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Introduction

A very important study into failure
mechanisms for high slopes in hard rock was
carried out by Sjoberg (2000), in which he
simulated five different mechanisms. Possibly
the most important statement to come of out
this work appears in his conclusions, ‘There
are, without a doubt, many other possible
mechanisms, and there is also the possibility
that these currently unknown (or poorly
investigated) mechanisms are crucial for
higher and steeper slopes than those presently
existing.’ A common approach to the interpre-
tation of rock slope failure behaviour is to
back-analyse failures from observations before
and after the event. In such case studies, the

interpretation of the ‘failure surface’ will
usually be based on the observations after the
event. In some cases there may be additional
information from displacement monitoring
data. Analyses will usually assume that failure
takes place along that interpreted failure
surface (or along a fictitious surface in a limit
equilibrium analysis using a slip circle
approach). A forward analysis of stability, or a
slope design, will take into account orien-
tations of geological planes of weakness to
interpret potentially unstable wedge
geometries, or development of failure in the
rock mass. Back analyses will usually make
use of a limit equilibrium approach, which
considers the disturbing and resisting forces
acting on the rock mass above the failure
surface. Similarly, most forward stability
analyses will then consider the stability of
such wedges or potentially unstable masses
along the interpreted failure surfaces.
Questions that arise in this approach are:

➤ Is the chosen failure surface the surface
on which failure actually took place?

➤ Are the back-analysed strength
parameters of this surface representative
of the ‘strength’ of the rock slope?

➤ Is the chosen failure surface a unique
failure surface or does failure take place
on more than one such surface?

➤ Does failure take place on multiple
failure surfaces and in multiple locations
within the slope?

➤ What about the three-dimensional
geometry of the failure?

A programme of physical model tests,
carried out on two- and three-dimensional
models of jointed rock slopes, is described in
this paper and provides some responses to
these questions. These models were small
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Synopsis

The results of a series of physical model studies of the stability of
jointed rock slopes carried out some years ago are described. These
models were tested under centrifugal loading. Four ‘geological’
structures were tested; all had the same joint orientations and
strengths, but the relative spacing of the joints was different. The
results showed that the mechanisms of failure of the slopes varied
for the different models, and the gravitational loads at which failure
developed also varied. The following conclusions are drawn from
the results of the physical model tests:

➤ the mechanism of slope failure is by progressive deformations
throughout the slope

➤ the ratio of the spacings between the different sets of discon-
tinuities exerts considerable influence on the slope failure

➤ in the models tested, the intact material strength had no
noticeable influence on the stability of the jointed rock slopes
(note that for hard rock, similitude conditions indicate a
prototype slope height of 300 to 400 m, and therefore intact
rock failure might not be expected under simple gravity
conditions, i.e. no tectonic stresses)

➤ rock slope failures are three-dimensional and in general are
not amenable to two-dimensional simplification

➤ knowledge of the orientations of discontinuities in the slopes
does not allow prediction of a unique failure surface, nor of a
volume of failure. The volume of failure is determined to a
large extent by the plan configuration of the slope.
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Considerations of failure mechanisms associated with rock slope instability

scale models, and they were tested in a centrifuge to achieve
the required levels of gravitational loading. The geometry,
construction and testing of these models are discussed in the
following sections.

Geometry of the models

Many failures of rock slopes appear to occur by sliding along
major individual discontinuities such as fault planes and
bedding planes, or along combinations of these planes.
Before failure of the slope, it is often possible to recognize
these potential failure planes, and apparently appropriate
methods of slope stability analysis exist (for example, early
publications by Londe et al., 1969; John, 1968; Wittke, 1968;
Hoek and Bray, 1981; and, more recently, Chen, 1995) that
can be applied to such cases. However, do large slope failures
actually occur as a result of such planar failures? 

