
Introduction

Nowadays many more conditional simulations
of orebodies, reservoirs, and aquifers can be
generated than in the past. In some
applications it is possible to post-process all of
them but in others this is impossible. For
example, in mining, pit optimization and
scheduling are computer-intensive and time-
consuming; similarly for fluid flow simulations
and production optimization in the oil
industry. When only a certain number of the
conditional simulations (k, say) can be post-
processed, the question is how to choose a
representative set of that size out of the full set
of N simulations. This process can be split into
three steps:

1.   Measuring the dissimilarity between
two simulations 

2.   Finding a metric to measure the

distance between the full set of N
simulations and any given subset of
size k

3.   Finding an efficient algorithm for
selecting the best subset (i.e. the one
that minimizes the metric.

Armstrong et al., (2010, 2013) proposed
using a metric denoted by D(J,q)1, based on
the scenario reduction metric2 developed by
Heitsch and Romisch (2009), together with a
random search algorithm. The procedure gave
very encouraging results when it was used to
select subsets containing k = 10, 12, or 15
simulations out of a total of N = 100
simulations. More recently we have started
working on cases in the oil industry with
larger values of k and N, where the total
population of possible subsets is much larger.
Table I gives the total numbers of subsets for
different values of k and N. For very small
values of k, the best strategy is to test all the
subsets exhaustively. Otherwise an efficient
search procedure is required. The difficulty in
finding the subset that minimizes the metric in
such a large discrete population is that
standard gradient-based methods cannot be
used. Genetic algorithms seem better suited to
this.
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1The procedure we developed for measuring the
dissimilarity between two simulations and the metric
D(J,q) is summarized in Appendix 1.

2The German research group led by Heitsch and
Romisch specializes in the stochastic optimization of
large systems, using multi-stage programming with
recourse (e.g. for electricity prices or hydroelectric
systems). A branching tree structure is used to model
the evolution of prices over time or of the water input
into dams. The problem is that the number of branches
in the tree increases exponentially with time, and
sooner or later the tree has to be pruned. As each of
the price paths is called a scenario, the procedure for
pruning the tree is called ’scenario reduction’. In their
work Heitsch and Romisch recognized the fact that the
tree is not perfectly known and took this into account
when developing their scenario reduction metric D(J,q). 



Genetic algorithms and scenario reduction

This paper proposes an improved algorithm that uses
genetic algorithms for selecting the best subset. The
procedure is tested on two examples: firstly for subsets with 
k = 4 simulations out of a set of 100 simulations and
secondly for subsets of k = 20 from the same set of 100
simulations. In the first case, as the metric can be computed
exhaustively for all possible subsets, we were able to check
whether the genetic algorithm found the true minimum or
was trapped in a local minimum. In the second case, we
compared the genetic algorithm with the random search
procedure developed earlier.

The paper is structured as follows. In the next section we
describe the genetic algorithm that we have used. In the
following section we give background information on the 100
simulations that are used in both case studies. Then the first
case study is presented. We show that the genetic algorithm
effectively reaches the global minimum. We also show that
there is a trade-off between the number of individuals in each
generation and the number of generations required to
converge. The more individuals per generation; the fewer
generations are needed. The second case study is presented
in the following section. Even with a total population of 
5.36 x 1020 combinations, genetic algorithms give much
better results than those obtained with the random search
procedure. Other cases with even larger sets of simulations
are currently being studied. Our experience to date has
shown that the speed of convergence in large cases depends
on the choice of the parameter values used, namely, the
number of individuals in each generation and the number of
progeny obtained by crossing-over and by mutation. In order
to understand the impact of these parameters on the
convergence we developed a method for tracking individual
selections over time. The survival rates of parents, progeny
from crossing-over, from mutations of a single gene and of
all the genes, from one generation to another, were
evaluated. We show how this evolves over time.

