
Introduction

Unlike most other industries, in mining, the
‘raw material’ (ore) is not a commercial
product for which the buyer knows the exact
composition and properties, but a natural
material. Its chemical composition and physical
properties must be estimated from sampling,
laboratory testing, and expert judgment
(Maybee, B., Lowen, S., and Dunn, P. 2010).
Moreover, tonnage and unit value of ore
resources vary with price and other market
parameters. This fact explains why the
orebody is one of the main sources of risk in a
mining business (Sayadi, A., Heidari, S., and
Saydam, S. 2010; Rozman, L.I. 1998). 

Because of this uncertainty and variability
with time, capital investment decisions cannot
rely on static parametric evaluations, such as
discounted cash flow (DCF), as these methods
provide only a picture of the value of a project
associated to a ‘base case’ scenario, but fail to
consider the dynamic character of decision-
making over the life of the project. 

Real options valuation (ROV) represents a
better approximation to the way an investor

sees a project: accepting uncertainty and
focusing on the potential project responses to
the range of possible future conditions. These
‘future conditions’ include internal (technical)
as well as external (market) variability
(Amram, M. and Kulatilaka, N. 1999). 

Current applications of ROV focus mainly
on external variables, such as commodity price
and exchange rate, which are controlled by
external factors and cannot be engineered.
This study focuses on real options (RO) as a
tool for quantifying and managing the risk
associated with the variability of technical
mine planning parameters, internal variables
which are characteristic to every project.

Risk valuation

Traditional vs. real options approach

Conventionally, the DCF method is used to
evaluate projects where parameters are
estimated at a fixed ‘most likely’ value, and
risk analysis is limited to scenario and
sensitivity analyses(Samis, M., et al., 2011;
Torries, T. 1998; Whittle, G., Stange, W., and
Hanson, N. 2007). Although this method does
deliver an indication of the project’s NPV, it
doesn’t account for real variability, nor does it
provide management with guidance on the
different sources of uncertainty and their
likelihood.

ROV methods were developed as an
extension of financial options derivatives to
tangible investment projects. An option –
financial or real – is a right, but not an
obligation, to perform an act for a certain cost,
at or within a period of time. In this context,
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ROV focuses on adding value to the project by taking
advantage of uncertain situations, gaining from favourable
scenarios, and hedging from downside risks
(Dimitrakopoulos, R., Martinez, L., and Ramazan, S. 2007;
Martinez, L. and McKibben, J. 2010). 

However, it is important to state that ROV is not a
substitute for the conventional DCF method, but rather a
complement that adds the capability of capturing the value
associated with management reacting to change. Focusing on
this concept, Dimitrakopoulos and Sabour (2007) and Sabour
and Wood (2009) stated that a key advantage of ROV is the
ability to incorporate the value of management reacting on
the basis on new information. The method provides a
transparent guideline for analysing the timing of strategic
and operational decisions, as it deals with the different
sources of uncertainty individually.

Options ‘on’ vs. options ‘in’ projects

Most ROV applications focus on risk associated with market
uncertainties, a research field where RO methods have made
a significant contribution. However, examples of the
application of RO in the valuation of internal uncertainties are
scarce. In this regard, Wang and de Neufville (n.d.) define the
concept of options ‘on’ projects as the options that analyse
variables that act upon the project (external conditions), and
options ‘in’ projects as options that have the potential to
actually change the design of the system. 

In this research line, some authors have applied ‘in-
project’ ROV to evaluate compound risk from extrinsic and
intrinsic variables. Dimitrakopoulos, Martines, and Ramazan
(2007) use RO models that combine price and geological
variables in order to manage risk associated with grade
uncertainty and use a ‘minimum acceptable return on
investment’ as the evaluation criteria. Akbari et al. (2009)
use a binomial tree to simulate the metal price, and define the
optimal starting point of the mine and the ultimate pit limit
dependent on ‘today’s price. Maybee et al. (2009) compare
the DCF method with ROV to quantify the value of flexible
development strategies in a block caving and cut and fill
mine, by using a traditional replicated portfolio to account for
price uncertainty.

