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Introduction

The last few decades have seen a steady
increase in the use of computers for the
advance control of process plants, owing to
stiff competitive pressures and government
regulations. Most of these advanced systems,
of which model predictive control is the most
popular, depend on accurate plant models.
These predictive models are usually empirical
and based on historic plant data, the
availability of which has also increased
considerably in recent years. Despite their
ready availability, not all plant data are
necessarily suitable for the development of
process models. Critical variables may be
unobservable or simply not measured,
measurement intervals may be too long to
capture essential plant dynamics, periods of
observations may be too short, or where
inferential measurements are used, the
correlation between these and actual state

variables may not be sufficiently precise. To
complicate the problem, these shortcomings
may be difficult to identify, as the plant
engineer may have little, if any, other
information related to the actual state variables
of the system.

Although the quality of an accurate
process model based on the data could
ultimately be seen as a reflection of the high
quality of the data themselves, the converse is
not necessarily true. If a model fails, it does
not automatically imply poor data. It may well
imply a poor choice in the structure of the
model, or a failure to parameterize the model
properly. The cost of constructing models
aside, this approach is clearly not satisfactory.

Before constructing any models, it may be
a good idea to verify the assumptions being
made about the data. These assumptions
include notions about the (non)stationarity of
the data, the stochastic nature of the data, and
the (non) linearity of the data. In practice
these classes will represent extremes and the
question would rather be one of degree.
Unfortunately, this is not a trivial task, since
linear stochastic processes can create signals
with a very complex appearance. As a
consequence, not all structures in a time series
can be attributed to nonlinear system
dynamics. Irregular data can also result from
random impulses to the system, or fluctuation
of the process parameters. The method of
surrogate data analysis provides some means
of classifying the data and guiding the
engineer towards the development of
appropriate process models.

The method of surrogated data analysis

Surrogate data are stochastic data that are
artificially generated to mimic certain features
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of an observed time series. For instance, surrogate data may
have the same mean, variance, Fourier power spectrum, or
autocorrelation function as the measured time series. The
idea is to see whether the measured time series, which are
similar to the surrogate data, have the same value of the
selected measure, in which case it can be concluded that the
original time series is the same as the surrogate data.

The general approach in surrogate data analysis (Theiler
et al., 1992; Takens, 1993; Kantz and Schmitz, 1997; Dolan
and Spano, 2001) is as follows.

➤ Generation of sets of surrogate data, each similar to the
original time series, i.e. of the same length and statis-
tically indistinguishable from the original time series
with regard to certain specified characteristics

➤ Calculation of a discriminating statistic for the
measured time series and the sets of surrogate data.
Any statistic quantifying some aspect of the time series
can be used, such as forecasting error, largest
Lyapunov exponent, etc.

➤ Setting up a hypothesis that there is no difference
between the discriminating statistics of the original
time series and the surrogates (null hypothesis)

➤ Testing the null hypothesis based on the values of the
discriminating statistics and acceptance or rejection of
the null hypothesis.

Since a linear stochastic time series is completely charac-
terized by its Fourier spectrum (or equivalently, autocorre-
lation function), it should be a minimum requirement that
the surrogate data and the original time series have the same
power spectra (or autocorrelation functions). The discrimi-
nating statistic used to characterize the time series should be
robust and not affected by the measurement of the system or
other possible distortions. By using the correlation dimension
of the time series as discriminating statistic (to be discussed
later), a good indication of the topology of the underlying
attractor of the time series can be obtained and it can indeed
be considered to be a pivotal test statistic of the time series. 

Assuming that the original observed time series is
derived from a specific class of linear random process, the
probability distribution of the correlation dimension is
determined for an ensemble of surrogate data sets, which are
just different realizations of the hypothesized linear
stochastic process (Kantz and Schreiber). These issues are
discussed in more detail in the following section.

Hypotheses

As an oversimplified example of the classification of a time
series, the test could simply be to determine whether the data
are random or not. In this case, the null hypothesis would be
that the time series are simply realizations of a random
(Gaussian) variable (white noise) and that there is no
correlation between successive observations.

In this case, the surrogate data sets would consist of
randomized versions of the original time series. By
construction, the surrogates will have the same mean,
standard deviations, amplitude distributions, etc., as the
original time series. As a test statistic, the prediction error of
some model could be used. If it is clear that the model can
predict future observations of the original time series better
than it can the future predictions of the randomized time
series (surrogates), then the null hypothesis that the original

time series is identical to the surrogates (i.e. random) has to
be rejected. Otherwise, the null hypothesis is accepted. 