In addition, there are many rock slopes in which the
configuration of discontinuities in the rock mass does not
define a unique failure surface or combination of rock failure
surfaces. Such a configuration is the very common and
typical sedimentary rock mass—continuous bedding planes,
a joint set continuous between the bedding planes and a
further, discontinuous, joint set—where the angle of
inclination of the bedding planes is less than both slope
angle and angle of friction of the bedding plane surfaces. The
potential ‘failure surface’ in this case is non-trivial. In this
paper, investigations into the behaviour of rock slopes with
this structural configuration, using small scale models, are
described. The centrifugal test method was employed to test
small scale two-and three-dimensional models. The configu-
ration of the two-dimensional models is shown in Figure 1;
the dip of the bedding planes was 33° and the dip of the
cross joints 57°. Note that, with this model geometry, it was
also possible to examine the behaviour of slopes in which the
bedding dips into the slope—the left-hand slope in Figure 1.

The aims of the model tests were:

➤ to investigate qualitatively the progressive mechanisms
of failure in rock slopes with the structural configu-
ration described above

➤ to compare the behaviour of two-and three-
dimensional slopes.

Although the discontinuity orientations were the same in
all two-dimensional models, different ratios of joint plane
spacings to bedding plane spacings were used. Four such
ratios were tested, as summarized in Table I.

Properties of the model material and construction of
the models

The physical models were constructed from an equivalent
model material, which was developed as a similar material to
quartzite (Krauland, 1971). It is therefore representative of a
hard, brittle rock. The testing of the model material and the
shear strength of the discontinuity surfaces is described in
the following section. Thereafter, the preparation and testing
of the models will be described.

Deformation and strength testing of the model
material and the discontinuity 
Uniaxial compression tests were carried out to determine the
deformation properties of the intact model material. Cores

were drilled from blocks of the model material for this
purpose. These results are summarized in Table II for
information.

Shear tests were carried out on specially prepared
specimens: for the bedding planes, 54.8 mm diameter
specimens were cored out of blocks of the model material.
The cores were cut into discs that were subsequently ground
to a thickness of 12.7 mm to produce ‘bedding plane
surfaces’. These discs were mounted in special holders and
the shear strength of the surfaces tested in a Wykeham
Farrance shearbox. Figure 2 shows a typical shear force-
shear displacement curve for these surfaces. This shows that
initial shear movements occur at low shear stress and that
the shear strength increases with displacement to a residual
value. The results of all bedding plane shear tests are shown
in Figure 3. It was assumed that the saw cut joint surfaces
would have the same shear properties as the bedding planes.

Specimens containing artificial joint surfaces were
prepared such that the dimensions of the surface on which
shear took place were 51 mm x 6.4 mm, with shear taking
place across the 6.4 mm direction. Again tests were carried

▲
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Figure 1—Configuration of two-dimensional models

Table I

Spacing of joints and bedding planes in the models

Bedding plane Joints spacing Spacing Number of
Spacing (mm) (mm) ratio models

3.4 12.7 3.74 4
4.6 12.7 2.76 5
3.4 6.35 1.87 4
6.35 6.35 1.0 5
3.4 12.7 3.74 3*

Table II

Deformation and strength properties of intact 
model material

Data Modulus of Poisson’s Uniaxial compressive
elasticity (GPa) ratio strength (MPa)

Mean 4.2 0.18 3.9
Std deviation (%) 11 15 16
Number of specimens 13 13 45

*Three-dimensional models

Angled former

198.4 mm

60 mm

80°

13
1.

7 
m

m

70
 m
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out in the shear box, with the specimens being mounted in a
specially prepared holder. The results of these tests are
shown in Figure 4. Only the peak shear strength was tested
since the bedding plane tests yielded the residual shear
strength of the material.

Preparation of the physical models

The model material was prepared in the form of blocks,
which were subsequently cut into thin plates. The plates were
ground on both sides using a tombstone grinding machine.
These ground surfaces represented the bedding plane
surfaces. The thin plates were cut into strips 12.7 mm wide.
In the three-dimensional models, the sides of the strips
represented the continuous set of joints between bedding
planes. Their width represented the spacing of this joint set.
Cross joints at right angles to the bedding planes and to the
continuous joints were formed in the strips by inducing

tensile fractures across the thickness of the strips. The
spacing of these induced joints was 12.7 mm for the three-
dimensional models, but variable, as in Table I above, for the
two-dimensional models.