Very few authors have applied ROV to evaluate risk from
purely intrinsic variables. It is worth highlighting the work of
Kazakidis and Scoble (2003), who studied the application of
RO to analyse three ‘in-the-project’ option scenarios on
ground-related problems: first, a sequencing option for
increasing the flexibility of the production plan; secondly, the
option of hiring extra rehabilitation crew to deal with ground-
related problems; and thirdly, a trade-off study between
different flexible alternatives in order to optimize the mine
plan. The decision is made by using two parameters: a
‘flexibility index’ (also used by Musingwini et al. 2007) and
the capital cost of each option considered (the option’s price).
This is a very good example of RO applications ‘in’ projects,
where the focus is placed on increasing project flexibility. 

It becomes evident that, despite the great potential of ROV
application ‘in-the-project’ variables, references on the
subject are scarce. The research described in this paper deals
with the application of ‘in-the-project’ ROV to manage risk
associated with production rate, grade dilution, and other
mine planning variables.

The literature describes several limitations referring to the
use of conventional DCF valuation of mining projects. First,
variables are assigned a constant value, not considering their
stochastic reality (Reichmann, W.J. 1962). A second
limitation is that the DCF approach assumes that investment
decisions are made ‘now or never’, without considering the
value of strategy and management (Cardin, M.A., de
Neufville, R., and Kasakidis, V. 2008). A third shortcoming is
that the DCF method tends to undervalue projects by not
considering management options and other scenarios
alternative to the ‘base case’. In fact, during the operational
stages of a project, management has the capacity to react to
the variation of a parameter by making decisions that would
minimize negative outcomes and take advantage of the
positive, similarly to what ROV considers. In many cases,
management reactions can be predicted and considered as
real options at feasibility decision stages. Traditional DCF
neglects the value added associated with future management
reaction to change and, therefore, it may lead to wrong
feasibility decisions. The challenge is to design a system that
can cope with different future scenarios by means of in-built
flexibility, thus allowing management to adapt (De Neufville,
R. and Scholtes, S. 2011). ROV provides the tools to integrate
flexibility into the initial model, thus increasing its reliability. 

Risk management model

Risk management may be defined as the act or practice of
dealing with risk (Kerzner, 2013). The goal of this process is
to acquire an understanding of the project’s possible outputs
for taking decisions that will maximize the project’s value.
Botín et al. (2011) present a 2-D impact-likelihood model for
risks acting on a capital investment project (Figure 1), which
results in four types of risks: fatal flaws (A), manageable
risks (B), catastrophic risks (C), and bearable risks (D).

A risk management flow model is developed using this
classification (Figure 1). Its goal is to define the actions that
must be taken to manage each type of risk. In this flow chart,
high impact risks (A and C) must be eliminated during the
engineering stages of the project. On the contrary, type D
risks are not considered in the analysis, as the cost of
managing them is higher than the maximum possible gain
obtained by eliminating them, and thus they must be
accepted as ‘bearable’.

Figure 2 presents a simplified value chain of the project
evaluation processes.  In this context, type B risks 
(Figure 1b) can be grouped in two types: (i) risks that can 
be managed within the process in which they originated, and
hence do not have an impact in processes downstream, and
(ii) risks that cannot be managed in a single process and
hence may impact downstream processes in the value chain.
An example of the first type is the risk associated with ore
hardness, a risk pertaining to the process of ‘mineral
processing engineering’ (Figure 2). Here, a higher-than-
expected hardness would reduce milling rates. This impact
can be managed within the mineral processing scenario by
selecting a larger mill. An example of the second type is the
risk associated with ore grade and dilution. In this case, the
risk from a higher-than-expected grade/dilution, originated
within the ‘mine planning’ process (Figure 2), would impact
all processes downstream and, as shown in Figure 1b, may
be evaluated and managed by using ROV.

