Design of permanent intruded plugs at South Deep Gold Mine

by G.S. Littlejohn* and A.H. Swart†

Synopsis

In anticipation of the flooding of an adjacent dolomitic groundwater compartment, five rough parallel sided boundary plugs at 58 and 50 levels have been designed to resist safely hydrostatic heads of 1 500 and 1 250 metres, respectively, over a service life of 100 years. Following a description of the engineering properties of the surrounding rocks, the paper details the design considerations relating to structural length and strength, hydraulic gradient, rock mass watertightness, constituent materials of mortar intruded concrete, pregrouting of permeable discontinuities within the surrounding rock mass, a bentonite barrier to resist aggressive mine water, plug tightening and design performance requirements.

Routine quality control tests include permeability of the rock mass, fluidity, bleed and strength development of the intruded mortar, and temperature of the intruded concrete during curing. A special test programme includes determination of strength and stiffness of cored concrete and rock samples, shear strength of the rock/plug interface and associated in situ contact stress in order to estimate the load safety factor against plug failure by shear.

General

In the event of flooding of Randfontein No. 4 Shaft and recharge of the Gemsbokfontein West dolomitic groundwater compartment, five rough parallel-sided boundary plugs at 58 and 50 levels have been designed to resist safely hydrostatic heads of 1 500 and 1 250 metres (15 MPa) and 1 250 metres (12.5 MPa), respectively.

Given the unacceptable consequences of plug failure and the high water pressure at South Deep, all elements of the permanent plugs have been designed conservatively for a service life of 100 years. The specified performance requirements either meet or exceed the recommendations of the Chamber of Mines of South Africa ‘Code of practice for the construction of underground plugs and bulkhead doors using grout intrusion concrete’ (1983).

Traditionally, designs of mortar intruded concrete plugs in South Africa have been based on successful precedent practice, dating in particular from technical papers by Garrett and Campbell Pitt (1958 and 1961). Essentially, the length of the plug is determined by assuming that the rock-concrete plug contact area resists punching by a uniformly distributed safe shear strength.

To the authors’ knowledge, there has never been a structural failure of a high pressure mortar intruded concrete plug, but water leakage that is obvious and extensive has been encountered in service. As a consequence, particular attention has been paid to watertightness in the plug design at South Deep.

Strength of surrounding rock

Three 58 Level plugs at a depth of 1 568 m below collar were founded in Witwatersrand quartzite, while the two 50 level plugs at a depth of 1 303 m below collar were founded in Ventersdorp lava. Table I illustrates that both rocks have very high strength and stiffness, although the lava has superior engineering properties.

Structural lengths of plugs

The 1983 code confirms the common use of a safe uniform shear stress of 0.83 MPa that contains a large safety factor (not quantified in the code*) for a parallel-sided plug installed in Witwatersrand quartzite. This safe shear was adopted initially for the quartzite at South Deep and assumed conservatively for the Ventersdorp lava, as there are no published guidelines for this rock type.

*Given the absence of any sign of incipient structural failure, back-analysis of test data on a rough parallel-sided experimental plug formed at a depth of 1 216m in Witwatersrand quartzite at the West Driefontein mine has indicated a test load factor of 7.2 when using a shear value of 0.83 MPa [Garrett and Campbell Pitt (1958) for plug dimensions and pressures]. This factor is less than the ultimate load factor of safety.
At South Deep, the sectional dimensions of the parallel-sided haulages to be plugged extended typically up to 4.0 m x 4.4 m with a perimeter of 16.8 m. For the 58 level plugs formed in Witwatersrand quartzite, the required structural length is the maximum punching force of 15 MPa x 4m x 4.4 m = (16.8 m safe shear of 0.83 MPa) = 18.9 m. The equivalent structural length for the 50 level plugs in lava that may be subject to a head of up to 12.5 MPa is 15.8 m.

Tapered plugs were considered but discounted, bearing in mind the additional rock excavation inducing potentially further rock relaxation, the larger hydrostatic pressure on the wet face, extra intruded concrete and a longer construction period.

Strength of mortar intrusion concrete

Bearing in mind the high unconfined compressive strengths (UCS) quoted for the surrounding quartzite or lava, the weakest structural element in plug design at South Deep is the concrete due to its lower unconfined compressive strength and associated lower shear strength.

For mortar intruded concrete plugs, the 1983 Code recommends a minimum 28-day UCS of 17 MPa for the mortar. This figure is based on the recommendation of Garrett and Campbell Pitt (1961). However, by reference to the American Standard ACI 322-72 for structural plain concrete, a shear stress of 0.83 MPa requires a UCS of 25 MPa. A further benefit of the higher strength is a more durable concrete. As a consequence, this higher value was specified as the minimum 28-day UCS at South Deep.

Shear resistance at the rock-plug interface

For parallel-sided plugs, a rough uneven (undulating) rock-concrete plug interface was considered essential, in order to:

- provide friction and mechanical interlock at the rock-concrete plug interface, and thereby ensure shear failure in either the rock mass or the intruded concrete (as opposed to the rock-plug interface), and
- increase the seepage path and thereby reduce the potential for leakage along the length of the plug.