Although the above is a simplistic example, the general
idea with surrogate data analysis is the same, only more
generalized assumptions are being evaluated. In fact, the
most general assumption one can make about the original
time series, is that the measurements were obtained from a
stationary linear stochastic process, possible distorted by
some nonlinear measurement function (i.e. the measurement
of flow through a nonlinear valve). Consequently, this will
serve as the null hypothesis in all further discussion.

Test statistic

The test statistic, T, (a single number), estimates the charac-
teristics of the data and their variations in such a way as to
be able to decide whether the time series is consistent with
the null hypothesis (Kantz and Schmitz, 1997; Kugiumtzis,
2002). The probability distribution of the correlation
dimension is the same for all processes, regardless of the
source of the noise of the estimated model and it is calculated
as follows.   

Let {vt}, t = 1, 2, … N be an embedding of a time series 
in ℜdc. This means that the original time series has been
transformed into a new set of coordinates in a phase space,
as illustrated in Figure 1. In this figure a time series x = [1,
2, 3, 4, 5, 6, 7, 8, 9, 10] is embedded with a lag of k = 2 and
an embedding dimension of m = 3. The attractor of the time
series can be visualized by plotting the embedding
coordinates in three dimensions. 

The correlation function, CN(ε), is defined by

[1]

where I(||⋅||) is a Heavyside function in ℜdc that returns 1, if
the distance between point i and j is within ε and 0.
Otherwise ||⋅|| denotes the Euclidean norm, but sometimes the
supremum norm ||(x1, x2, …xm)T|| = supi|xi| = max(|x1|, |x2|,
…|xm|) is also used. The correlation dimension, dc, is defined
by

[2]

The maximum and minimum value the correlation
function can attain are C(e) = 1 and C(ε) = 2/[N(N-1)]
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Figure 1— Embedding of a time series x = [1, 2, … 10] with a lag of 
k =2 and an embedding dimension m = 3, giving the vectors 
Z = [(1, 3, 5), (2, 4, 6), ... (6, 8, 10)]



respectively. The idea is illustrated in Figure 2, which shows
a hypersphere of radius e, centred on one of the points, vj,
defining the trajectory of the attractor. As the hypersphere is
moved from one point to another on the attractor, the points
that are enclosed in the given hypersphere are counted. This
process is repeated for different values of ε and the
correlation dimension is then estimated from a plot of the
correlation function against the hypersphere size on
logarithmic coordinates. At large values of ε, dc = 0, i.e.
where ε is large, than the attractor itself, and at very small ε-
values, estimation of the correlation dimension is constrained
by the statistics, as calculations have to be based on a
minimum number of observations in each bin. Therefore,
only the central region of the curve is considered and not the
ends coinciding with very large and very small scales, which
tend to be nonlinear (Grassberger and Procaccia, 1983a;
Grassberger et al., 1991).

With the Grassberger-Procaccia algorithm (Grassberger
and Procaccia, 1983a; 1983b) used in this paper, a linear
scaling region is required to calculate the correlation
dimension reliably (Lai and Lerner, 1998). With this
algorithm, a polynomial term is introduced to account for
variations in the slope (scaling region) (Judd, 1992), which
may be caused by noise in the data or less than optimal
embedding of the time series. The correlation dimension, dc,
is thus a function of ε, rather than an invariant parameter for
the time series (Judd, 1992). The polynomial q(ε) is of the
same order as the topological dimension of the embedding.

[3]

The correlation dimension can be interpreted as the
dimension of the attractor, or as a rough measure of the
number of variables involved in the generating process of the
time series (Diks, 1999; Cutler, 1993).  

Generation of surrogate data

Amplitude adjusted Fourier transform (AAFT) surrogates
(Small and Judd, 1998) and iterative amplitude adjusted
Fourier transform (IAAFT) surrogates are generated as
follows.

(i) Generation of a normally distributed data set xr,
reordered to have the same rank distribution as xo, the
observed (original) data set

(ii) Phase-shuffling of the Fourier transform of xo to
generate xs

(iii) Rank ordering of xs and replacing the amplitudes xsj
with those of xoi of corresponding rank. This yields
AAFT surrogates xs. Step (iv) is necessary to generate
IAAFT surrogates

(iv) Adjustment of the observations to ensure that the
autocorrelation function of the surrogate data xs and
the original data xo are identical. This may mean that
the amplitude adjustments in the previous step have to
be modified and steps (iii) and (iv) are therefore
repeated until discrepancies between the amplitudes
and autocorrelation are minimal (Schreiber and
Schmitz, 2000; Kugiumtzis, 2002).