The conclusions are given in the last section. For the sake
of brevity, the procedure developed for measuring the dissim-
ilarity between two simulations and the metric D(J,q) is given
in Appendix 1. One of the reviewers of the paper asked why
we focus only on minimizing the metric D(J,q) instead of
comparing the values of the objective function computed
using the full set of simulations rather than on a subset of
them. This is a very good question. Heitsch and Romisch
(2009) showed that minimizing the metric D(J,q) is
equivalent to minimizing metric (2) (Appendix 2). for all
objective functions f in a fairly wide class. So we only need to
find the subset Q that minimizes D(J,q). A more detailed
explanation is given in Appendix 2.

Genetic algorithm used 

Sastry, Goldberg, and Kendall (2005) provide a good

description of genetic algorithms, which were first invented in
the mid-1970s (Holland, 1975), together with a review of
developments up to 2005. Their usefulness in solving many
difficult real-world applications has been demonstrated over
the past 40 years; for example, for electric power systems
(Valenzuala and Smith, 2002; Burke and Smith, 2000); for
scheduling university courses (Paechter et al., 1995, 1996)
and university examinations (Burke and Newall, 1999); for
rostering nurses (Burke et al., 2001); for warehousing
(Watson et al., 1999), and for scheduling sports (Costa,
1995) and machines (Cheng and Gen, 1997).

The algorithm we use is similar to that of Cao and Wu
(1999). Each individual in the population is represented by a
vector of length k. These vectors are considered as
‘chromosomes’ with k genes. The algorithm selects two
individuals in the population to be parents, and gets them to
mate by crossing the chromosomes to produce ‘children’.
Occasionally a spontaneous mutation occurs. As in natural
selection, the fittest of the children are more likely to be the
parents of the succeeding generation. The probability of an
individual being chosen to be a parent depends on its fitness.

In our application the k genes in each chromosome
represent the numbers of the k simulations to be kept. At the
outset 10 000 individuals (vectors) were generated by
drawing k numbers at random between 1 and N. The fittest
1000 of these were then selected to reproduce. Here the
fitness is defined as 1/D(J,q). The algorithm selects two
individuals to be parents. The gene cross-over is carried out
by picking a cross-over point P at random between 1 and k
(included). The first P genes from one parent are then joined
to the (k-P) genes from the other parent. Figure 1 illustrates
a crossing-over.

Mutation is another important feature of natural selection
and of genetic algorithms. A position within each
chromosome is selected at random. A gene (a simulation
number between 1 and N) is selected at random to replace the
gene at that location. Figure 2 illustrates a mutation in which
simulation no. 66 is mutated into simulation no. 29. The
others remain unchanged. Figure 3 summarizes the
procedure that we have programmed.

This procedure of mating and mutation is repeated
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Table I

Number of combinations of k simulations selected from N simulations without replacement

k = 1 k = 3 k = 4 k = 5 k = 10 k = 12 k = 15 k = 20

N = 100 100 1.62e+5 3.92e+6 7.53e+7 1.73e+13 1.05e+15 2.53e+17 5.36e+20
N = 700 700 5.69e+7 9.92e+9 1.38e+12 7.30e+21 2.63e+25 3.12e+30 2.49e+38

Figure 1—Crossing-over. The two chromosomes from the parents
cross over at a random point. The two genes on the left from Parent no.
1 are joined to the three on the right from Parent no. 2, giving child no.
1 with mixed genes, and likewise for the second child



through NGG generations. At each step the fitness of all the
individuals in the population is computed by calculating the
inverse of D(J,q) for each individual and the fittest are kept.
It would be possible for individuals with repeated values of
simulation numbers (e.g. 1, 1, 2, 3 …) to be created by
mutation or crossing-over. As they turn out to have higher
values of D(J,q) they are eliminated rapidly.