Barring and scaling to sound rock was required and the rock surface roughness specified for plug design at South Deep was a clean surface containing no deleterious materials (e.g. loose debris, oil, grease, or slime) that could inhibit bonding of the intrusion mortar or plug tightening grout to the surrounding rock.

According to the 1983 Code, where a smooth surface is encountered over a large perimeter area, i.e. >10% of surface perimeter area of plug, the smooth surface of the exposed rock must be roughened by chipping. In the design at South Deep, the amplitude of the rough surface required was only 1–2 mm, i.e. the same order as the maximum grain size of the sand in the intrusion mortar.

In parallel-sided plugs, mechanical interlock is desirable as a further component of the plug's resistance to shearing, since mechanical interlock can overcome shortcomings in the cleanliness and roughness of the perimeter surface of the rock. Mechanical interlock was achieved by ensuring that the undulations in cross-sectional dimensions of the roadway, prior to plug construction, were of the same order or greater than the maximum size of the preplaced coarse aggregate, i.e. 300 mm.

The design also required measurement of the longitudinal geometry of the plug site at 1 m centres to enable the plug segment volume and shape to be determined and to ensure that a detrimental negative wedge shape was not created, i.e. where the cross-sectional dimensions of the plug increased from the wet face to the dry face.

Hydraulic gradient

Once the minimum structural length of the plug had been determined on the basis of a uniform allowable shear stress, the watertightness of the plug contact and the surrounding rock mass was assessed.

Under the significant hydrostatic head of 1 500 metres, the associated hydraulic gradient coupled with the permeability of the rock mass dictates groundwater percolation rates, and where a 100-year life is anticipated for the plugs, these parameters influence the potential dissolution of the grout at the rock-concrete plug contact and within the fissures of the surrounding rock mass.

At South Deep, it was considered advantageous to reduce the rate of groundwater flow past the plug as far as practicable by:

- improving the watertightness of the rock-concrete plug interface and surrounding rock and
- reducing the hydraulic gradient.

Grouting was employed to improve the former whilst extending the plug length was the simplest way to reduce the hydraulic gradient.

No guidance on hydraulic gradient limits for plugs is provided in the 1983 Code. As a consequence, high pressure grouting to seal the rock-plug interface and the surrounding rock is employed routinely to address the potential problem of leakage in situ, although no maximum residual permeability is specified as a design performance requirement in the code.

An analysis of test results [produced by Garrett and Campbell Pitt (1958) on the experimental underground bulkhead subjected to temporary high pressures] indicated that where the rock-plug interface was ungrouted, the maximum hydraulic gradient (h/L) before leakage became obvious and extensive was about 50. In other words, for h = 1500 m, a plug length (L) of 30 m is required. The equivalent length for plugs at 50 level is 25 m.

Although the hydraulic gradient can be raised (and the

Table I

<table>
<thead>
<tr>
<th>Property</th>
<th>Venterdorp lava</th>
<th>Witwatersrand quartzite</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS (MPa)</td>
<td>295</td>
<td>175</td>
</tr>
<tr>
<td>Elastic modulus (GPa)</td>
<td>87</td>
<td>70</td>
</tr>
<tr>
<td>Angle of internal friction (°f)</td>
<td>59</td>
<td>53</td>
</tr>
<tr>
<td>Cohesion (MPa)</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>Rock Mass Rating</td>
<td>82</td>
<td>75</td>
</tr>
</tbody>
</table>

(see text and note from Bieniawski, 1973)
Design of permanent intruded plugs at South Deep Gold Mine

plug length reduced accordingly), as the rock-concrete plug interface and any preferential seepage paths in the surrounding rock mass are grouted, grouting at South Deep was specified as an important enhancement of water-tightness, but not exploited to reduce plug length because grouting is known to be sensitive to quality of workmanship.

At South Deep, a residual watertightness ≤ 1 Lugeon (mass permeability ≤ 1 x 10⁻⁷ m/s) was specified, where 1 Lugeon is 1 litre/min/metre of hole at an excess head of 10 bars (1MPa). Depending on the thickness of the fractures and practical spacing of injection holes, it was accepted that it might be necessary to relax this figure to 3 Lugeons, if the grout treatment became more distant (e.g. > 5 m) from the plug perimeter. These residual watertightness values are equivalent to those specified beneath large dams founded on rock where it is important to limit seepage.

Assuming effective grout tightening of the rock-concrete plug interface plus grouting of permeable features in the surrounding rock, it is anticipated that the factor of safety against excessive seepage† at the plugs is at least 15.

Precedent practice

Following a study of plug case histories worldwide, the following case is most relevant as it has a similar hydrostatic head to the 58 level plugs at South Deep. The key characteristics are compared below.