▲
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The real option

This study focuses on type B (i.e. economically manageable)
risks, particularly risks associated with grade dilution, a key
parameter in the mine planning process. In fact, a higher-
than-expected grade dilution would also impact on the mill
design and engineering process and all processes
downstream ‘mine planning’ in the lifecycle (Figure 2). It is
worth noting that the model will stay independent from
external variables (market conditions), focusing solely on the
internal/technical variability of mine dilution.

In this paper, ROV is applied to evaluate dilution risk
using a real option on an increased production capacity of the
mine-mill system, allowing it to process the extra waste rock
resulting from a higher dilution, thus enabling metal
throughput to be sustained when dilution is higher than
planned. 

Obviously, an increase in operating capacity incurs extra
costs, both operational and capital. This cost structure
resembles that of a financial option derivative, where the
capex is the premium paid to ‘buy’ the option of acquiring
extra system capacity (cost of having an option in the
future), and the opex is the exercise cost, paid only if the
option is executed. 

Case study: Chuquicamata Underground Mine project

This case study analyses the Chuquicamata Underground
Mine project, owned by Codelco. Chuquicamata has been
operating as an open pit since 1915, and is now planning to
go underground, as a four-panel macro-block caving
operation. The project is based on a production rate of 
140 kt/d, over 40 years (with a 6-year ramp-up, a 5-year
ramp-down, and 29 years of steady production at maximum
capacity (Ovalle, 2012), plus almost 10 years of initial
development, which makes this project one of the largest
underground operations in the world. 

The sales data, as well as all other base-case deposit
information such as the ore grade, dilution, and total
reserves, are summarized in Table I. Sustaining capital and
maintenance costs, as well as closing expenses, are all
included in the capex value, calculated as the net present
value of all the costs. With this data, an annual cash flow is
developed, which presents a NPV of US$1875 million, with
an 8% discount rate, and is summarized in Table II .Together
with this, a detail of the annual total and net cash flows for
the life of mine (LOM) are presented in Figure 3. In this
current project, the initial investments started in year 2004
with the development, and the actual costs were considered
for the NPV calculation. It can also be noted that there is
negative cash flow in the last years. This is due to closing
costs, and because of the heavy punishment of the DCF
method over long projects, the last years have very little
influence over the cumulative NPV.

As presented in Table II, a 57% tax is applied over the
revenue after depreciation (for simplicity, a 5-year linear
depreciation was considered). This high percentage is due to
the fact that Codelco is a state company. Also, no income or
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Figure 1—(a) Risk classification matrix and (b) Risk managements flow chart (after Botin, Del Castillo, and Guzman, 2011)

Figure 2—Mining project life cycle

Table I

Data asssumptions

Variables Unit Cu Mo

Price US$/tf 5 517 28 200 
Ore average grade % 0.71 0.05 
Extraction levels unit 4 
Dilution (1st level) % 12.5 
Dilution (other levels) % 15.0 
Reserves Mt 1 760 
Production rate Mt/a 50.4 
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expense from the open pit operation was considered in this
cash flow, as Codelco treats both operations as separate
projects. This scenario will be used as a base case to compare
the future options’ performance.

Cost of flexibility

To calculate the extra capex of the expanded operation, the
Williams’ model may be used as a cost estimating method.
The Williams’s model or Williams’ rule is based on a cost
relationship that exists between two plants or equipment of
different capacity, power, or volume, but of similar character-
istics.  In general, Williams’ rule is valid only for an ‘order of
magnitude’ estimate but when used to estimate the capex for
the same system at two different production rates, it provides
the necessary accuracy. This formula may be expressed as:

[1]

where r = plant’s expansion weight factor
In this case, CB and CA are respectively the capex for the

base case and the expanded system capacity, and a Williams’
exponent ‘m’ of 0.7 is used (Mular, A.L. 2002). The main
difficulty of this quantification is to determine the appropriate
weight factor: the one that hedges the risk derived from
dilution’s uncertainty without over-dimensioning. To do this,
we first must understand how dilution will behave once the
mine is in operation. This is explained in the following
sections.