Background information on two case studies

The simulations used in both case studies were generated for
a case study on the impact of hedging on a hypothetical gold
mine in Australia. They were based on the Walker Lake data-
set (Isaaks and Srivastava, 1989), except that the grades
were modified to reproduce the statistical characteristics of
the Kisladag gold deposit in Turkey and the size of the blocks
and selective mining units was rescaled to match its annual
production. See Armstrong et al. (2010 and 2013) for details.
As the profitability of mines depends primarily on the
recoverable reserves, especially the quantity of metal
recovered, we chose to use the metal above cut-off in each
panel to measure the dissimilarity between simulations. To
be more precise, each simulation is represented by a vector

giving the metal above cut-off for a series of 16 possible cut-
offs for each panel. In studies using the Walker Lake data,
the area is usually divided into 30 panels each containing
100 selective mining units. So we computed the metal above
cut-off for each panel for the 16 cut-offs corresponding to
different possible gold prices. Each simulation was
represented by a vector of length 480 = 30 x 16. The
underlying idea is that two simulations are ‘very similar’ if
the metal above cut-off in one simulation is very close to that
of the other simulation for every cut-off and for every panel3. 

We say that these vectors are a proxy for the simulations
because they encapsulate the essential characteristics of the
simulation in a shortened form. In contrast to mining, the
proxies for oil and gas reservoir simulations and aquifer
simulations should reflect their fluid flow characteristics. 

Having computed the proxy for each simulation, we
compute an N x N matrix D of the dissimilarities between
simulations where N is the total number of simulations. Let S
denote the selected subset of k simulations; let J be the subset
of the remaining (N – k) simulations. The metric D(J,q)
between the subset S and the full set of simulations is
computed using the procedure described in Appendix 1. In
previous work (Armstrong et al., 2010, 2013), subsets
containing 12 simulations were considered so there was a
total of about 1.05 x 1015 possible combinations. In the
second example here we select subsets of 20 simulations so
the population to be sampled contains 5.36 x 1020 possible
combinations, that is, there are 100 000 times as many
candidate subsets. This is why we are looking for a more
efficient sampling method.

Results for first case study: k = 4, N = 100

The first step was to find the true global minimum for
subsets containing 4 simulations out of a total of 100
simulations. This involved computing the metric D(J,q)
exhaustively for about 3.9 million possible subsets. Figure 4
shows the histogram of all the values of the metric. The
global minimum turned out to be 0.2564. 
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Figure 2—Mutation. A gene chosen at random is changed to another
randomly selected gene. Here simulation no. 66 is replaced by
simulation no. 29

Figure 3—The genetic algorithm that was used. Initially NN new sets of
k simulations are created by drawing the simulation numbers at
random (pure mutants). The best N1 of these are selected to be the
parents for the next generation (i.e. those with the lowest values of
D(J,Q)). Next, N2 new individuals are created by crossing-over from the
parents, then N3 individuals are created by mutating one gene in one of
the parents (1-mutants), and lastly N4 pure mutants are created. The
best N1 individuals are selected from the NN = N1+N2+N3+N4
individuals in that generation. This is repeated NGG times

3Strictly speaking, this dissimilarity measure is not a distance because a zero value could be

obtained for two simulations that were not identical simply by permuting the selective mining

units within one or more panels.

Figure 4—Exhaustive histogram of the values of the metric D(J,q)
obtained from 3 921 225 possible subsets of 4 simulations from 100
simulations. The minimum is 0.2564
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The next step consisted of running the genetic algorithm
100 times with different initial sets of 1000 subsets. All of
the runs of the genetic algorithm reached the global minimum
after at most 8 generations. Figure 5 shows the evolution of
the metric for all hundred runs of the genetic algorithm
together with the global minimum (shown by the dotted red
line). We had wondered if there was enough ‘genetic
material’ in a population of this size to reach the global
minimum. If not, the genetic algorithm might have been
trapped in a local minimum and been unable to get out of it.
Our worries were in vain.

We then repeated the test using a much larger population
containing 10 000 subsets instead of 1 000. The 10 runs of
the genetic algorithm all reached the global minimum but
after 4 generations instead of 8 (Figure 6). This shows that
there is a trade-off between the number of subsets considered
in each generation and the number of generations required to
reach the minimum.