- Free State Geduld No. 2 Shaft (head = 1551 m)
 - L = 30.48 m W = 14.33 m H = 3.35 m
 - Adopted safe shear stress = 690 kPa.
 - Hydraulic gradient = 1551 m/30.48 m = 51 (after Lancaster, 1964)

 According to Leeman (1964), the Geduld No. 2 shaft plug was subjected to a short-term head of up to 2 069 m.

 For comparison, the South Deep permanent plugs have the following characteristics:

 - South Deep 58 Level
 - L = 30 m W = 4.4 m H = 4.0 m
 - Adopted safe shear stress = 524 kPa.
 - Hydraulic gradient = 1500 m/30 m = 50.

 - South Deep 50 Level
 - L = 25 m W = 4.4 m H = 4.0 m
 - Adopted safe shear stress = 524 kPa.
 - Hydraulic gradient = 1250 m/25 m = 50.

In regard to long-term in-service conditions, both East Rand Proprietary Mines (ERPM) and Durban Roodepoort Deep (DRD) have mined below water bodies that have flooded the neighbouring Rand Lease Mine have now reached equilibrium and the plugs are no longer subjected to a differential head of water.

Given adoption of a safe shear stress of 524 kPa (c.f. the code value of 830 kPa), a structural test load factor of 11.4 may be determined, i.e. [830/524] x 7.2, where a simple uniform shear distribution is assumed.

Aggressivity of mine water

Where a design life of 100 years is required, there is a need to consider the longevity of the intruded plug installation including the cement grout used to seal the rock-plug interface and the surrounding rock mass. In this regard, the aggressivity of the mine water at the plug sites, the hydraulic gradient of the water flowing past the plug and the permeability of the rock mass were considered.

At 58 level, the groundwater is highly acidic (pH = 1.8 to 2.8). At 50 level, the water is neutral.

To resist the aggressive mine water that could cause dissolution of the cementitious material in the intruded concrete, a low permeability inert bentonite impregnated geotextile sandwich (minimum thickness = 20 mm) was specified for the dry face of the reinforced concrete retaining wall fronting all plugs. The bentonite expands on contact with water and the permeability of the seal is very low, i.e. 1 x 10⁻¹¹ m/s.

In addition, 1 000 kg of lime [composition = 60% Ca(OH)₂ and 40% Na₂CO₃] was required to be deposited on the roadway in front of the plug to neutralize the acidic water in the immediate vicinity of the wet face of the plug.

Although the plugs at 50 Level are not subjected to aggressive groundwater, the application of the bentonite geotextile was specified in view of its beneficial low permeability and relatively low cost.

The potential for long-term dissolution of the cement grout infilling fractures in the rock mass immediately surrounding the plugs at 58 level was the subject of special study of the mechanisms of grout deterioration in the mine environment by Professor F.P. Glasser (emeritus professor of Inorganic Chemistry, University of Aberdeen, Scotland). Glasser (2002) predicted a conservative performance lifetime of over 4 000 years.

Constituent materials of mortar intruded concrete

Coarse aggregate (plums)

The coarse aggregate comprised bulky angular quartzite in the range 300 mm down to 75 mm that was both durable and chemically stable. The specified plum sizes reflect considerations related primarily to ease of handling and washing where the plums are finally carried within the plug site and placed manually. The minimum size was 75 mm to ensure efficient permeation of the sand/cement mortar through the

†at South Deep, excessive seepage at a plug site was judged to be 200 litres/minute, or greater. By reference to Garrett & Campbell Pitt (1958), the recommended range of leakage factors of safety, i.e. 10 to 4, provides plug lengths of 6.6m to 16.5m. On the same basis, a 30m-long plug provides a leakage factor of 18
voids between the plums. For sand/cement mortars, the smallest preplaced aggregate size can be reduced to 40 mm (Littlejohn, 1984).

Rock plums were permitted to be placed only after a double-washing process and their satisfactory condition in situ was confirmed via regular inspections by the supervising engineer. Inadequate cleanliness of plums leads to a deterioration in the bond between the rock plum and the surrounding intruded mortar leading in turn to a reduction in strength and durability of the intruded concrete.

Fine aggregate
The fine aggregate was Vaal River sand, supplied in accordance with South African Standard SABS 1083, with a grading of 1.18 mm down and no more than 4% passing the 75-micron sieve. Within the 1983 Code, the 4% limit for sand applies to a 150-micron sieve. The finer sand was permitted at South Deep as it was verified to improve pumpability, exhibit low bleed, eliminate segregation and had no detrimental effect on mortar strength.

Cement
Cement was ordinary Portland cement (OPC) in accordance with SABS EN197.

Water
The water was potable Rand water (pH = 7.9–8.3).

Mortar mix design
To ensure appropriate fluid, stiffening and strength properties, the sand/cement ratio was specified as 1.0 (by weight) with a water/cement ratio not greater than 0.64 (by weight). The specified strength was not less than 25 MPa at 28 days and a bleed not greater than 5% at 2 hours (bleed at 2 hours = maximum bleed for mortar at South Deep).

