Ilmenite smelting: the basics
by P.C. Pistorius*

Synopsis
While some of the practical details of ilmenite smelting are not well documented, there is a substantial body of literature on the principles of ilmenite smelting, and the behaviour of solidified titania slag. This information is summarized, focusing on the basic reactions, departure from equilibrium, the behaviour of impurities, and reactions of solidified slag. The emphasis is on the South African operations.

Basic reactions
This paper briefly reviews the principles of the ilmenite smelting process. Ilmenite has the nominal composition FeO·TiO₂. South African beach-sand ilmenites are close to this nominal composition, with the main impurities being MnO, MgO, SiO₂ and Al₂O₃ (amounting to some 3% of the mass of the ilmenite).

There are two main routes that are used to upgrade ilmenite, to serve as a feedstock for the production of TiO₂ pigment. Part of this route involves chlorination of the feedstock in a fluidized bed, to yield volatile chlorides as products. These chlorides are then separated by selective distillation, to yield pure TiCl₄ which is then processed further to form pure TiO₂.

The two main routes to upgrade ilmenite to titanium feedstock are ilmenite smelting, and the synthetic rutile route. Synthetic rutile is produced by solid-state reactions; for example, in the Becher process (as practised widely in Australia) ilmenite is reduced to a mixture of metallic iron and rutile; the iron is then removed by leaching.

In ilmenite smelting, the iron content of the oxide is also lowered by reduction to metallic iron, but this takes place in the liquid state, at a much higher temperature (of around 1650°C). Ilmenite smelting thus yields two products: a titania-rich slag, and molten iron. This is in contrast with the Becher process, where the iron is removed as a waste product.

Ilmenite smelting as practised in South Africa (at Richards Bay Minerals, Namakwa Sands, and Exxaro KZN Sands) uses an electric furnace (AC or DC) to provide the required energy input.

The two basic reactions in ilmenite smelting are the following:

1. Reduction of FeO from the slag
 \[\text{FeO} + C \rightarrow \text{Fe} + \text{CO} \]

2. Partial reduction of TiO₂ in the slag
 \[\text{TiO}_2 + \frac{1}{2} \text{C} \rightarrow \text{TiO}_1.5 + \frac{1}{2} \text{CO} \]

Reaction [1] proceeds further to the right during ilmenite smelting than Reaction [2]; possible reasons for this are considered later. The net effect of the balance between these two reactions is that the composition of the molten slag remains close to M₃O₅ stoichiometry—i.e., the slag can be viewed as a molten mixture of Ti₃O₅, FeTi₂O₅, MnTi₂O₅, Al₂TiO₅, MgTi₂O₅, V₂TiO₅ and Cr₂TiO₅. The solidified slag is then a largely single-phase material (with this phase being the pseudo-brookite—M₃O₅—phase, also known as ‘karrooite’), with only small proportions of other phases (mainly rutile, and silicates).

These reactions proceed at high temperature, because the high-titania slag has a high melting point (around 1650°C). The exact liquidus relationship in this system is not known, but a calculated diagram is shown in Figure 1 (a). This diagram serves to illustrate that both FeO and TiO₁.₅ serve to flux TiO₂, lowering the liquidus temperature of the slag. For slags that lie along the FeTi₂O₅-Ti₃O₅ join (line C in Figure 1), calculated liquidus and solidus temperatures are shown in Figure 1 (b). Note the very narrow (predicted) liquidus-solidus gap, of 20–30°C.

* Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria.
© The Southern African Institute of Mining and Metallurgy, 2008. SA ISSN 0038–223X/3.00 + 0.00. This paper was first published at the SAIMM Conference, Heavy Minerals, 10–14 September 2007
Ilmenite smelting: the basics

The second major constraint is on the balance between the main process inputs, namely power, ilmenite feed rate, and reductant feed rate. In the ilmenite smelter, composition and temperature cannot be controlled independently. The reason for this is that the furnace operates with a 'freeze lining' of solidified slag against this furnace wall. This solidified slag serves to contain the molten slag, and is used because of the aggressive nature of the titania slag towards conventional refractories. Because the smelter operates with liquid slag in contact with solidified slag, and because the slag layer is expected to be well mixed, the slag temperature is expected to remain close to the melting point (liquidus temperature) of the slag. In addition, the slag composition remains close to Mn₃O₅ stoichiometry. As Figure 1 shows, the effect is that slag composition and temperature are strongly linked, and cannot be separated—at least under steady-state conditions.

The implication of this for controlling the process inputs is illustrated by Figure 2, which summarizes the result of mass and energy balances for ilmenite smelting (based on one of the local ilmenites). The enthalpy expression for the slag that was used in this calculation has been given

Constraints in ilmenite smelting

Several constraints limit the operating ranges of ilmenite smelters. One of the major constraints is on the slag composition. The reason for this is that the chlorination process can handle only low levels of impurities (Table I), mainly because of the effect of impurities such as MgO and CaO on the stability of the fluidized bed: the boiling points of MgCl₂ and CaCl₂ (the reaction products of MgO and CaO during chlorination) are above the chlorination temperature—so these chlorides accumulate in the fluidized bed. The strict specifications on impurities imply that no fluxing additions can be made, and that impurity levels in the reductant need to be limited.

![Figure 1(a)](image1.png) Calculated liquidus diagram of ilmenite smelter slags. Compositions are plotted as mass fractions, and temperatures are in °C. Note that this diagram is for slags that contain only FeO, TiO₂ and Ti₂O₃. Real slag compositions lie just above line C, which traces the compositions of the Mn₃O₅ (pseudobrookite) solid solutions.

![Figure 1(b)](image2.png) Liquidus and solidus temperatures along the Ti₃O₅-FeTi₂O₅ join. The composition is plotted as the mole fraction of FeTi₂O₅ in the pseudobrookite solid solution. 10% FeO corresponds to an FeTi₂O₅ mole fraction of 0.32. Abbreviations: sl—slag; psb—pseudobrookite

![Figure 2](image3.png) Required carbon input and resulting (%FeO) in ilmenite smelter slag, for steady-state operation and for slag compositions remaining close to stoichiometric Mn₃O₅.

<table>
<thead>
<tr>
<th>Table I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical specification of slag used in the chloride process (mass percentages)</td>
</tr>
<tr>
<td>%TiO₂</td>
</tr>
<tr>
<td>%Ti₂O₃</td>
</tr>
<tr>
<td>%FeO</td>
</tr>
<tr>
<td>%SiO₂</td>
</tr>
<tr>
<td>%Al₂O₃</td>
</tr>
<tr>
<td>%CaO</td>
</tr>
<tr>
<td>%MgO</td>
</tr>
<tr>
<td>%MnO</td>
</tr>
<tr>
<td>%Cr₂O₃</td>
</tr>
<tr>
<td>%V₂O₅</td>
</tr>
</tbody>
</table>
Ilmenite smelting: the basics

elsewhere. The figure has important implications for the way in which process inputs need to be changed relative to existing set points, if stable operation is to be maintained. For every 1 MW change in electrical energy input, the carbon input needs to be changed by 186 kg; put another way, this means that for every 5.3 kWh increase in electrical energy input, the carbon input needs to be increased by 1 kg. It is emphasized that these values are based on theoretical calculations, but similar values are expected for actual furnace operations; the ratio of approximately 5.3 kWh per kg of carbon has also been confirmed with a more comprehensive furnace model.