Results for second case study: k = 20 N = 100 

Before running the genetic algorithm, we carried out 2 million
random draws of 20 numbers between 1 and 100. The lowest
value of D(J,q) found by the random search procedure was
0.1946 compared a mean of 0.2216 and a standard deviation
of 0.0077. Figures 7 presents the histograms of all 2 million
values of D(J,q) (left) and of the lowest 5000 values (right).

As the genetic algorithm was run for 50 generations, each
with 10 000 subsets, about 500 000 subsets were evaluated.
The minimum value of D(J,q) found was 0.1868, compared to
0.1946 after evaluating 2 million randomly selected subsets.
This confirms that the genetic algorithm is more efficient at
finding subsets with low values of the metric.  

Figure 8 presents the evolution of the minimum value of
the metric D(J,q) shown by the solid line and also the
maximum (fine line) and the mean (dotted line). As expected
the minimum decreases monotonically as a function of the
number of generations. The mean also decreases steadily but
the maximum is more or less constant. This is because new
randomly drawn subsets are being included. The genetic
algorithm has effectively succeeded in generating lots of
promising subsets with values of the metric that are much
lower than the random search procedure used earlier. 

▲
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Figure 6—Evolution of the minimum value of the metric D(J,q) for 10
runs of the genetic algorithm each with 10 000 possible subsets of 4
simulations from 100 simulations. All of the runs reached the absolute
minimum 0.2564 after at most 4 generations. There is a trade-off in
computational effort between the number of generations and the
population of subsets per generation

Figure 5—Evolution of the minimum value of the metric D(J,q) for 100
runs of the genetic algorithm each containing 1000 possible subsets of
4 simulations from 100 simulations. All of the runs reached the absolute
minimum 0.2564 after at most 8 generations

Figure 7—Histograms of all 2 million values of the metric D(J,q) obtained by the random search procedure (left) and of the lowest 5000 of the values
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Tracking individual selections 

As both the genetic algorithm and the random search
procedure are iterative procedures, there is no guarantee of
their reaching the true minimum. In this example we found
that 8009 of the 10 000 subsets in the 50th generation had a
value of D(J,q) equal to the minimum 0.1868. We found that
they were all identical but they had appeared at different
times. Table II presents the 7 of these 8009 subsets with the
value of the metric in the first column followed by the
identity number of that subset, those of its parents, and then
the generation number when it first appeared. The first of
these subsets was first created in generation no. 32 as a
result of a mutation. The ‘0’ for the second parent indicates a
mutation of one gene from a parent as opposed to a cross-
over. In addition, a certain number of pure mutants are
introduced in each generation in order to ensure that the
genetic material can be renewed. Pure mutants can be distin-
guished because they have ‘0’ for both parents. We refer to
individuals created by mutating one gene as 1-mutants to
distinguish them from pure mutants.

The fact that the simulation numbers in all 8009 subsets
are identical suggests that the algorithm has either reached
the true minimum or is trapped in a local one.

Percentage of parents, progeny, and mutants
surviving to the next generation

Having a method for tracking individual selections makes it
possible to follow their evolution over time from one
generation to another. This is important when choosing how
many progeny, 1-mutants, and pure mutants to create each
generation. To be more specific, we wanted to know how
many of these four classes survived from one generation to
another. Figure 9 shows the percentage of each class that
survives over time from the first generation until the 50th. At
the outset about 10% of each type of individual survived to
the next generation. For the first few generations the pure
mutants (mauve) are important, but this drops off rapidly.
For the first 8–10 generations the 1-mutants (red) have a
high survival rate. The survival rate for progeny (created by

crossing-over) drops off more slowly. After 35 generations,
most of the parents survive to the next generation. So the
population is quite fit (with low values of the metric D(J,q). 

Looking at these results one might be tempted to reduce
the number of pure mutants and 1-mutants after about 25
generations, but the last few drops in the value of the metric
(i.e. after 35 generations) turned out to be due to mutants.
We interpret this as meaning that new genetic material has to
be introduced into the gene pool in order to find the
minimum, or else it would become too narrow – ‘too inbred’,
one might say.