For this mix, the maximum weight of cement per cubic metre of mortar is 752 kg. Given a field test voidage of preplaced coarse aggregate of 53%, the cement content reduces to 398 kg per m³ of intruded concrete. Temperature rises of up to 12°C per 100 kg OPC per m³ of concrete can develop under adiabatic conditions, so a maximum temperature rise of 48°C was estimated. The reduced cement content per m³ reduces the risk of thermal cracking.

High point injection
Although, the specified maximum bleed for the mortar was low, injection of neat cement grout (water/cement ≤ 0.5) was specified at the high points in the hangingwall, in order to fill the minor pockets or lenses left as a result of residual bleed developed during the final two hours of mortar intrusion.

For high point injections, the locations of the outflow points of intrusion pipes was specified to be not greater than 2 m horizontally and 1 m vertically. Typically, 60 intrusion pipes were required for each segment.

Similarly, the spacing of outflow points of grout injection pipes was specified such that not more than 7 m² of rock-concrete interface would be covered by one pipe with an average of not more than 3.5 m² of interface per pipe. Typically, 40 and 32 injection pipes were required for 7.5 m and 6.25 m long plug segments, respectively, in order to accommodate the maximum haulage dimensions anticipated.

Grout for rock-plug interface and rock mass
The surrounding rock comprised very strong rock material with a very low permeability (kw < 1 x 10⁻¹⁰ m/sec). However, within the rock mass, permeable fractures existed of aperture equal to 0.1 mm up to 10 mm. Where the fractures were mining induced, e.g. within 1–2 m of the plug perimeter, the fracture spacing was approximately 0.5 m. For more remote geological fractures, the typical spacing increased to 5–10 m.

Given these details, neat OPC grouts were specified for contact grouting at the rock-concrete plug interface and grouting of the fractures in the surrounding rock mass, in order to improve watertightness down to 1 Lugeon. Depending on the thickness of the fracture to be filled, water/cement ratios of 1.0 gradually thickening to 0.4 (by weight) were permitted.
Design of permanent intruded plugs at South Deep Gold Mine

Figure 1—Typical layout of mortar intrusion and grout injection pipes in segment of 58 East plug
Figure 2—Typical layout of mortar intrusion and grout injection pipes in segment of 50 East plug
Design of permanent intruded plugs at South Deep Gold Mine

Plug tightening and pregrouting

Where permeable features in the rock mass were located within 2 m from the perimeter face of the plug, grouting of the rock was specified to be carried out in 0.5 m stages via the inclined grout tightening pipes. High pressures up to 25 MPa (250 bars) were permitted for injection, the specification requiring at least 1.5 x design hydrostatic pressure.

Based on the thermocouple results, plug tightening was not permitted to start until 28 days had elapsed after completion of mortar intrusion.

Where permeable features were located greater than 2 m from the perimeter face, pregrouting of these features was required to be carried out in advance of plug construction, as the remote discontinuities could not be grouted cost-effectively via the inclined plug tightening pipes.

The length and location of each hole was specified to be based on an engineering assessment of the local hydrogeology at the plug site. Thereafter, grouting proceeded in 3 m stages with the objective of reducing the residual watertightness of the surrounding rock mass to 1 Lugeon, or less.

Special circumstances

58 West 1 plug

For 58 West 1 plug, two 150 mm diameter S/S pipes (15.25 mm wall thickness with bolted S/S flanges 62 mm thick) were incorporated to permit controlled flooding up to 50 Level and subsequent dewatering of REL4, in order to commission and carry out a full-scale assessment of the efficiency of this section of the boundary pillar as a water barrier. In cross-section, both pipes were located in a central position but offset 0.6m laterally from the plug centre line and spaced vertically 1 m apart to avoid intrusion and injection pipes (Figure 3).

All S/S piping, valves and flanges were required to be supplied in material type 316/L in accordance with relevant ASTM and/or ASME Standards. Adequacy of the S/S pipe and flange designs for a head of 1 500 m was confirmed independently by Walker Ahier Holtzhausen Engineering Consultants CC.

Special tests were also carried out on the S/S pipe with flanges and associated valves to pressures of 53 MPa for the 150 mm nominal bore piping. These tests confirmed an acceptable load safety factor of 3.5 for the 150 mm piping and associated flanges and valves. The S/S pipes and flanges are contained within intruded concrete plugs, which adds a further constraint to any potential rupture mechanism by bursting pressures.

As a contingency against valve failure at the downstream end of a plug, a double valve arrangement was fitted. In the unlikely event of failure of two valves at one location, a replacement valve arrangement will be fitted, if practicable (depending on nature of damage), failing which the pipe can be grouted and sealed.
At the wet face, the fitting of 90° elbow sections and standpipes was specified to provide a high point for each pipe. This high point permits efficient grout infilling to seal each pipe, if required. To ensure no external preferential seepage path and provide some mechanical interlock, two S/S flanges were specified for each pipe within each plug segment.