Modelling dilution in block caving

In this case study, the model used to simulate the ore-waste
mixing process corresponds to a volumetric model developed
by Laubscher (Diering, J.A. and Laubscher, D.H. 1988;
Hudson, J.A., 1993).

The model is based on one linear parameter: the
percentage of dilution entrance (PDE), which represents the
percentage of the column that has to be drawn before waste
material is perceived at the drawpoint of the block-cave.
Correspondingly, as the model’s output is a linear mixture
along the column, there is a line that represents the waste
material that crosses the column’s centre at exactly its mid-
point. Extrapolating this relation, dilution may be expressed
in terms of the PDE:

[2]

For the base case of this case study, PDE is 50% for the
first level and 40% for the following three levels, which
results in dilutions of 12.5% and 15% respectively.

Dilution variability

The Laubscher model assumes that ore geometry and
mechanical behaviour are constant, which is an oversimplifi-
cation. Because of this, the in situ and the diluted block
models produced by the Laubscher method will be used to
develop a stochastic function that represents the dilution
uncertainty. 

This gradual grade reduction is the source of uncertainty.
The actual PDE value is unknown and variable for each draw,
therefore dilution does not occur linearly as the model
proposes. This effect is presented in Figure 4, where the left
image shows the ore-waste contact line, and the right image
shows the resulting orebody after the mixing process of a
40% PDE. 

Furthermore, the Laubscher model acts only vertically
over the column, without considering sloping or horizontal
flows of waste (here referred to as ‘horizontal dilution’).

The variability of ‘ore grade’ may be expressed as a
distribution function, which is modelled from a histogram of
block model grades (diluted and undiluted), by calculating
the percentile variability comparing by range the grades of
the original in situ model (left of Figure 4), with the diluted
model from Laubscher’s simulation (right of Figure 4). This
data is then used to create a new histogram representing the
probability of dilution per block. This procedure not only
allows determining the most probable dilution values, but it
also shows the complete behaviour of the variable. The
sample presents a mean of 20.6% dilution, and a standard
deviation of 19.5%.

The dilution model was developed by fitting the data of
this histogram into the Arena Softwarea (student edition),
and running the input analysis tool. The best fit was obtained
with the lognormal function in Figure 5. With a square error
of 1.07%, it makes a robust model for dilution.

Horizontal dilution

The Laubcher model does not account for the dilution from
adjacent columns and, more importantly, from the host rock
at the boundaries of the orebody (White, 1990). This

▲
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Figure 3—Cumulative and annual discounted cash flow

aThis Software specializes in simulation and automation, developed by
Systems Modeling, which uses SIMAN processor and simulation
language.

Table II 

Base case cash flow summary

Unit Operation

Periods year 7–35 
Cu Concentrate kt/a 942 
Mo Concentrate kt/a 34 
OPEX US$million/year 548 
Tax (57%) US$million/year 378 
CAPEX US$million/year 85 
Cash Flow US$million/year 343 

NPV (r = 8%) MUS$ 1,875 



secondary dilution is denoted as ‘horizontal dilution’, and
correspondingly, the previous model will be called ‘vertical
dilution’.

As the focus of this study is on long-term planning
(yearly basis), the exact dilution of each column is not
relevant. Therefore, in the estimation of ‘horizontal dilution’
only the host rock waste is considered, and is assigned a
constant grade of 0.1% Cu, 20 ppm Mo, and 0.003% As. 

Figure 6 represents a geometrical model of gravitational
flow of waste material from host rock into the ore columns.
Here, R is the radius of the gravitational ellipsoid of a given
extraction column and Ri = R · (1+wz) the interaction radius
of a drawpoint, where wz represents a weighting factor the
value of which depends of the rock quality of zone z. The
horizontal flow is represented by the dotted lines, and at
boundary drawpoints it corresponds to waste material from
host rock (traced area in Figure 6). For simplification
purposes, this area may be calculated as the area of the right-
angled triangle created by the column’s height (HC), and the
interaction radius (Ri).