Local minima 

Two problems when using iterative algorithms are the
criterion for stopping and avoiding being trapped in local
minima. In our case, these problems increase in importance
as the size of the subset to be sampled (and the computer
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Table II

The ID number, those of their two parents and the
generation in which they first appeared, for 7 of the
8009 subsets with the minimum value of D(J,q) found
by the genetic algorithm. The subsets are all
identical but were found by different paths, starting
out from a subset created by a mutation in
generation no. 32 (the ‘0’ for the second parent
indicates a mutant)

D(J,q) ID no. Parent no.1 Parent no. 2 No. of generations

1 0.1868 287232 265613 0 32
2 0.1868 295801 287232 262044 33
3 0.1868 301516 287232 271762 34
4 0.1868 313743 271179 300883 35
5 0.1868 316606 313706 309055 36
6 0.1868 442001 308331 316186 50
7 0.1868 448245 316223 316488 50

Figure 8—The evolution of the minimum value of D(J,q) obtained by the
genetic algorithm (solid line), and also the mean (dotted line) and the
maximum (thin line). Each generation consisted of 10 000 subsets. As
expected, the minimum decreases monotonically as a function of the
number of generations. The mean also decreases steadily but the
maximum is more or less constant. This is because new randomly
drawn subsets are being included

Figure 9—Proportion of parent sets of parents (blue), progeny (black),
1-mutants (red), and pure mutants (mauve) that survive to the next
generation, as a function of the number of generations
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time required) increases. In this section we show that while it
would be tempting to assume that the algorithm has
converged when the value of D(J,q) stops decreasing for
some time, the algorithm may well be trapped in a local
minimum. To illustrate this point, we ran the genetic
algorithm ten times for the second case using the following
parameters: 10 000 individuals per generation; 1000 were
retained as parents (N1) for the next generation; 2000
progeny (N2) were created by crossing-over; 7500
individuals (N3) were obtained by mutating 1 gene; and a
further 500 were pure mutants (N4). This was repeated over
500 generations. Figure 10 shows the minimum value of
D(J,q) per generation for the first 50 of the 500 generations
for the 10 repetitions. The value of D(J,q) did not drop after
that point. Three distinct long-term minima were found for
D(J,q): 0.1868349 (5 cases out of 10 repetitions), 0.1871285
(2 cases), and 0.1871484 (3 cases). At first we expected the
algorithm to have identified one particular set of k

simulations corresponding to each minimum. We were
surprised to find that this was not the case. Figure 11 shows
all the values of D(J,q) for the top 1000 individuals in each
generation. Note how the range of values narrows as the
number of generations increases, until all the individuals
have the same D(J,q) value. In fact, the individuals are
identical. This means that new genetic material brought by
the 1-mutants and the pure mutants was not ‘fit’ enough to
be selected for the following generation; nor were the new
individuals created by crossing-over.

Looking back at Figures 10 and 11, it is now clear that
we had wasted time and effort continuing to run the
algorithm for 500 generations; it had reached a local
minimum after 50–60 generations. The algorithm was unable
to get out of the local minimum because all the individuals
were the same. It could not create ‘fit enough’ individuals to
survive the Darwinian selection process. We are currently
modifying certain aspects of the algorithm to overcome this
problem.

Conclusions and perspectives for future work 

In the two tests presented and in others that we have carried
out, the genetic algorithm outperformed the random search
method used earlier. We believe that this is true in general.
However, we still need to know more about its performance
characteristics. Firstly, what criterion should be used to stop
the algorithm? An arbitrary number of generations, and in
that case how many? Or some criterion based on the
algorithm’s performance? 