Note that when applied to multivariate systems, it is
relatively straightforward to retain cross-spectral correlations
between time series by simply ensuring that the random-
ization indices are the same for the relevant time series
(Paluš, 1996).

Case study 1: stationary linear gaussian process

To illustrate the use of surrogate data analysis, consider the
following linear Gaussian stochastic processes represented by
Equations [4]–[6].

[4]

[5]

[6]

where xt denotes a state variable, εt denotes a Gaussian
process with zero mean and standard deviation of 0.15 and
the subscript t refers to the time of the observation.

In each case, the state variables are assumed to be
observed through a nonlinear measurement function of the
form yt = (xt+1)1/2, i.e.
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Figure 2—Calculation of the correlation dimension of a time series
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Ten thousand samples of each time series were generated,
the first 200 observations of each of the time series y1, y2
and y3 of which are shown in Figure 3. For each time series
y1, y2 and y3, a set consisting of 15 surrogate time series
were generated by use of the amplitude adjusted Fourier
transform method. As an example, Figure 4 shows three
AAFT surrogate time series for the system represented by
Equation 4. The correlation dimensions of each of the
surrogate time series, as well as the original time series, were
consequently calculated. The results are shown in Figures
5–7. Broken lines in these figures indicate surrogate data,
and bold lines indicate the original data. For these figures, it
is clear that the correlation dimensions of the original time
series do not differ from the surrogate data over a large range
of scales. It can therefore be concluded (acceptance of the
null hypothesis) that the original time series are indeed
linear Gaussian systems, with possible monotonic nonlinear
transformation.

Case study 2: autocatalysis in a continuous stirred
tank reactor

The second case study concerns an autocatalytic process in a

▲

194 APRIL 2004 The Journal of The South African Institute of Mining and Metallurgy

Figure 7— Correlation dimension (dc) as a function of scale (e) for y3

(solid line) and its AAFT surrogates (broken lines)

Figure 4—Samples of AAFT surrogates (broken lines) derived from the
original time series (bold line) in case study 1 (Equations [7]–[9]

Figure 5—Correlation dimension (dc) as a function of scale (e) for y1

(solid line) and its AAFT surrogates (broken lines)

Figure 3—Samples of 1st, 2nd and 3rd order linear Gaussian processes
observed through a nonlinear measurement function (Equations [7]–[9]
in case study 1)

Figure 6—Correlation dimension (dc) as a function of scale (e) for y2

(solid line) and its AAFT surrogates (broken lines)



continuous stirred tank reactor, originally considered by Gray
and Scott (1983, 1984) and subsequently investigated by
Lynch (1992). The system is capable of producing self-
sustained oscillations based on cubic autocatalysis with
catalyst decay and proceeds mechanistically as follows.

[10]

where A, B, C and D are the participating chemical species
and k1, k2 and k3 the rate constants for the chemical
reactions. This process is represented by the following set of
ordinary differential equations. 

[11]

where X, Y, and Z denote the dimensionless concen-
trations of species A, B and D, while a, b and c denote the
Damköhler numbers for A, B and D respectively. The ratio of
feed concentration of A to that of B is denoted by d and the
same ratio of D to B by e. The process is chaotic, with a well-
defined attractor for specific ranges of the two parameters, d
and e. For the settings a = 18000; b = 400; c = 80; d = 1.5; 
e = 4.2, and initial conditions [0, 0, 0]T, the set of equations
was solved by using a 5th order Runge Kutta numerical
method over 100 simulated seconds. This gave approxi-
mately 10 000 observations, which were resampled with a
constant sampling period of 0.01 s. The Y state was taken as
the output variable. Figure 8 shows the attractor of the
process reconstructed from the process states X, Y and Z. 

The smooth shape of the attractor in Figure 8a already
hints at a nonlinear deterministic system, but in the presence
of noise (Figure 8b) the character of the system is unclear.
The correlation dimensions of the original time series, as well
as their AAFT surrogates are shown in Figure 9a and 9b.
Figure 9a shows that the system, (bold line) is a low order
(dc < 2 over the entire range of scales) nonlinear system, very
distinct from its surrogate data (broken lines). In contrast,
the presence of noise has a profound effect on the system
(Figure 9b), as it is barely distinguishable from its surrogate
data. While it can be shown that the system in Figure 8a can
be modelled accurately, predictive modelling of the system in
Figure 8b would be limited at best.