To calculate the tonnage of waste rock entering the
operation as dilution, the simplified traced area (variable due
to rock quality by zone) is multiplied by each level’s external
perimeter (also differentiated by zone) to obtain the total

volume of waste material surrounding the deposit (which has
the potential to enter the drawbells), and then multiplied by
the host rock density (dw = 2.57 t/m3). Knowing the
dimensions of each macro-block, and of the pillars left
between them, each level’s perimeter is calculated.

The orebody is classified into three zones according to
geology and geotechnical conditions. Each zone is charac-
terized by a value of the subsidence angle, provided by
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Figure 4—Orebody contour before and after mixing for 40% PDE

Figure 5—Best-fit probability distribution for vertical dilutions

Figure 6—Material interactions due to extraction of an ore column
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Codelco. In the base case, an average subsidence angle of 50°
was assumed for the entire orebody. As the braking angle is
inversely proportional to the column’s resultant radius, the
weighting factor (wz) for each zone (i) is calculated as the
relative difference between the breaking angle value of the
zone (ai) and the base case angle (aBC = 50°), as shown in
Equation [3] (note that a lower angle means poorer rock
quality, causing more rock flow and bigger affected radius).

[3]

As presented in the extraction grid in Figure 6,
Chuquicamata’s mine design defines a distance between
drawpoints (circled dots) of about 35 m ×16 m. This figure
represents the extraction details of a macro-block, and
according to the deposit’s orientation, the host rock is located
to the east and west of this macro-block. Because of this, the
dilution radius corresponds to the oblique distance presented
by RBC in Figure 7, which by projecting the ellipsoids created
by the interaction zone (Figure 6), has a length of approxi-
mately 9 m.

With this information, the value of each radius is
calculated by dividing the base radius (9 m) by the weighting
factor for each zone, as summarized in Table III.

Finally, to calculate the horizontal dilution (DH), the total
waste tonnage (integrated by zone and level) is divided by
the total extractable tonnage (mineral + dilution), obtaining a
value of 5.1%:

[4]

where 
i = Deposit’s zone. 1: west, 2: north-east, 3: south-east
j = Mine level, from 1 (top) to 4 (lowest bottom)
Pij = Perimeter of zone j on level i (m)
Ri = Average radius of zone i (m)
Hj = Column height of level j (274, 235, 237, and 235 m)
dw = Waste rock density (2.57 t/m3)
tT = Total extractable tonnage (1581Mt)

As shown in the left image of Figure 7, every macro-block
of the Chuquicamata Mine is in contact with the host rock,
and at least two macro-blocks are extracted each year.
Because of this, the horizontal dilution can be added
homogeneously to the whole mine plan. 

The dilution model

As described previously, dilution has two components: a
horizontal dilution (DH), caused by the flow of host rock
waste into the draw points, and a vertical dilution (DV),
caused by waste material that flows into the extraction
columns from the caving zone above. The dilution model
proposed in this paper considers that the former acts
homogeneously over the deposit, and the latter is represented
by the lognormal probability distribution model in Figure 5.
The addition of a constant value of horizontal dilution to the
lognormal probability model in Figure 5 results in a
translation of the distribution to the right by exactly 5.1%.

[5]

The resulting dilution model is an input to the valuation
model, to quantify the economic impact (risk) associated with
dilution values higher than the base case dilution of 12.5%.

Maximum dilution limit

The maximum dilution limit represents a ‘risk-free’ scenario
for the project. This limit is obtained by using the dilution
probability model to generate a risk-free scenario with an
acceptable level of confidence. Figure 8 shows the lognormal
model f(d), with its corresponding cumulative probability
graph F(d). By using the standard deviation, the base case is
extended to risk-reduced cases, until a risk-free scenario is
obtained. 

