course, ¢*. The ad-
ditive constant is in the same units as the original sample
values and the estimated average value, X.

Addendum 2: The Method of Maximum Likelihood

The notation is as follows:

represents the original sample value

= In x is normal (Gaussian)

is the number of samples available

= 2 y/n is the logarithmic mean

3(y,—$*/n is the logarithmic sample variance.

<X R

Sichel’s ¢ estimator for the two-parameter lognormal
is defined as

t = exp () 7",
where

(n-1)" ¥y

r§1 2.1 (n—-D@n+)...(n+2r-3)

TN =1+

The recurrence relationship is used computationally:
n-1) V
U = ————y .
T 2r(n+2r-3) !
For the calculation of confidence limits, a new variable
is defined:
_ Int — In A N 5 W)
' %) 2
where A is the ‘true’ average of the population (the
parameter that is being estimated!) and

Y — V Vz
V) = p— + ln'yn(n__1 .

It can be shown that a confidence level of p on A can
be found by

t Y (V;n),

where
V(Vin) = exp (0,55 (V) - T, 6, (V).

The probability density function of T can be defined as
A(D = C[” a(w) exp{fl(BWT + dw))* + wl} dw,

o]
where

b(w) = G(w)

a(w) = bw) we?

dw) = 0,50 — In v (w) — 0,5 b(w)
f= -2

C ) 1 n 0,5n
Jr 10,5011 \2¢/)

It should be noted that, while \ disappears from the cal-
culation, ¢ is still an important part of the final com-
putation.

T, is defined as that value of T below which the pro-
portion p of the distribution lies:

Tp

p= L A(T) dT.
Note: This approach can be modified for the three-para-
meter lognormal by subtraction of the additive constant
from the estimator ¢ and from the associated confidence
levels after the computation is complete.

Addendum 3: Calculations of Pay Values and Payability

The notation is as follows:

is the mean value before any selection

LR

value) of ¢
In(x+ ), where 8 = additive constant
2 y/n is the logarithmic mean

1

n—1

R
o

3 (»,— )" is the logarithmic variance.
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. is the mean value after applying pay limit (cutoff

Note: If only ¥ and s are available, then j =
Inx+8) - 0,5 5
¢(z) is the proportion of a standard normal distribu-
tion below value z.
(a) As expressed in graphical relationship GRL20,

the pay limit/mean value is denoted as u =

(c+B)/(x+B)
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and the pay value/mean value as w =
X+ B)/ (x+ B).
These are the two axes of GRL20. Then:
Inu + 0,5¢

Z, =
s
Inu — 0,55
z2=’——~—_~.—_——_—
s
P=1-2z) Q=1- &)
w= Q/P andX = w(&+08) — 8

Percentage payability = 100 P.

(b) As more usually expressed elsewhere,

_ In(c+p) -y
! s
Z, =2z, ~§
P =1-23%z) Q=1- 9z),

giving X, = Q (x+B)/P - B
Percentage payability = 100 P.

Environmental impact

The Environmental Evaluation Unit of the University
of Cape Town is to conduct a 14-day course on Practical
Techniques in Environmental Impact Assessment (EIA)
from 22nd November to 5th December at the University.

This follows the success of the first course, which was
held in 1986. The course is intended for those people
whose work entails responsibility for environmental mat-
ters. It aims to give practical experience of the techniques
used in EIA and to introduce the broad conceptual frame-
work of Integrated Environmental Management.

As EIA plays a rapidly growing role in decisions about
the development of resources in Southern Africa, train-
ing in practical techniques in EIA is increasingly neces-
sary. In addition, the Council for the Environment has
recommended that Environmental Impact Assessment
should be adopted in South Africa as part of comprehen-
sive holistic planning procedures.

The course is intended as a practical, interactive pro-
gramime covering:

@ Environmental Characterization using techniques
such as
Field observations and field notes, Checklists,
Acerial photographic interpretation, Land facet
analysis, Overlays.

@ Designing with Nature and Communities using
Matrices, Questionnaires, Perceptual mapping,
Delphi and Normative Group techniques.

@ Environmental Impact Assessment
Screening and scoping, Control plans, Administra-
tive structures.

® Communication Skills
Written and visual communication, Managing group
processes.

The course will be of value to practising professionals
and decision-makers in the public and private sectors with
decision-making responsibility, for the environment in the
fields of Planning, Architecture, Engineering, Public ad-
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ministration, and Conservation.
The principal instructors are as follows:

Prof. Richard Fuggle, Director of the Environmental
Evaluation Unit and Head of Department of Environ-
mental and Geographical Science, UCT.

Prof. Tony Brink, Consultant and academic in the field
of engineering geology who has worked in southern and
central Africa and overseas.

Prof. John Butler-Adam, Director of the Institute of
Social and Economic Research, University of Durban—
Westville.

Mr Eric Hall, former City Engineer of Johannesburg and
at present a consultant engineer who draws on 40 years
of practical experience.

Mr Raoul du Toit, Scientific Officer with the IUCN’s
Specialist Group on Elephant and Rhino, based in Harare
with responsibility for Africa.

Ms Sandra Fowkes, Research Officer in the Environ-
mental Evaluation Unit, has worked on the use of aerial
photographs in Environmental Impact Analysis.

Mr Richard Hill, Research Officer in the Environmental
Evaluation Unit, University of Cape Town.

Mr Roy Stauth, Lecturer in the Department of Environ-
mental and Geographical Science, University of Cape
Town.

Ms Vanessa Watson, Senior Research Officer in the
Urban Problems Research Unit, University of Cape
Town.

Further information is available from

The Environmental Evaluation Unit
University of Cape Town

Private Bag

Rondebosch 7700.

Tel: (021) 650-2866/7. Telex: 5-21232.
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