58 West 2 plug

The wet face of 58 West 2 plug abutted an existing concrete plug. Aside from acting as a passivating sacrificial barrier, no other reliance was placed on this existing plug. Under these circumstances it was not judged necessary to install a bentonite geotextile barrier.

58 East plug

The design of the 58 East plug required particular assessment, because the concrete/steel element of an existing water door was located within the fourth segment.

Following the study of a typical water door drawing, a solution incorporating the door was adopted, whereby the watertightness and integrity of the concrete surround were first confirmed by 2 kg hammer sounding and water/pressure tests via cored holes. It was then specified that the steel lined section must be shot blasted to provide a sound rough surface and fitted with 50 mm high steel angle shear connectors at one metre centres around the perimeter, in order to provide some mechanical interlock and eliminate preferred seepage paths. In addition, the steel surface was painted with a thin layer of cement paste to improve bond.

Thereafter, the water door was permitted to remain in place, provided that the existing concrete end was scabbled and the last intruded concrete segment extended 4 m beyond the water door. The purpose of the extension was to ensure no preferential interface seepage paths beyond the water door and provide access for routine plug tightening of the rock-concrete plug interface and the surrounding rock mass.

50 West plug

For the 50 West plug, eight 200 mm nominal bore diameter S/S drainage pipes (12.2 mm wall thickness with bolted S/S flanges 62 mm thick) were incorporated to permit controlled water inflows from REL 4, if required. In cross-section, these pipes were located centrally but spaced 950 mm apart and two S/S flanges were specified for each pipe within each plug segment (Figure 4).

Figure 4—End elevation showing layout of 200 mm nominal bore stainless steel pipes in 50 West plug
Design of permanent intruded plugs at South Deep Gold Mine

The 200 mm nominal bore diameter piping with 62 mm thick flanges and separately a blank flange (68 mm thick) were tested to 40 MPa, when the CGI central spiral wound graphite gasket inserts in the pipe arrangements failed, thereby confirming an acceptable load safety factor of 3.2 for a maximum design working pressure of 12.5 MPa.

Special tests results for permanent plugs

General

In spite of the large number and variety of plugs that have been constructed in South African mines, there have been no significant developments in the design of intruded concrete plugs in rock over a period of 40 years. This is due probably to an absence of failures and an associated absence of in situ tests and instrumented plugs. As a result, there is a dearth of published information on:

➤ strength and stiffness of surrounding rock mass
➤ strength and stiffness of intruded concrete
➤ strength and stiffness of production mortar
➤ in situ structure, integrity and watertightness of production intruded concrete
➤ in situ watertightness of rock-plug interface and surrounding rock, after grout tightening
➤ in situ contact stress at the rock-plug interface and minimum principal stress in the surrounding rock mass and
➤ shear strength of the rock-concrete plug interface.

Until more information is obtained on the in situ properties and service behaviour of intruded concrete plugs under high hydrostatic heads, it is not considered possible to carry out a critical review and advance significantly the current basis of plug design.

As a result of this situation, the international review panel commissioned special tests on some of the permanent plugs. It is considered that the results will assist future designs and at South Deep permit determination of the load safety factor against shear failure, as opposed to the traditional use of the 1983 code design example of a uniform ‘safe’ shear stress of 0.83 MPa for Witwatersrand quartzite.

In addition, the engineering parameters obtained can be used to permit more accurate and relevant mathematical modelling of confined intruded concrete plugs when subjected to high water pressures.

Strength and stiffness of Witwatersrand quartzite and Ventersdorp lava

The results of uniaxial compression tests carried out by CSIR on NXCU cores are summarized in Table II, where tan E, sec E, tan Poisson’s ratio and sec Poisson’s ratio are evaluated at 30% UCS.

Based on these results a ‘high strength’ classification may be confirmed for both rock types at South Deep.

Strength and stiffness of intruded concrete

Concrete core samples (300 mm diameter) from a full-scale experimental plug, constructed prior to the permanent plugs, were tested independently by CSIR, and 1-year UCS values ranged from 36.3 to 42.8 MPa with a Young’s modulus of 10.7 to 21.0 GPa.

It should be noted that the assumption of an unconfined concrete strength is pessimistic because the intruded concrete that is confined within a strong stiff rock mass will be subject to compression and shear under an applied hydrostatic head.

Strength and stiffness of production mortar

The unconfined compressive strength of production mortar was confirmed at an average value of 34 MPa at 28 days and over 50 MPa at 112 days from the routine quality control programme using 100 mm cube samples.

Table III indicates further average properties for unconfined 100 mm production mortar cubes (sand/cement = 1.0; water/cement ≤ 0.64 by weight), where tan E, sec E, tan Poisson’s ratio and sec Poisson’s ratio are evaluated at 30% UCS.