As shown in Figure 8, the distance between one, two, and
three standard deviations along the x-axis have fixed length;
however, on the y-axis, the equivalent probability increments
become shorter and therefore, the cost-effectiveness of
reducing dilution risk decreases. The optimum level of risk-
reduction will be referred to as the ‘minimum satisfaction
limit’, which is user-defined (at a higher risk point than the
risk-free limit). For simplicity, in this case, the mean plus two
standard deviations is used, which corresponds to:

▲
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Figure 7—Development drifts zoomed on drawpoint grid design

Table III

Interaction radius calculation by deposit zone

Zone Break-angle Rock quality Weight factor Radius (m)

NE-N 59.6° STABLE 1.19 7.55 
SE-CS 54.9° MODERATE 1.10 8.20 
W-NCS 36.9° UNSTABLE 0.74 12.20

Figure 8—Dilution model and cumulative probability



[6]

Option description and valuation

The dilution model and the capex expansion model (Equation
[1]) are used to simulate the economic performance of the
project at increasing production capacity options, in order to
find a capacity that reduces dilution risk to acceptable levels.
It is important to note that there are actually two production
hedging options: (1) hedging the base-case NPV and (2)
hedging the base-case copper production. These two cases
provide different results, and the decision to choose one over
the other depends solely on the company’s strategic plans.

The principles for setting the above options are based on
a ‘risk acceptance criterion’, defined as the minimum
acceptable probability of achieving the base-case performance
(NPV or copper). However, there is another restriction that
has to be taken into account: the technical limitation on
production rate. This is the production rate that cannot be
exceeded due to technical limitations (orebody geometry, rock
quality, mining method, etc.). In this case study, the technical
limit corresponds to a maximum production capacity of 
75.6 Mt/a, 50% above base-case production.

The options are obtained by Monte Carlo simulation,
where project performance is calculated for different
maximum production capacities. The results obtained for the
feasible simulations are presented in Figure 9, where the fan-
shaped area represents the probability of obtaining the given
NPV for an operation of certain production capacity above the
base case’s 50.4 Mt/a, and below the 75.6 Mt/a of the
technical limit. 

These production simulations can be considered as a
‘catalogue of possible responses’ to the dilution uncertainty,
as pointed by Cardin et al. (2008). Figure 9 also includes the
base case NPV limit (‘Base Case’s NPV’), the standard
deviation risk limit (‘d + σ ’), the technical maximum
capacity, and the base case expected copper production limit
(‘Base Case’s Cu’). The circle marker represents the base case
scenario which shows that, under the initial conditions, there
is a 68% chance that the project NPV will actually be lower
than estimated. The goal is to lower this to the ‘risk-
acceptable’ value of 24%.

It is important to mention that simulations were done
over the technical maximum limit (represented by the dotted
line at 75.6 Mt/a capacity) in order to understand the global
effect of dilution on the project value. 

Figure 10 represents the curves for the base case NPV
(‘Exp. NPV’ in light grey) and base case copper (‘Exp. Cu’ in
dark grey) as a function of the production rate and dilution.
The sections of these curves below the technical maximum
line (‘Tech. Max.’) represent feasible cases. Besides, the slope
of both curves increase as dilution increases, thus a higher
production increment is required to hedge copper production
(or NPV). The analysis of the curve slopes in the dilution
limits for increasing ‘risk-free’ dilution scenarios (i.e. d + σ, 
d + 2σ, d + 3σ) shows that for both options (copper and
NPV), the ‘d +2σ’ and ‘d + 3σ’ limits are technically
unfeasible, thus the d + σ limit is considered.

It can also be noticed from Figure 10 that hedging the
project’s NPV is harder than hedging the expected copper
production; in other words, for any dilution, the ‘Exp. NPV’
option is more expensive than the ‘Exp. Cu’ option.

Option selection

Figure 11 shows a zoomed image of the zone of interest from
Figure 9, where the simulated production rates intersect with
the dilution limits and the expected copper and NPV limits.
The markers in Figure 11 show that there are two relevant
scenarios in this case study, which lower the risk from 68%
to 24% at the d + σ limit. The exact values are presented in
Table IV.

These options require a 24% production expansion to
obtain the expected Cu production and a 49% production
expansion for the expected NPV. The procedure works for
any limit selected. 