The same strict link between inputs of electrical energy and reductant holds under dynamic conditions, for example when the FeO content of the slag is being increased or decreased. Calculated changes in required inputs for such changes are shown in Figure 3. For more rapid changes in FeO content (towards the left in the figure), the offsets in energy and carbon inputs (relative to the original steady-state value) need to be larger, as expected—but the ratio of approximately 5 kWh of (changed) energy input per 1 kg of (changed) carbon input also holds under these conditions. If the energy and carbon inputs are not matched, the process is destabilized. For example, insufficient carbon input (which implies excessive energy input) will cause the freeze lining to be melted away. An extreme version of this is illustrated in Figure 4, which shows the (calculated) rapid loss in freezing lining if power input into the furnace is maintained, without any reductant input. Note that growth of the freeze lining is much slower than the freeze lining if power input is maintained without any feed—this is because the heat losses through the side wall are much smaller than the power input into the furnace.

If the energy input is too small for the amount of carbon fed, partial solidification of the slag is expected. This may either cause the freeze lining to grow, or can result in the precipitation of solid pseudobrookite in the slag. The latter effect can give rise to uncontrolled slag foaming, because of the sharp increase in the apparent viscosity of ilmenite smelter slags, just below their liquidus—see Figure 5. This sharp increase in apparent viscosity for a small decrease in temperature is consistent with the predicted small liquidus-solidus gap—see Figure 1.

Equilibria and departure from equilibrium in ilmenite smelting

Ilmenite smelting is characterized by departure from equilibrium in several ways:

Figure 3—Required average difference between the energy and carbon inputs during a decrease in FeO content (upper half of figure), and an increase in FeO (lower half of figure), as functions of the relative change in slag mass per one per cent change in FeO content. The curves for energy and carbon inputs are exactly superimposed, for a ratio of 5 kWh of energy to 1 kg of carbon

Figure 4—Calculated response of freeze lining thickness and furnace temperature (T), if no ilmenite is fed to the furnace, and the furnace power is maintained.
Ilmenite smelting: the basics

Thermal non-equilibrium

The metal in the smelter is significantly colder than the slag—typically by some 150°C. This means that the metal is at a temperature lower than the melting point of the slag. Partial solidification of the slag at the contact with the metal is hence expected. It is not clear what effect this has on furnace operation—but the temperature difference between metal and slag is the suggested origin of the slag composition relationship (i.e. Mg$_3$O$_5$ stoichiometry), as discussed below in the section on ‘reaction mechanisms’.

There is another important departure from thermal equilibrium in the smelter, which is the formation of a freeze lining on the furnace wall where it is in contact with the slag. This serves to protect the furnace lining; if the freeze lining were not present, the slag would tend to attack the lining by dissolution. As examples of the expected interaction, Figure 6 shows the predicted equilibrium phases for reaction of different proportions of refractory and smelter slag, for a high-alumina material, and for magnesia material. The magnesia material is clearly more suitable, since it forms a solid Mg$_2$TiO$_4$ (spinel) product—in contrast with the high-alumina material, with liquid formation for even very low ratios of slag to refractory: the solidus temperature of the combination of slag and high-alumina refractory is below the assumed temperature of 1660°C. Even the relatively resistant behaviour of the magnesia material is not sufficient in practical smelters, because of the very strict limitation on the allowable MgO content in the slag product (see Table I). This highlights the need for a freeze lining.

Chemical non-equilibrium

The relative abundance of several pairs of species in the furnace is sensitive to how oxidizing or reducing conditions are. Three examples of such pairs are Fe/FeO, TiO$_{1.5}$/TiO$_2$, and C/CO. In each of the three pairs listed here, the species named first is favoured by more strongly reducing conditions, and the second by less strongly reducing conditions. Hence, if conditions are more strongly reducing, a lower FeO activity and a higher TiO$_{1.5}$ activity are expected in the slag, and a higher carbon activity in the metal.