![Table II](image1)

Table II

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Density (Mg/m³)</th>
<th>UCS (MPa)</th>
<th>Tan E (GPa)</th>
<th>Sec E (GPa)</th>
<th>Tan Poisson’s ratio</th>
<th>Sec Poisson’s ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>2.70</td>
<td>192</td>
<td>76</td>
<td>71</td>
<td>0.15</td>
<td>0.11</td>
</tr>
<tr>
<td>Quartzite</td>
<td>2.67</td>
<td>190</td>
<td>75</td>
<td>79</td>
<td>0.21</td>
<td>0.17</td>
</tr>
<tr>
<td>Quartzite</td>
<td>2.69</td>
<td>187</td>
<td>70</td>
<td>65</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>Lava</td>
<td>2.76</td>
<td>189</td>
<td>80</td>
<td>83</td>
<td>0.29</td>
<td>0.28</td>
</tr>
<tr>
<td>Lava</td>
<td>2.79</td>
<td>99</td>
<td>85</td>
<td>88</td>
<td>0.29</td>
<td>0.28</td>
</tr>
<tr>
<td>Lava</td>
<td>2.80</td>
<td>153</td>
<td>81</td>
<td>85</td>
<td>0.30</td>
<td>0.29</td>
</tr>
</tbody>
</table>

![Table III](image2)

Table III

Average engineering properties for production mortar based on uniaxial compression tests on 100 mm samples

<table>
<thead>
<tr>
<th>Density (Mg/m³)</th>
<th>Tan E (GPa)</th>
<th>Sec E (GPa)</th>
<th>Tan Poisson’s ratio</th>
<th>Sec Poisson’s ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.05</td>
<td>18.2</td>
<td>18.6</td>
<td>0.22</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Design of permanent intruded plugs at South Deep Gold Mine

In situ structure, integrity and watertightness of intruded concrete

Close examination of scabbled faces and cores from the intruded concrete indicated a homogeneous structure with excellent bonding of the mortar with the coarse aggregate (plums) and the surrounding rock.

Minor lenses 2–3 mm in aperture and 20–30 mm long were observed located at the underside of some plums, due to entrapped water or air. These were only occasional features e.g. three over the full plug face of some 17 m². These minor defects were not significant as they were not interconnected, as verified by water pressure tests in NXCU cored holes. There was no evidence of thermal cracking and the concrete was sensibly watertight.

In situ watertightness of rock-plug interface of permanent plugs and surrounding rock

Permeability tests were carried out on the 4th segments of three plugs to assess the watertightness of the rock-plug interface and the rock mass immediately surrounding the plugs. In essence, these tests were executed to check the effectiveness of the plug tightening, bearing in mind historical problems of leakages around plugs in service.

Ungrouted fractures were discovered occasionally in the rock surrounding 58 West 2 and water flows at low pressure in the rock surrounding 50 West (Report No. 320717/1—SRK, 2003), together with water flows at low pressure at the rock-plug interface at 50 West and 50 West 1.

As a result of these test results, the watertightness of the rock-concrete interface around the inner ring of tightening holes in the 4th segment of all production plugs is required to be checked for Lugeon value by water pressure testing (Houlsby, 1976).

Hydrofracture tests to estimate the in situ minimum principal stress (σ_3) in the surrounding rock mass and the normal stress (σ_n) at the rock-plug interface

Hydrofracturing is a stress measurement technique that uses fluid pressure to create and open fractures in rock. The pressure at which the fluid extends the fracture away from the hole to allow the fluid to penetrate the rock is accepted as being equal to the minimum principal stress in the rock.

Minimum principal stresses in the rock mass of 18–22 MPa were recorded at the 50 West plug and 12.4 MPa at the 58 East plug. While the former values are consistent with theory, the latter value was judged to be understated due to local fissuring and minor stoping. The theoretical value would be closer to 20 MPa.

Hydrofracturing tests at the rock-concrete plug interface were carried out in special holes at the 4th segments of the 58 East and 50 West plugs, in order to determine the normal contact stress (σ_n). These holes were located within the body of the plug to avoid end effects, i.e. not at the dry end where greater relaxation of the rock is permitted.

Five values of the stress normal to the quartzite/plug interface at 58 East ranged from 4.6–6.0 MPa. Three values at 50 West ranged from 4–10 MPa. Based on these results, a conservative normal stress σ_n of 4 MPa was adopted for the plugs at both 58 and 50 levels.

Shear strength parameters of rock-plug interface

Considerable difficulties were encountered in obtaining NXCU cores of the rock-plug interface due primarily to the shallow angle that the coring intersected the interface. As a consequence, only three cores (two in lava at an experimental plug and one in quartzite at 58 West 2) were tested by CSIR in a direction parallel to the main axis of the plugs. The results of the shear tests are summarized below.

The peak (lava-concrete plug) shear strength for an intact contact comprised a cohesion of 0.56 MPa and φ of 32.6°. The residual shear values for the same contact were zero cohesion and φ of 32.1°.

For an ‘open’ lava-concrete plug contact, the equivalent peak shear values were a cohesion 0.12 MPa and φ of 37.1°. The residual shear values reduced to zero cohesion and φ of 31.3°. An ‘open’ contact means that the core sample was already in two pieces (one piece rock and one piece concrete) but brought together prior to testing.