In all models the slope angle was 80° and the slope
height was 70 mm.

The two-dimensional models were built up by hand using
strips of model material 12.7 mm wide, in which artificial
joints had been induced. The pieces of model material
comprising the strips were placed so that joints were
continuous between two bedding planes only, that is, they
were staggered so that joint planes in one strip did not
coincide with joint planes in adjacent strips. The continuity of
this joint ‘set’ was therefore 50%. An angled former, placed
in the corner of the model supporting frame, determined the
inclination of the bedding planes. In the first two models an
angle of 30° was used. However, with this bedding plane dip
no slope failures occurred and therefore all subsequent
models were built with the bedding dipping at an angle of
33°. Joint spacing and bedding spacing were constant
throughout a model.

Three three-dimensional models were prepared and their
toe plan configurations are shown in Figure 5. Note that, in
models 2 and 3, the radius of curvature given applies to the
central 90° arc and that the remaining curvature has a
smaller radius, that is, there is a compound curvature. The
models were built up by hand from the base using the 
12.7 mm wide jointed strips. A bedding plane dip of 33° was
used and the strips were laid at an angle of 45° to the central
vertical section through the pit. The resulting geological
structure is summarized in Table III in which it is assumed
that north is the direction of the radius arrows in Figure 5.

This geological structure allowed for sliding on the
bedding planes, with the two joint sets providing release
planes.

Testing of the physical models

The models were tested in a large centrifuge (described by
Hoek, 1965), capable of imposing a simulated gravitational
acceleration of up to 1000 g. Physical model testing in a
centrifuge is common in the civil engineering environment
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Figure 2—Typical shear force-shear displacement curve for ‘bedding
plane’ surfaces

Figure 3—Results of bedding plane shear tests
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(for example, Phillips et al., 2002), but it has apparently not
been used recently for deep, hard rock situations. In the
testing programme, there was no intention to simulate a
particular prototype slope, but simply to investigate slope
behaviour mechanisms. Therefore, the testing procedure
involved gradually increasing the centrifugal loading until

maximum values of about 600 g and 550 g were attained for
the two- and three-dimensional models, respectively. For
interest, at the maximum gravitational loading, the height of
a similar (prototype) slope in hard rock would be in the 
450 m to 500 m range. Model behaviour during centrifugal
loading was recorded photographically using a triggered
stroboscope as a light source.

Figures 6, 7, 8 and 9 show examples of typical sequences
of failure of the two-dimensional models (the numbers of
models tested are given in Table I). It is immediately
apparent from these figures that failure takes place by
progressive sliding on the bedding planes, generally
throughout the height of the slope, with tensile opening of
the cross joints. Rotation of blocks was also observed, partic-
ularly in the case of the 1:1 joint to bedding plane spacing.
Failures are therefore combinations of different mechanisms.
Stepped ‘surfaces’ are formed that have average angles of
inclination that are much steeper than the dip of the bedding
planes. A slight bulging of the slope face just above the toe
was noticed before failure in some of the models. This was
apparently due to sliding on the bedding planes in this
region. The intact strength of the material had no apparent
effect on the failure of the slope since no failures of intact
pieces were observed before a collapse. However, the small
pieces that were involved in the collapse debris were found to
be crushed and broken up to some extent.  After collapse, the
presence of the collapse debris at the base of the slope
generally had a stabilizing effect on the remaining slope.

The mode of failure of the model slopes appeared to be
controlled entirely by the ratio of the joint spacing to the
bedding plane spacing. This in turn controls the capacity of
the configuration to transmit tensile stress and also the
amount of sliding which can take place in the ‘coherent’
mass before complete separation of adjacent pieces occurs,
resulting in collapse. This can be easily understood by
referring to Figure 10. In this figure are shown two small
sections of a rock mass consisting of continuous bedding
planes and discontinuous cross-joints. In the two cases the
joints have different spacings. If there is a compressive stress
acting normal to the bedding planes, then, by virtue of the
shear strength of the bedding planes, a tensile stress can be
sustained in a direction normal to the joint planes. The
magnitude of this tensile strength is dependent on the
spacing of the joints i.e. the length ‘d’. It is clear, therefore,
that, in the first case where the joint spacing is small, the
capacity to withstand tensile stress will be much lower than
in the second case where joint spacing is greater. It is clear
also that more sliding can take place in the second case
before complete separation occurs and a tension crack is
formed.