Secondly, we need a better understanding of how the
genetic algorithm functions, particularly when the number of
combinations in the space to be sampled is large. Does the
crossing-over mechanism contribute more than mutations? Is
one more efficient early on and the other more useful later
on? How many individuals should there be in each
generation? In the first example, we showed that there is a
trade-off between the number of generations required and the
number of individuals per generation. The more individuals
per generation, the faster the value of D(J,q) drops – but at
the cost of more computations. Further work is required to
clarify these points and also to find ways to create ‘fit
enough’ individuals in order to avoid getting trapped in local
minima. Having said that, while it is important from a
theoretical point of view to understand the convergence
properties, this is not primordial in practice because the sets
of simulations that make up the local minima are all very
similar. 
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Appendix 1: The dissimilarity matrix D and the metric
D(J,q)

Dissimilarity matrix D

The first step is to choose a proxy to represent the
simulations. This is a vector that encapsulates the main
features of simulations. For example, in open-pit mining
applications, it could be the quantity of metal in each panel
above a set of cut-offs; in petroleum engineering it could be
streamline fluid flow simulations. The next step is to
construct the square N x N matrix of distances between pairs
of proxies. This matrix is of course symmetric with zeros
down the diagonal.

Metric D(J,q)

Let ∏ be the probability measure associated with the initial
set of N geostatistical simulations which are denoted by ζi.
for i =1, … N. Let pi be the probability of the i th simulation.

In general geostatistical simulations are considered to be
equally probable so pi =1/N. We want to find a probability
measure Q with only k simulations, that is as close as
possible to ∏. Let S be the set of the numbers of the k
simulations to be retained; let J be the set of the numbers of
the (N-k) others. Let qj be the probability of the jth
simulation to be retained. In contrast to pi, the probabilities qj
are no longer equally likely. We use the metric developed by
Heitsch and Romisch: 

where µ is the Kantorovitch functional. 
When this metric D(J,q) is transposed to geostatistical

simulations, it is computed from the dissimilarity matrix in
the following way. The rows and columns of the dissimilarity
matrix are rearranged so that the k simulations to be retained
(e.g. in S) are placed before the other (N-k) simulations (e.g.
in J). The dissimilarity matrix can now be partitioned as:  

Computing the new probabilities q

In order to evaluate D(J,q) we first determine the probabilities
qj in the new measure. This is done by taking the simulations
in J one by one and finding the member of S that is closest to
each one. The probability of the simulation being eliminated
is then assigned to the closest member of S. Speaking figura-
tively, each member of S ends up as the ‘head’ of a group
consisting of itself plus those members of J that are closer to
it than to any other member of S. So its new probability qj is
the sum of its own initial probability pi plus those of the
others in its group. Some members of S find themselves at
the centre of a large group; other groups have only a few
members, while some are loners (singletons). Having
determined the new probabilities, it is easy to compute the
metric D(J,q). 

A short example 

The easiest way to illustrate these two steps is via a short
example. Suppose that we want to select 5 simulations out of
a total of 20 equally probable geostatistical simulations.
Suppose that S ={2, 7, 12, 13, 15} and J ={1, 3, 4, 5, 6, 8, 9,
10, 11, 14, 16, 17, 18, 19, 20}. The rows and columns in the
dissimilarity matrix are rearranged. Table III (a) gives the
sub-matrix DJS. 

Taking the members of J one by one, find the lowest
value in each row in DJS. For example, the closest member of
S to simulation no. 1 (in J) is simulation no. 12. In fact,
simulation no.12 is the closest one to 9 of the simulations in
J (no. 1, 3, 6, 8, 10, 16, 17, 19, and 20). These are
highlighted in yellow in Table IIIa. So its new probability is
(9+1)/20 = 0.5. Five of the simulations in J highlighted in
blue are closest to no. 7 (no. 5, 9, 11, 14, and 18). So the
new probability for no. 7 is (5+1)/20 = 0.3. One simulation
(no. 4) is closest to no. 13, so its new probability is 0.1 and
the remaining two simulations (no. 2 and no.15) are
singletons that are far from any other simulations. Table IV
gives the new probabilities.
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In order to compute the value of D(J,q) we go back to
Table III. Each of the row minima is multiplied by the original
probability of that simulation. Since there are 20 equally
likely simulations, the probabilities are all 0.05. In this
example the value of D(J,q) is 0.2211, that is the sum of 
the row minimums (0.422) multiplied by 0.05, as shown 
in Table IIIb. 