The single ‘open’ quartzite-concrete plug interface provided a zero residual cohesion and φ of 38.3°. Some peak values were determined but no sensible straight line could be fitted to them. For a normal stress σ_n of 4 MPa, a shear strength of 3.16 MPa may be calculated (4 MPa \times tan 38.3°). Assuming a uniform shear stress distribution, a load safety factor of 6.0 (3.16 MPa/0.524 MPa) may be estimated for the 58 level plugs. If the 1983 code safe shear stress of 0.83 MPa had been employed, a load safety factor of 3.8 would have been estimated.

If the lowest φ of 31.3° is assumed, then for a normal stress σ_n of 4 MPa, a shear strength of 2.43 MPa may be calculated (4 MPa \times tan 31.30). For a design shear stress of 0.524 MPa, a load safety factor of 4.6 (2.43 MPa/0.524 MPa) may be estimated for the 50 level plugs.

Shear strength of intruded concrete

Highly variable shear strengths were obtained from CSIR tests on 59–72 mm diameter cores, due probably to the large size and distribution of the coarse aggregate. While cohesion only varied from 11.8 MPa to 12.6 MPa, φ ranged from 29.2° to 53.1°. The lowest value of 29.2° is considered unreasonably pessimistic but if combined with a contact stress of 4MPa provides a shear strength of 2.24MPa (4MPa \times tan 29.2°). For a design shear stress of 0.524MPa, a load safety factor of 4.3 (2.24MPa/0.524MPa) may be estimated.

Summary of key engineering properties

Based on the tests carried out on the experimental and production plugs, the following engineering properties have been established, where tan E and tan Poisson’s ratio are evaluated at 30% UCS.

It is considered that these properties may be used for plug design and mathematical modelling at South Deep.

Conclusions

While many permanent boundary plugs have been installed in South Africa, it is considered timely to review design practice and in particular to assess the in-service condition and performance of existing plugs. For example, instrumentation (e.g. piezometers), should be incorporated at the construction joints of the plugs to measure internal pore water pressure gradients.

Once a boundary plug has been completed, including grout tightening of the rock-plug interface and surrounding rock mass, it is recommended that high quality coring should
be carried out randomly through a completed plug, in order to confirm the watertightness of the plug concrete, rock-plug interface and the surrounding rock after grout tightening. These boreholes must be independent of the grout tightening so that the tests can verify the residual watertightness attained in the adjacent rock mass.

The cores of the intruded concrete, rock-plug interface and surrounding rock should also be tested to determine the shear strength parameters \(c \) and \(\phi \). Hydrofracture tests should be executed at the rock-plug interface and in the surrounding rock mass to determine the in situ contact stress and in situ minor principal stresses more remote from the plug. Looking longer term, the modification of these stresses during plug tightening and when the plug is in service warrants investigation as a research project.

Such data, combined with shear strength parameters, can permit assessment of the:

- shear strength of the intruded concrete, rock-plug contact and surrounding rock, and thereby the load factor of safety against shear failure, and
- clamping stress across discontinuities and thereby the risk of their opening during flooding.

The use of these new data will improve mathematical models and permit more relevant sensitivity studies, i.e. where the significance of variations in design parameters and environmental conditions is studied.

Wherever practicable, permanent boundary plugs should be commissioned, i.e. proof tested by controlled flooding, to provide field data on the watertightness of the water barriers incorporating the plugs. This approach would be similar to commissioning a dam by controlled reservoir impounding.

Acknowledgements

The authors wish to thank the South Deep mine owner Placer Dome Western Areas Joint Venture for permission to publish this paper. Plug design and testing were overseen by an international review panel comprising C. O. Brawner (Canada), Dr D. A. Bruce (USA) and Professor G. S. Littlejohn (UK). Permeability testing was carried out by M. van Biljon of Rison Groundwater Consulting. In situ hydrofracture tests were executed by D.J. Venter and Dr W.D. Ortepp of SRK Consulting. All coring was carried out by Cementation Mining Skanska and associated laboratory tests were carried out by K. Drescher of CSIR. Supervising engineer for all works was A.H. Swart of SRK Consulting.

References

GLASSER, F.P. Cement grout performance in contact with acidic mine waters. 18th December 2002. (Internal PDWAJV Report).

WALKER AHIER, HOLTZHAUSEN. Design calculations for various pipes and flanges. Letter and calculation sheets. 11th July 2003.
In March 2004, molybdenum prices started to rise rapidly, responding to limited world roasting capacity and growing demand for molybdenum, mainly in stainless steel. By May 2005, prices had peaked at between US$40 and $50/lbMo, compared with an average price of about $4.50/lb for the years from 1994 to 2004. The new report from market analysts Roskill, notes that since mid-2005, prices have eased with improved supply, but remained in the US$20 to $30 range into late February 2006, well above their historic average.