As can be seen from Table I, four different values of the
ratio of joint spacing to bedding plane spacing were tested in
the two-dimensional models. The modes of failure will now
be considered for each ratio in turn.

Joint spacing to bedding plane spacing ratio S = 1.0
(Figure 6)

There is very little displacement along the bedding planes of
the right-hand slope before collapse of some material occurs

Considerations of failure mechanisms associated with rock slope instability
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Figure 4—Results of shear tests on artificial joints

Figure 5—Floor plan configurations of the three-dimensional models
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indicating that very little tensile stress can be sustained in a
direction parallel to the bedding planes. Consequently, no
tension cracks (or only very small ones) were formed behind
the crest of the slope. Therefore, a geological configuration
such as in these models would give very little warning of an
impending slope failure.

With increasing centrifugal acceleration, the right-hand
slope breaks back further, additional collapses again
occurring with little warning. Rotational movements of some
of the pieces of material occurred in several cases. 

This configuration, with S = 1.0, was the only one in
which any failure of the left-hand slope occurred, as can be
seen in Figure 6. Rotational movements of the blocks
occurred and this type of failure may be ascribed to toppling.

Joint spacing to bedding plane spacing ratio S = 1.87
(Figure 7)

The behaviour of the right-hand slopes with this configu-
ration was characterized by the opening up of joints close to
the face of the slope at very low centrifugal accelerations,
owing to sliding on the bedding planes. This sliding occurs
over the whole height of the slope. Failure progresses by the
increased opening of joints further back into the slope.
Further sliding occurs on the bedding planes and stacked
columns of material pieces are formed, which can stand
entirely free from contact with the rest of the slope. These
columns eventually become unstable when displacements on
the bedding planes become too great, and collapse finally

Considerations of failure mechanisms associated with rock slope instability
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Table III

Geological structure of the three-dimensional models

Discontinuity plane Strike (degrees) Dip (degrees) Spacing (mm) Continuity Discontinuity surfaces

Bedding N90°E 33°S 3.4 Continuous Ground faces of the strips
Joint N51°W 67.5°NE 12.7 Continuous between, but not across bedding Diamond saw cut edges of the strips
Joint N51°E 67.5°NW 12.7 Discontinuous Artificial joints induced by tensile fracture

Figure 6—Two-dimensional model (S = 1.0)

Figure 7—Two-dimensional model (S = 1.87)

28g                                          144g                                            227g

8g                                        12g                                         275g



Considerations of failure mechanisms associated with rock slope instability

occurs. Failure progresses backwards into the slopes, and, as
each column collapses, a larger pile of rubble is formed,
stabilizing the lower parts of the slope.

Joint spacing to bedding plane spacing ratio S = 2.76
(Figure 8)

Similar behaviour to that for S = 1.87 was observed. Sliding

on the bedding planes again took place over the whole height
of the slope and column formation was again evident, very
deep tension cracks being produced. The columns in this case
were more stable, however, owing to their greater base
width. Figure 8 shows an interesting case—a column became
detached complete over most of the slope height, then began
to buckle and, in so doing, the top of the column again made
contact with the rest of the slope. This stabilized the bulging
column for some time before it finally collapsed.

The stable loosening of the mass behind the crest of the
slope is increased in extent compared with S = 1.87 
(Figure 7).

Joint spacing to bedding plane spacing ratio S = 3.74
(Figure 9)

Very large displacements along the bedding planes before
collapse characterize the behaviour in this case. Consequent
opening up of joints far behind the crest of the slope occurs.
This behaviour is due to the capacity of the mass to
withstand a considerable degree of tensile stress in the
direction parallel to the bedding planes. The slope even
reached the overhanging stage before final collapse took
place. Collapse involved only the upper half of the slope.