Case study 3: electrochemical noise generated by
corrosion

Electrochemical noise is a general term to describe the
apparently random fluctuations of current and potential in
electrochemical processes. The measurement of electro-
chemical noise was studied in the 1970s and 1980s as a
means to detect localized corrosion phenomena, such as
pitting, crevice corrosion, and cavity attack. The corrosion
current is related to the kinetics of the reaction, while the
corrosion potential is related to the process thermodynamics.
The idea is to identify specific corrosion phenomena, such as
crevice corrosion or stress corrosion cracking, as well as the
severity of these effects, from specific patterns in the electro-
chemical current and potential (Mansfeld and Xioa, 1993;
Legat and Dolecek, 1995), which often exhibit low-
dimensional chaotic behaviour (Lin et al., 2001).

In this case study the aqueous corrosion of austenitic
stainless steel is considered. The experimental set-up (see
Figure 10) consisted of a voltammograph (CV-27) connected
to a corrosion cell containing 500 ml NaOH and a Hewlett-
Packard 34970A data acquisition unit connected to a
computer. The electrochemical potential and current noise
were measured simultaneously at 432 ms intervals with a
three-sensor configuration. The current noise was measured
between two of these sensor elements, i.e. two identical
working electrodes consisting of austenitic stainless steel 304
strips, which were polished and degreased in hexane prior to
use. The potential noise was measured between the third
sensor or reference (an Ag/AgCl calomel) electrode and the
other two coupled electrodes.  

Samples of the data are shown in Figure 11, after
removal of trends to ensure stationarity. As can be seen from
the quantile-quantile plots in Figure 12, the corrosion current
was distinctly non-Gaussian. In contrast, the corrosion
potential measurements appear to have a normal distribution.
From the localization index of the current measurements, LI
= s/RMS(I) = 0.996, (Equation [12]), it appears as if
localized (pitting) corrosion had taken place, although the
experiment was not conducted over a sufficiently long period
to validate the assumption. 

[12]

where LI is the localization index of the current (LI close to 0
is associated with general non-local corrosion, while an LI
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Figure 8—The attractor of the autocatalytic system (a) without noise, and (b) with Gaussian noise with zero mean and standard deviation of 0.015

(a) (b)
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Figure 9—Correlation dimension curves for the data (solid lines) shown in Figure 5(a)-(c) and associated AAFT surrogate data (broken lines). In (c) the
standard deviation was 0.015

Figure 10—Experimental set-up for the measurement of electrochemical noise

Figure 11—Residual values of detrended corrosion current and potential. (Only first 200 observations shown)
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close to 1 is associated with highly localized corrosion, such
as pitting. S is the standard deviation of the current, and
RMS(I) is the root mean square value of the current, I, i.e.
RMS(I) = {1/NΣj=1NI2}1/2. The corrosion current and potential
were embedded with lags of kC = 2 and kP = 3 and
embedding dimensions, mC = 10 and mP = 7 respectively. The
reconstructed attractors of the two time series are shown in

Identification of nonlinearities in dynamic process systems
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Figure 16—Reconstructed attractor of potential data

Figure 15—Reconstructed attractor of current data

Figure 12—Quantile-quantile plots of the corrosion current (top) and
potential (bottom)

Figure 13—Correlation dimension (dc) of the corrosion current
measurements and their IAAFT surrogate data

Figure 14—Correlation dimension (dc) of the corrosion potential
measurements and their IAAFT surrogate data
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Figures 15–16, as projections in the principal component
score space of the embedded data. The variance explained by
each principal component is shown in parentheses on each
axis.

Fifteen IAAFT surrogate data sets were generated for the
time series, which consisted of 3 156 observations each. The
correlation dimensions for these surrogates and the original
time series are shown in Figures 13–14. Figure 13 shows
that, unlike the corrosion potential, the corrosion current had
a low dimensionality of approximately 1.5 to 2. The sharp
distinction between the correlation dimension curves (dc) of
the original data and their associated surrogates in both
cases validate their nonlinear character. Furthermore, the
analysis indicates that it should be possible to construct
accurate predictive models for the corrosion current, given its
low dimensionality (< 2). The same cannot be said of the
corrosion potential, which has a relatively high
dimensionality. Current studies are under way to investigate
the use of the correlation dimension of the time series
measurements to distinguish between different corrosion
phenomena and to serve as an early warning system for
corrosion in equipment.