It can be tested whether these pairs are in mutual equilibrium, by writing the coupled reactions, for example:

\[
Fe + 2TiO_2 = FeO + Ti_2O_3 \quad [3]
\]

Another way to consider possible coupling of the reactions is by comparing the oxygen activity where each pair would be in equilibrium; examples of such reactions are:

\[
Fe + \frac{1}{2}O_2 = FeO \quad [4a]
\]

\[
Ti_2O_3 + \frac{1}{2}O_2 = 2TiO_2 \quad [4b]
\]

\[
C + \frac{1}{2}O_2 = CO \quad [4c]
\]

Both ways of comparing these possible equilibria (Reactions [5] and [4]) show mutual non-equilibrium between the species. For example, Figure 7 compares the relationship between the FeO and Ti$_2$O$_3$ contents of the slags with the equilibrium relationship, which can be predicted by considering the equilibrium constant of Reaction [3], and the

Figure 6—Predicted phase composition after reaction of (a) pure MgO and (b) high-alumina material (98.5 mass% Al$_2$O$_3$—1.5 mass%) with different proportions of ilmenite smelter slag (54.4 mass%TiO$_2$—33.7 mass% TiO$_3$—9.7 mass% FeO—1.2 mass% MgO—1.2 mass% MnO) at 1660°C. ‘M’ is periclase (MgO), ‘sp’ is spinel (Al,Mg,Mn,Fe,Ti)$_3$O$_4$, ‘ps’ pseudobrookite (Mg,Fe,Mn,Ti)$_3$O$_5$, ‘il’ ilmenite (Mg,Mn,Fe,Ti)$_3$O$_5$, ‘l’ is liquid slag, ‘c’ is corundum (Al$_2$O$_3$), ‘m’ is mullite, and AT is tialite (Al$_4$TiO$_9$). Calculated using FactSage12
Ilmenite smelting: the basics

This uncertainty means that distribution of species such as Mn, Cr, S and P between metal and slag in the ilmenite smelter cannot be predicted with any certainty—the only broad guideline is that manganese, chromium and phosphorus are expected to partition to the slag to a greater extent under more oxidizing conditions (i.e. with a higher FeO content in the slag), whereas sulphur is expected to partition to the slag to a smaller extent if the FeO content of the slag is higher. However, both sulphur and phosphorus are expected to partition to the metal preferentially.

Note that Rosenqvist suggested that the slag composition for equilibrium of Reaction [3] in fact lies close to M_3O_5 stoichiometry, in contrast with the predictions shown in Figure 7. If this is the case, the implication is that the slag composition does not depart from slag-metal equilibrium. However, this suggestion does not agree with the FactSage predictions, nor with the experimental data of Pesl and Eriç. It is hence seen as likely that the slag and metal are not in equilibrium.

Behaviour of other impurities in the ilmenite smelter

With the exception of sulphur and phosphorus, most impurities in the ilmenite, and the ash in the reductant, are expected to report to the slag phase. This means that the slag purity is controlled by ilmenite (and reductant) purity, and that there is little or no scope to decrease impurity levels in the slag.
Ilmenite smelting: the basics

Aspects of the reaction mechanisms

Many details of the reaction mechanism within the smelter remain unknown. However, any proposed mechanism needs to explain or at least include several important features, which include the temperature difference between slag and metal, the remarkably consistent relationship between the FeO and TiO\textsubscript{2} contents of the slag (see Figure 9), and the density difference between the reductant and the slag.

The relationship between FeO and TiO\textsubscript{2} is such that the composition of the slag follows M\textsubscript{3}O\textsubscript{5} stoichiometry. This means that the slag composition can be represented as

\[[\text{FeO}, \text{MgO}, \text{MnO}]_3 \times [\text{TiO}_2]_5 \times [\text{Cr}_2\text{O}_3, \text{V}_2\text{O}_3, \text{Al}_2\text{O}_3]_3. \]

where each divalent cation (Fe2+, Mg2+ and Mn2+) is associated with two tetravalent Ti4+ cations in the slag, and each pair of trivalent cations (Ti3+, Cr3+, V3+, Al3+) is associated with one tetravalent Ti4+ cation in the slag. There are several ways to test whether the slag composition does obey this precise relationship: one is to calculate the equivalent FeO content of the slag (the sum of all divalent oxides except CaO, expressed as a corresponding number of moles of FeO), and the equivalent TiO\textsubscript{2} content (the sum of all trivalent oxides, expressed as a corresponding number of moles of TiO\textsubscript{2}). The corresponding expressions are:

The equivalent FeO content is:

\[(%\text{FeO})_{eq} = \left(\%\text{FeO} \right) + \left(\frac{M_{\text{FeO}}}{M_{\text{MgO}}} \right) \left(\%\text{MgO} \right) + \left(\frac{M_{\text{FeO}}}{M_{\text{MnO}}} \right) \left(\%\text{MnO} \right) \]

where \(M_i \) is the molar mass of oxide \(i \), and the amounts of the oxides are in mass percentages.

Similarly, the equivalent TiO\textsubscript{2} content is:

\[(%\text{TiO}_2)_{eq} = \left(\%\text{TiO}_2 \right) + \left(\frac{M_{\text{TiO}_2}}{M_{\text{V}_2\text{O}_3}} \right) \left(\%\text{V}_2\text{O}_3 \right) + \left(\frac{M_{\text{TiO}_2}}{M_{\text{Al}_2\text{O}_3}} \right) \left[\%\text{Al}_2\text{O}_3 - \left(\%\text{SiO}_2 \right)/3 \right] \]

In Expression (5b), the vanadium content of slag is expressed as V\textsubscript{2}O\textsubscript{5} since this is the convention for the analyses, although the vanadium is expected to be present in the trivalent form. As the expression shows, part of the Al\textsubscript{2}O\textsubscript{3} is not taken into account when the equivalent TiO\textsubscript{2} content is calculated, because some Al\textsubscript{2}O\textsubscript{3} (a mass taken to be one-third of that of the silica) reports to the separate silicate phases. (CaO and SiO\textsubscript{2} are not included in this calculation, since these report to the silicate phases, and do not dissolve in the solid M\textsubscript{3}O\textsubscript{5}.)

The sum of \((%\text{FeO})_{eq} \), \((%\text{TiO}_2)_{eq} \), and \((%\text{TiO}_2) \) is then normalized to 100%, where \((%\text{TiO}_2) \) is the Ti4+ content of the slag, expressed as a mass of TiO\textsubscript{2}.

The result of this calculation, for literature values of ilmenite smelter slag compositions, is given in Figure 10. Remarkably, all the slags follow M\textsubscript{3}O\textsubscript{5} stoichiometry quite

The Journal of The Southern African Institute of Mining and Metallurgy
Ilmenite smelting: the basics

For the South African ilmenites (which contain much less MgO than the Canadian ilmenite) the slag compositions consistently lie slightly below the stoichiometric relationship (i.e., the slags contain less divalent and trivalent cations, and slightly more TiO$_2$, than M$_3$O$_5$ stoichiometry requires). This means that the slag is expected to contain a small amount of rutile, which is indeed found. It is not clear whether this slight departure from stoichiometry arises within the furnace, or whether it is the result of some oxidation of Ti$_2$O$_3$ to TiO$_2$ during tapping.

It is remarkable that the slag stoichiometry is so consistent, given the major difference in furnace size and design: the data on slags produced from South African ilmenites include compositions from two DC furnaces—the 3 MVA pilot furnace of Exxaro, and the furnaces of Namakwa (which are more than ten times as large, in terms of power rating), and from the AC (six-in-line) furnaces of RBM.

Ilmenite reacts with the reductant, to the extent that equilibrium with metallic iron is achieved, in the hotter regions of the slag bath. To understand how this suggested mechanism would operate, it is necessary to consider the phase relationships below the liquidus temperature. These are best viewed on a pseudobinary diagram, such as that shown in Figure 11. Compositions which lie on M$_3$O$_5$ stoichiometry form single-phase pseudobrookite (‘psb’) upon solidification; compositions which are poorer in TiO$_2$ form a mixture of metallic iron and pseudobrookite when these solidify, and compositions which are richer in TiO$_2$ are a mixture of pseudobrookite and rutile after solidification.