Discussion

Although the behaviour of models with the same S value was
similar, there was some variation in the centrifugal
acceleration at which corresponding deformations, and
collapse, occurred for models with this S value. It is believed
that the main reason for this is the variation in the placing of
the pieces of model material. Referring to Figure 11, it can be
seen that the same joint spacing, but different relative
location, will yield different tensile strengths normal to the
joint plane. If a slope has the relative joint location shown in

▲
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Figure 9—Two-dimensional model (S = 3.74)

Figure 10—Effective tensile strength of rock mass

Figure 8—Two-dimensional model (S = 2.76)
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case (b) then joints will open more easily than if case (a)
occurs. Consequently the case (b) type slope will fail sooner.
In building up the models it was attempted to adhere to case
(a) joint geometry. However, small variations occurred and
probably explain the differences in the failure accelerations of
the models. Recent numerical modelling using a discrete
element method (Salim and Stacey, 2006) has shown
behaviour similar to that observed in the physical models
with regard to the locations of failure, the progressive
development of failure and the influence of the relative
locations of the joints.

The mode of failure of all model slopes tested was
progressive. Failure of the right-hand slope was by
progressive sliding down along bedding planes. In no case
did collapse of the entire slope occur without warning. There
was no clearly defined single surface of failure, and these
slopes would therefore not be amenable to conventional slope
stability analysis by limit equilibrium methods. Failure of the
left hand slope only occurred with S = 1.0.

The proximity of the boundaries showed no obvious
influence on the behaviour of the models.

Three-dimensional models

As with the two-dimensional models, failure took place by
sliding on the bedding planes, and there was evidence of
opening up of joints. Since the models were three-
dimensional and slopes under load in the centrifuge were
photographed from the front (i.e. the slope faces were
photographed), it was not possible to study the progressive
opening of joints. The progressive nature of failure was only
apparent by sequential sliding of pieces of material from the
face of the slope. The quality of the photographs taken
during centrifugal loading is not satisfactory for reproduction
in this paper.

Figures 12a, 12b and 12c show the extent and volume of
failure in the three dimensional models. These photographs
also illustrate the geological structure modelled.

The model with a plane slope displayed a break-back
much greater than the other 3D models. These models were
bounded laterally by the sides of the box containing the
model, which effectively formed ‘large lateral faults’ along
which the rock mass slope could fail, and, as a result of this
side boundary effect, the plane slope failed along its whole
strike length. The extent of failure was defined by the slope

geometry and the dip of the bedding planes and is equivalent
to the two-dimensional situation (Figure 9). When the plan
radius of curvature of the slope becomes less than infinity,
the volume of the failure is restricted considerably (Figures
12a and 12b). The presence of the cross-joints allows a

Considerations of failure mechanisms associated with rock slope instability
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Figure 11—Influence of joint location on rock mass tensile strength

Figure 12a—Model with normalized floor plan radius of curvature of
1.56

Figure 12b—Model with normalized floor plan radius of curvature of
3.88

Figure 12c—Model with floor plan radius of curvature of ∞

(a) (b)
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‘wedge’ of material to slide out on the bedding planes with
associated opening of the joints. The configuration of the
failed zone becomes fully three-dimensional and cannot be
idealized by a two-dimensional cross-section. The break-
back of the slope is much restricted for smaller plan radii of
curvature and approximate quantitative distances of break-
back are summarized in Table IV for the three- and two-
dimensional models.

The variation in the distances of break-back indicates
clearly the stabilizing effect of small plan radius of curvature.
It is clear from Table IV that, even for large radii, the slope
failure would still be restricted. Interpretation and extension
of these results using a joint trace model (Armstrong and
Stacey, 2005) indicates that the beneficial effects of concave
curvature of the slope disappears at a normalized radius of
curvature of about 10, as shown in Figure 13. 

Piteau and Jennings (1970), in extrapolating empirical
data on slopes in the Kimberley area, found that the effect of
plan radius of curvature became negligible for radii only in
the region of 20 times the slope height. Their results referred
to the slope plan radius at surface, however, whereas the
model results above refer to the plan radius at the toe 
of the slope.