Case study 4: data from mineral and  metallurgical
process plants

In the final case study, some data from mineral and
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Table I

Embedding parameters of various mineral and metallurgical process systems

Process system Lag Embed dimension No. of samples Comments

Metal concentration in a leach plant 7 4 2282 Nonlinear
Rolling mill speed in a steel plant 14 8 3516 Nonlinear
Pulp density in concentrator plant 13 6 3412 Linear
Mill power on a con-centrator plant 22 9 4341 Nonlinear

Figure 17—Plant data: metal concentrations in a leach plant, roll speed in a steel mill, pulp density in a base metal concentrator and mill power on a
valuable metal concentrator plant (top to bottom respectively). All data have been normalized to zero mean and unit variance. The corresponding
surrogate data analysis for each data set is shown in Figures 18–21 respectively

Figure 18—Correlation dimension (dc) of the valuable metal concen-

trations on a leach plant and their IAAFT surrogate data



metallurgical process plants are investigated. These data are
shown in Figure 17 and the results of the surrogate data
analyses, similar to the ones in the previous case studies, are
shown in Figures 18–21. The embedding parameters of each
system are summarized in Table I. In all cases, the lags were
estimated from the data based on the average mutual
information content of the data, and the embedding
dimensions were estimated by means of the false nearest
neighbour algorithm. The correlation dimensions in 
Figures 18–21 were calculated with the IAAFT algorithm
mentioned previously. These results suggest that all the

process data are in fact nonlinear, with the exception of the
pulp density measurements in the base metal concentrator,
which can therefore be identified by a linear model. In all the
other systems, the use of more complicated nonlinear models
would be justified.

Discussion and conclusions

The classification of dynamic process systems from observed
data is an important problem in process engineering, with
potential applications ranging from system identification in
automated control systems, process condition monitoring
systems and the detection of anomalies in plant operations.

To summarize:

➤ Surrogate data are particularly useful for the screening
of data prior to the construction of process models. It is
not always easy to determine the degree of
determinism or stochasticity of real-world data, and the
technique allows the engineer to classify the data prior
to building a model.

➤ With the composite null hypothesis used in this
investigation, the results of the Monte Carlo tests
should be interpreted with some care. In mineral
processing, stationary process operation may be
difficult to achieve, and some tests for stationarity
should almost certainly be used when the null
hypothesis is rejected, before the data can be classified
as nonlinear. When iterated amplitude adjusted Fourier
transform surrogates are used, the effect of non-
Gaussianity in the data should not play a large role in
the rejection of the null hypothesis

➤ Other issues that will influence the robustness of these
tests are the embedding parameters (embedding
dimension, m, and embedding lag, k). With short noisy
time series characteristic of many process systems, it
may be particularly difficult to optimize these

Identification of nonlinearities in dynamic process systems

▲199The Journal of The South African Institute of Mining and Metallurgy APRIL 2004

Figure 21—Correlation dimension (dc) of mill power observations on a
concentrator plant and their IAAFT surrogate data

Figure 19—Correlation dimension (dc) of roll speed observations in a
steel mill and their IAAFT surrogate data

Figure 20—Correlation dimension (dc) of the pulp densities on a base
metal concentrator and their IAAFT surrogate data
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parameters, and it may be necessary to test a number
of different embeddings before any conclusions about
the process dynamics can be made

➤ Likewise, small data sets may also compromise the
analysis. Although the correlation dimension is a
pivotal test statistic, which can be used to discriminate
between different time series, it requires large data sets
for reliable calculation. As a rule of thumb, the Tsonis
criterion considers the number of observations (N)
required for reliable estimates of the correlation
dimension (dc) to be approximately exponentially
related to the correlation dimension, that is N =
10(2+0.4dc). This means that for reliable estimates of
high correlation dimension values (dc ≥ 10), in the
order of 1 000 000 observations are required. Data sets
of this size may not always be available, or may add a
significant burden in terms of additional computational
cost

➤ Finally, the use of surrogate data methods in
conjunction with the correlation dimensions of time
series attractors may not be suitable for online
implementation in fast-changing process systems, as
the high computational requirements make for
relatively slow calculation.
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Mintek has published an updated version of its guide to
estimating metallurgical equipment costs.

The handbook provides formulae and variables for
calculating costs for commonly used items of metallurgical
process equipment in different sizes and capacities. Apart
from the cost data, which have been updated to a base of
March 2002, the revised guide includes several new
categories of equipment, and the ranges of some items have
been expanded.

The information will be useful to those involved in the
costing of metallurgical processes, plant design, and

feasibility studies, by providing a means of obtaining
indicative capex estimates.

Metallurgical Equipment Costs (March 2002) is
published at a price of R500.00 (including VAT, South
Africa) or US$250 (overseas).     ◆

* Further information: Minnesh Kaliprased,
minneshk@mintek.co.za
Orders: Karl Kowar, karlk@mintek.co.za

Metallurgical equipment costs*