The proposed mechanism behind the observed slag composition involves the following steps:

1. Ilmenite reacts with the reductant, to the extent that equilibrium with metallic iron is achieved, in the hotter regions of the slag bath (close to the electrode[s]).

2. Slag of composition ‘A’ circulates to colder regions of the slag bath, causing the joint precipitation of solid pseudobrookite and metallic iron until, at temperature ‘B’, all the oxide material is converted to solid pseudobrookite, and all the excess iron is precipitated as metallic iron.

3. The solid pseudobrookite then circulates back to hotter regions of the slag bath, where it can re-melt.

This mechanism provides a way in which the slag composition can be shifted towards M$_3$O$_5$ stoichiometry. If this really does occur within the smelter, it means that the heat of solidification of the slag is extracted in the colder regions of the furnace—that is, close to the metal bath. It is hence expected that the rate of heat extraction from the lower part of the furnace would increase if production rate increases—since the rate at which slag solidifies partially (precipitating iron) then increases.

Other mechanistic steps remain unclear. These include carbon transfer to the metal (which must account for the fact that the carbon content far exceeds the amount for slag-metal equilibrium), and the reduction reaction itself. However, similar to bath-smelting operations, reduction is presumed to be sustained by a gas halo (containing largely CO and some CO$_2$) which surround the reductant particles. Because of their lower density, the reductant particles are expected to float on top of the slag bath until fully reacted. The proposed reaction mechanism then involves the following steps:

Reduction of FeO and TiO$_2$:

- FeO + CO → Fe + CO$_2$
- 2TiO$_2$ + CO → Ti$_2$O$_3$ + CO$_2$

Note that, if the solid reductant is separated from the slag by the gas halo, formation of TiC is not expected, since the reaction 3Ti$_2$O$_3$ + CO → TiC + 5CO$_2$ has a small equilibrium constant—for example $K = 0.00016$ at 1650°C, for this reaction.

Mass transfer of CO through the gas halo to the reductant particle

Regeneration of CO through the Boudouard reaction:

- CO$_2$ + CO → 2CO

At the high temperatures in the smelter, the rate of the Boudouard reaction is not expected to be limiting, hence CO regeneration is expected to be efficient, with the gas in the halo being nearly pure CO. The high temperature also allows the use of relatively unreactive reductants such as anthracite. It also means that particle size will not directly limit the reduction rate—although, if (as one might expect) the area of the gas halo depends on the reduciant rate, then smaller reductant particles would increase the area available for the reduction reactions.
Ilmenite smelting: the basics

Reactions of solidified slag

The solidified slag consists of pseudobrookite/karrooite as major phase. Some rutile is present between the pseudobrookite phase (in the region of final solidification), together with the silicate phases. The silicate phases contain essentially all the SiO₂ and CaO of the slag, together with some Al₂O₃, and minor amounts of MnO and TiOₓ.

This solidified slag structure is unstable under ambient and near-ambient conditions, and the M₃O₅ can decompose in two main ways:

➤ Disproportionation—the FeO and Ti₂O₃ in the M₃O₅ structure can react, to yield metallic iron and rutile as products, according to the reaction:

$$FeTi₂O₅ + Ti₂O₃ = Fe₄ + 5TiO₂$$

This reaction becomes possible at temperatures below approximately 1100°C. However, it is seldom observed in real slag blocks, apparently because of the difficulty of nucleating the two new phases (metallic iron and rutile) within the pseudobrookite. In practice, this disproportionation reaction is generally observed only after it has been triggered by a small degree of oxidation of the slag; an example is shown in Figure 12.