Options cost

The cost of the options is estimated by calculating the capital
expenditures required to provide the system with the extra
capacity it needs to ensure the ‘minimum satisfaction limit’.
The NPV of project capex and the relative increase required
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Figure 9—Simulation of NPV probability by production rate

Figure 10—System capacities vs. performance

Figure 11—Detail of zone of interest from Figure 9
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for each option is presented in Table V. However, considering
capex as the options’ cost is over-conservative, since the
financial benefits of higher depreciation and lower incomes
due to the higher costs are not taken into account.
Considering that an income tax of 57% has been assumed for
this project, these savings are significant. It must be noted
that taxes are applied over the year’s revenues, after
discounting the annual depreciation. So if the depreciation is
higher – due to higher capital costs – net revenues will be
lower, and thus the taxes paid will also reduce, increasing the
overall value of the project.

To calculate the actual cost of each option, a new
simulation case (named ‘limited copper option’) is executed.
In this case, the same expanded systems are analysed (at
24% and 49% expansions), but it is assumed that the extra
flexibility is used only to achieve the base case copper
production: so if dilution is 12.5% as expected, the maximum
production rate will be only that of the base case, even if
there is spare operational capacity. This way, the actual
option cost will be represented by the difference between the
original NPV and the NPV of the simulated ‘limited Cu
option’. 

It is worth noting that the option’s cost represents not
only the price of flexibility, but the real cost of the risk
associated with ore dilution, which is the final goal of this
study – to generate a more reliable risk quantification
method. Figure 12 shows a graphical representation of the
project NPV, for different dilution values, for two of the
scenarios analysed: base case (50.4 Mt/a) and expected Cu
option (62.5 Mt/a). The inferior curve under ‘Cost of
Expected Cu’ shows the result obtained by the new ‘limited
copper’ simulations. The upper curve, under ‘Expected Cu
Option’, shows the corresponding options’ potential values
(commented below). These curves meet at the ‘minimum
satisfaction limit’, when dilution has a value of 30%, and as
expected, the copper production of the base case is also
achieved exactly in this point (‘Base Case’s Cu’ curve).

The actual values for the two options are presented in
Table VI, where the first column shows the base case NPV,
i.e. the project value if dilution is 12.5% and the operation
functions at maximum capacity. The ‘Constant Cu NPV’ refers
to the ‘limited copper simulations’ value; finally, the option’s
cost, the difference between both. As expected in this case,
the options’ cost is almost 40% lower than the cost obtained
by the difference in capex shown in Table V.

Upside potential of the options

Capital expenditures increase as flexibility is integrated into
the project. However, these costs are buffered by the returns
from the extra ore processed. This information is shown in

Table VII, where the options’ potential is calculated in the
third column as the difference between the NPV of each
option and the base case, at a dilution of 12.5%. Figure 12
shows that higher dilution values make the option’s potential
decrease, which means that hedging from the downside risk
will require higher expenses. Finally, the life of the mine is
presented for the three scenarios, considering the same 6-
year ramp-up and 5-year ramp-down as in the base case.

Traditional risk valuation vs. ROV methods

In order to compare the performance of RO in quantifying the
project’s risk, the most common traditional method will also
be used: the expected monetary value (EMV) approach. This
approach is a scenario analysis that basically calculates the
NPV difference between the base case and the worst case

▲
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Table V

Capital expenses and cost by scenario

Production (kt/a) CAPEX PV D CAPEX Cost
(US$million) (US$million)

Base case 50 400 $    1 142 - 
Exp. Cu 62 500 $    1 328 $       186 
Exp. NPV 75 100 $    1 510 $       368 

Figure 12—Selected option's cost and potential value

Table VI

Summary of the options’ cost and results

Base case NPV Constant Cu NPV Option’s Cost 
(US$million) (US$million) (US$million)

BC $1875 $1875 - 
Exp. Cu $2415 $1756 $119 
Exp. NPV $2939 $1640 $235 

Table VII

Summary of the options’ potential and results

Base case NPV Confidence of Potential Base case’s
(US$million) obtaining (US$million) LOM (years)

Base Case NPV

Base Case $1875 27.2% - 40 
Exp. Cu $2415 64.4% $540 33 
Exp. NPV $2939 69.8% $1064 28 