Appendix 2: The stability property of the objective
function

One of the reviewers of the paper asked why we focus only
on minimizing the metric D(J,q) when the overall objective is
the accuracy of the objective function computed over the
selected subset of the simulations compared to the full set.
The answer is because of the stability properties of the
stochastic programming problem with respect to small pertur-
bations. Here we summarize the explanation given in Heitsch
and Romisch (2003) based on work by Dupacova et al.
(2003) and Rachev and Romisch (2002).

Our overall objective when using a set of simulations is to
optimize an objective function f over all the simulations
weighted by their probabilities. This is reformulated in
stochastic decision problems as 

[1]

where 
X Rm is a nonempty closed convex set 
Ω is a closed subset of Rs

the function f from Ω x Rm to R is continuous with respect to
 and convex with respect to x

P is a fixed Borel probability measure on Ω.

Typically the integrand f is not differentiable but is locally
Lipschitz continuous on Ω. In Dupacova et al. (2003) and
Rachev and Romisch (2002) it is shown that model (1) is
stable with respect to small perturbations in terms of the
probability metric:

Heitsch and Romisch (2003) show that minimizing the
metric D(J,q) is equivalent to minimizing (2) for all objective
functions f in a fairly wide class. We only need to find the
subset Q that minimizes D(J,q) in order to minimize the
absolute difference between the approximate objective
function obtained using the subset Q, and that obtained
using the full set of simulations. Readers can consult Heitsch
and Romisch’s paper for the mathematical proofs, and the
exact conditions on the objective function f.

Interpreting these results in terms of geostatistical
simulations 

The probability measure P gives the probabilities of all the
initial scenarios. In general the geostatistical scenarios are
considered to be equally likely. The probability measure Q
gives the probabilities of simulations in the reduced subset;
these are not equally likely. Some simulations are ‘typical’
whereas as others are less likely. They could correspond to
‘bonanzas’ or ‘disasters’, which are both important for
decision-makers.

Expression [2] gives an upper bound on the absolute
difference between the objective function obtained using the
full set P and the reduced set Q for all possible objective
functions.     ◆
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Table III

(a) Five simulations no. 2, 7, 12, 13, and 15 are to be
retained. The matrix DJS below is used for assigned
the other 15 simulations to the closest one out of the
5 retained, as shown by the coloured highlighting, 
(b) Minimum value (left column) and closest
simulation (right column). D(J,q) is computed by
summing the row minima each multiplied by their
probability. As the 20 geostatistical simulations are
equally probable, it suffices to sum the minima and
multiple by 0.05

(a) 2 7 12 13 15

1 .626 .400 .376 .627 .696
3 .743 .490 .327 0.953 .828
4 .826 .439 .497 .395 .513
5 .692 .290 .393 .708 .530
6 .702 .432 .276 .762 .794
8 .451 .330 .284 .784 .557
9 .800 .291 .353 .397 .464
10 .554 .331 .267 .843 .633
11 .601 .238 .259 .654 .741
14 .795 .284 .309 .616 .511
16 .416 .340 .264 .618 .505
17 .485 .281 .209 .778 .575
18 .800 .184 .299 .641 .497
19 .779 .536 .447 .862 .699
20 .443 .299 .290 .563 .477

Table IV

The new probabilities q for the 5 simulations
selected

Simulation no. 2 7 12 14 15

Probability q 0.05 0.30 0.50 0.10 0.05

(b) Minimum Closest

1 .376 1 → 12
3 .327 3 → 12
4 .395 4 → 13
5 .290 5 → 7
6 .276 6 → 12
8 .284 8 → 12
9 .291 9 → 7
10 .267 10 → 12
11 .238 11 → 7
14 .284 14 → 7
16 .264 16 → 12
17 .209 17 → 12
18 .184 18 → 7
19 .447 19 → 12
20 .290 20 → 12

D(J,q) = 4.422 x 0.05 = 0.2211

∪