The Economics of Molybdenum (9th Edition, 2006) examines the factors that will determine whether molybdenum prices will fall back to historic levels or, alternatively, whether a new floor price will be established. In addition to the shortage of roasting capacity, which does not appear to be addressed by new projects, prices for molybdenum substitutes have been increasing. The decline in Chinese molybdenum supplies to the industrialized world, as a result of China’s domestic demand for molybdenum growing and mine closures, may also sustain prices.

Limited roaster capacity and potential new molybdenum projects

Mine production of molybdenum has historically been surplus to demand, but in 2002 and 2003 was in deficit. Mine output was again surplus to demand in 2004 and 2005, although much less so than in the past, but there was a deficit of usable molybdenum products because of limited roaster capacity. This is a situation that is thought to be continuing in 2006.

In late 2005, some 24 molybdenum mining or concentrator projects were under consideration, with a combined capacity of around 105 ktpyMo. Six roaster projects with a combined capacity of only 42 ktpy were also being evaluated.

Three molybdenum-only mining projects are the largest: Idaho Generals’ Mount Hope project (15.4 ktpyMo) in Nevada, Moly Mines’ Spinifex Ridge project (11.4 ktpy) in Australia, and InteMoly’s Malmberg project (10.2 ktpy) in Greenland. However, of more immediate importance for world molybdenum supply is the addition of new roasting capacity to provide usable product. No major new capacity that is independent of new mine supply appears likely to come on stream before 2009.

Consumption of molybdenum

The global market for molybdenum is estimated to have grown from about 100 kt in 1990 to 181 kt in 2005, an average year-on-year growth rate of 4.3%. This compares with a world real GDP growth rate of 2.9% pa. The USA, Japan, Germany and China are the largest markets, together accounting for about 50% of world demand. Chinese consumption doubled to around 18 kt between 2001 and 2005.

The main end-use for molybdenum is in steel. Stainless steel accounted for an estimated 28% of worldwide molybdenum demand in 2005, followed by full alloy steel (15%), tool and high speed steel (10%), high strength low alloy steel (9%) and carbon steel (9%). Catalytic applications are the most important chemical end-use for molybdenum, accounting for about 8% of molybdenum consumption, and demand in this application is expected to grow at about 5% pa up to 2010.

Overall demand for molybdenum is expected to continue growing at slightly over 4% pa up to 2010, driven primarily by growing demand in China for use in stainless steel.

Production of molybdenum

Ten companies account for about two-thirds of world molybdenum mine production. Codelco from its four copper mining divisions in Chile, and Phelps Dodge from one molybdenum-only and three copper mines in the USA, are by far the biggest producers, together accounting for about a third of world mine production. Rio Tinto more than doubled molybdenum output from the Bingham Canyon mine in 2005 to become the third largest producer with almost 9% of world production.

Mine production of molybdenum increased from around 140 kt in 2002 to 180 kt in 2005, with output increasing by almost 16% in 2004 alone. In 2005, sharp falls in Chinese production were offset by greatly increased US, Chilean and Peruvian production. Five countries, the USA (32%), Chile (26%), China (20%), Peru and Canada accounted for 91% of world molybdenum mine production in 2005.

Tel: +44 20 8944 0066.
Fax: +44 20 8947 9568.
E-mail: info@roskill.co.uk
Electra Mining Africa in 2006*

Government support to top mining, construction, industrial and power generation show Government has again shown strong support for top mining, construction, industrial and power generation show Electra Mining Africa with the Department of Minerals and Energy (DME) confirming that Mining Week will run concurrently with Electra Mining Africa in 2006.

The DME and other parastatal service providers to the industry will exhibit at Electra Mining Africa and there will be a 5-day jewellery workshop where the creation of gold, diamond and platinum jewellery will be seen. The DME will also be hosting a co-locating conference, details of which will be available shortly.

Mining in Africa has hit boom times and many mining houses are either developing new ventures or upgrading existing operations in order to keep up with China's apparently insatiable demand for commodities.

‘This is good news for general industry, including manufacturers or suppliers of equipment to the mines, from tyres to lubricants, concrete to process plants and all types of mechanized equipment that will help miners recover ore-bodies more efficiently and cost-effectively,’ says John Kaplan, Managing Director, Specialised Exhibitions, organisers of the show.

Growth has also been seen at Electra Mining Africa, where over 85% of available exhibition space has already been taken with 450 exhibitors and 24 729 m² of contracted space.

As a value-added service to exhibitors, Specialised Exhibitions is running an awareness campaign to attract visitors from South Africa, Botswana, Lesotho, Zimbabwe, Zambia, Tanzania, Zambia, Namibia, Angola, Mozambique, and West African countries where mining is making an impact on the economies of places such as Mali and Ghana.

Arrangements are already in place to bring in international visitors from Germany, Spain, Austria and China.

Electra Mining Africa 2006 takes place at the Expo Centre, NASREC, Johannesburg, from 11–15 September, 2006.

* Issued by: Caroline Tointon, The PR Partnership, Public Relations and Marketing Communications Tel: (011) 805 5348; Fax: (011) 312 1464 E-mail: prpartnr@yebo.co.za