➤ Oxidation of Ti₂O₃—given the low oxygen activity for TiO₂/Ti₂O₃ equilibrium (see Figure 8), Ti₂O₃ can be oxidized by air, both for liquid slag (this is a proposed reason for the presence of some rutile in the solidified slag), and in the solidified state (where Ti₂O₃ is first oxidized to TiO₂, following which FeO can be oxidized to Fe₂O₃). The addition of oxygen (through this oxidation process) causes the formation of more rutile, and the iron concentrates in the M₃O₅ phase. This phase-level separation between titanium and iron is one of the principles of the UGS process for increasing the titanium content of QIT slags, and the process proposed by van Dyk et al. The resulting phase changes are shown in Figure 13.

At lower temperatures, the product phases are not TiO₂ (rutile or anatase) and iron-enriched M₃O₅; rather, a phase that has been identified as ‘M₆O₁₁’ forms. This transformation is associated with severe cracking, which has been identified as the origin of the decrepitation of solidified slag, which occurs if the slag blocks are not water cooled.

Figure 14 shows an example of such decrepitated slag.

Possible future developments

The basic approach to ilmenite smelting has remained quite consistent since it was first implemented by QIT. The main elements of this approach are the use of arc heating (AC or DC), unagglomerated feed, high-purity reductant, a freeze lining, and casting of slag into large ingots after tapping. This combination was developed in response to the constraints imposed by the product quality requirements and the fundamental physicochemical properties of the titanium slags. The latter cannot change, and the former does not appear likely to change. However, within these constraints, there are several possible developments in the existing process. Some envisaged future developments have been summarized by Gous; I suggest the following list: Energy efficiency (and hence furnace productivity) can in principle be...
Ilmenite smelting: the basics

improved by utilizing the off-gas as a source of fuel, to preheat the feed (as already practised, albeit with some process stability issues), and to support prereduction of the feed. More energy could be captured within the furnace if the furnace inner roof temperature were lowered (so decreasing heat losses through the furnace roof, and lowering the off-gas temperature, but possibly increasing accretion build-up). Changing the way in which the feed is introduced (from feeding through the [DC] electrode to a more evenly distributed feed) is a possible way to achieve this; increased DC furnace sizes (through the use of twin electrodes) may also hold some benefits. Furnace design (e.g. the choice of anode type and electrode seals in DC furnaces) are likely to see further improvements. Furnace integrity currently relies on a freeze lining of solidified slag; this is unlikely to change. However, the choice of conductive refractory may well change: while magnesia is used in the ilmenite smelters, ferroalloy furnaces widely use carbon brick, and there is no fundamental reason why this cannot be applied in ilmenite smelting. Reductive choice remains limited by the required slag purity. However, a better understanding of the role of volatiles in the furnace freeboard, and of the reduction mechanism, should allow better-informed choices of reductive composition and size. Post-furnace processing of slag currently includes the slow cooling of large slag ingots. Rapid solidification of the slag by granulation offers a possible way to decrease the inventory of slag in the plant, while possibly improving the yield of the higher-value chloride-grade slag. Finally, various methods of producing and processing titanium metal at lower cost are being researched. Successful developments can have at least two implications for ilmenite smelting: in addition to the increased demand for titanium feedstocks, there may be changed titanium slag purity requirements.

Acknowledgements

The information that is summarized in this paper is a result of more than a decade of study by several students and colleagues at the University of Pretoria and at Exxaro. I wish to thank the following persons specifically for their inputs: Deon Bessinger, Peter Bungu, Theresia Coetse, Colette Coetzee, Johan de Villiers, Rian Dippenaar, Andre Garbers-Craig, Kobus Geldenhuis, Deon Joubert, Hanlie Kotze, Ferdus le Roux, Johan Meyer, Tebogo Motlhame, Katekani Musiisinyani, Joalet Steenkamp, Jaco van Dyk, and Johan Zietsman.

References