Table IV

Production rates of relevant options

Limit Max. Risk (%) Expected Cu Expected NPV

dilution Mt/a %Exp. Mt/a %Exp.

d + σ 30.4% 23.8% 62.5 24% 75.1 49% 



scenario, or in this case, the base case dilution (12.5%), with
the minimum satisfaction limit of 30.4% dilution. This
presented a final risk value of US$859 million: 

[7]

As expected, the risk appears to be over-estimated
compared to the previous methods used. The explanation for
this is that, in this case, the uncertainty is treated only as a
downside risk, ignoring any upside potential. 

A sensitivity analysis may also be used to evaluate the
project’s performance. With this procedure it may look as
though dilution has very little impact on the project’s final
value. However, its variability is much higher than, for
example, price variability, which is often considered to be
20%, whereas dilution can easily increase up to 300%. This
is why traditional methods cannot be relied on by
themselves, as they fail to consider the actual behaviour of
the variable. 

A risk quantification summary for the defined scenarios
is presented in Table VIII, showing the results obtained by
the capex difference, ROV, and the traditional method
described in Equation [7]. The reduced value of the risk
quantified by the RO method is related to two factors: its cost
(acquisition and exercise) and the upside potential of its
flexibility.

This ‘double consideration’ is shown in Figure 13 for the
expected Cu production option, where the upside potential is
represented by the horizontally traced area, and the hedging
cost by the vertically traced area. Traditional valuation
methods account only for the hedging side, punishing the
project’s value by overestimating risk.

Risk management application 

In summary, a risk-based valuation methodology can be
divided into four stages: planning for risk, assessing risk
issues, developing risk handling strategies, and monitoring to
see the change over time (Maybee, B., Lowen, S., and Dunn,
P. 2010). Integrating RO into this process provides an
effective risk-handling strategy for dilution. However, the
main contribution of this study is providing the level of
confidence for a given production rate, helping decision-
makers choose a strategy according to their risk aversion
level and quantifying risk (Maybee, B., et al., 2009;
McCarthy, 2002). 

With this approach, it is possible to establish a clear
relationship between the production rate and the probability
of obtaining an expected project outcome. Figure 14 shows
this relationship for the present case study: as production
increases, the probability of achieving the expected targets
increases and the life of mine decreases, until a technical
limit is reached. This limit represents the maximum hedging
level for this operation.

Conclusions and further studies

A real options analysis was successfully executed to measure
the impact and manage the risk associated with dilution
uncertainty in a mining project. The results show that risk
quantification by real options yields values up to four times

lower than traditional methods and provides transparent and
reliable results. Furthermore, the real options method not
only quantifies the hedging costs, but also takes into consid-
eration the upside potential related to future management
decisions, thus obtaining a globally optimized operation,
rather than a local maximum result that is rarely achievable.

Even though this study focuses solely on the effects of
dilution, a similar methodology may be applied to other mine
planning variables such as ore grade, metallurgical recovery,
and operational performance. These variables originate from
three completely different areas of a mining project; however,
the risk they all bring into the project is the same: the
possibility of producing less metal than expected. This fact
allows the handling strategies and monitoring processes to
also be the same. In short, real options can very effectively be
applied to manage risk associated with variables that affect
the different processes downstream of the system.

Further studies should focus, on one hand, on creating
risk clusters that share the same effect on the project’s
outcome (with their corresponding correlations). With this, it
is possible to develop an integrated model that considers
these clusters instead of single variables, and produce a
global risk quantification model. On the other hand, further
research could be done on the possibility of applying this
methodology to short-term planning.

A real options application to manage risk related to intrinsic variables of a mine plan
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Table VIII

Risk quantification for traditional and RO methods

Expansion CAPEX ROV EMV

Exp. Cu 24% US$186million US$119million - 
Exp. NPV 49% US$368million US$235million US$859million

Figure 13—Upside potential/ downside risk of Expected Cu Option

Figure 14—Project confidence level and LOM by production rate
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