The restriction of the failure also applied to the
centrifugal acceleration at which the failure occurred. In the
case of the plane slope, failure occurred in the same range of
centrifugal accelerations as observed in the two-dimensional
models. However, for the three-dimensional models with
smaller plan radii of curvature, failure occurred only at higher
centrifugal accelerations. The practical interpretation of this is
that instability would develop only for greater slope heights.

Conclusions

The model tests have shown that, in the absence of clearly
predefined failure surfaces, failure of a rock slope does not
take place in the form of sliding of a coherent mass of
material. The two-dimensional tests indicated that the failure
is progressive, with deformations taking place throughout the
slope. It is believed that, in real rock slopes, the development
of failure very commonly involves this type of behaviour. In
the particular configuration tested where bedding planes
dipped towards the slope face, failure was by sliding on the
bedding planes, with associated opening of cross-joints, and
some rotation in the 1:1 joint to bedding plane spacing case.
Slope failure involved a combination of two or three different
mechanisms. The mechanism of the progressive slope failure
and the form of the resulting surfaces of failure (note that an
overall single failure surface, as applied in a limit equilibrium
analysis, could not be defined) depended on the spacing,
continuity and shear strength of the planes of weaknesses
and on the ratio between the spacings of different sets of
these planes (i.e. ratio of joint spacing to bedding plane
spacing). It was the value of this ratio that appeared to
determine the form of the slope failure. The smaller the ratio,
the less the tensile stress that can be sustained by the mass
and the greater the likelihood of toppling of rock blocks.
Essentially, except for the spacings of joints, in which only

▲
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Table IV

Break-back results for the three- and two-
dimensional models

Normalized radius of curvature Break-back 
(Toe radius/slope height) (mm)

∞ 33
1.56 8
3.88 18
∞ (2D models) 30–34

Figure 13—Break-back as a function of slope plan radius of curvature
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the mean values varied, all jointing parameters (geometry
and strength) were identical in all the models. However, the
behaviour mechanisms of the models were significantly
different. In the configuration where bedding planes dipped
into the slope face, slope failures were found to occur only for
the smallest value of the joint spacing to bedding plane
spacing ratio tested, namely S = 1.0. Based on the variations
in observed slope behaviour, it may be concluded that
prediction of the behaviour of real rock slopes using
deterministic analyses is unlikely to be successful, and that
probabilistic approaches, taking into account the jointing
variability, will be required to provide realistic answers.

The three-dimensional tests proved that, for analysis of
slope stability, it is in general not admissible to consider a
two-dimensional section through the slope. The plane slope
model (plan radius of curvature infinity) showed very similar
behaviour to the equivalent two-dimensional models,
indicating that, in this case, a two-dimensional simplification
is justified. However, model slopes with a concave radius of
curvature showed a great increase in stability, failures being
truly three-dimensional in form and occurring only at higher
centrifugal accelerations. The volumes of material involved in
the failures were smaller for smaller plan radii of curvature.
In real slopes, failure geometries are generally three-
dimensional, even if the slope has a plane geometry.

The intact strength of the material had no apparent effect
on the behaviour of the slopes. This is to be expected since
the model material used simulated hard rock. Softer, weaker
rocks would have an influence on the failure behaviour of
slopes.

For the configuration of discontinuities and models
tested, the following conclusions may be summarized:

➤ The mechanism of slope failure is by progressive
deformations throughout the slope

➤ Slope failure involved a combination of two or three
different mechanisms

➤ The ratio between the spacings of different sets of
discontinuities exerts considerable influence on the
slope failure

➤ Realistic prediction of real jointed rock slope behaviour
is only likely to be possible using probabilistic
approaches

➤ In the models tested, the intact material strength had
no noticeable influence on the stability of jointed rock
slopes

➤ Rock slope failures are usually three-dimensional and
in general are not amenable to two-dimensional simpli-
fication

➤ Knowledge of the orientations of discontinuities in the
slopes does not allow prediction of a unique failure
surface nor of a volume of failure. The stability of a
slope and, if failure does occur, the volume of the
failure, are determined to a large extent by the plan
configuration of the slope.
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