
Introduction

Geostatistics has received a great deal of
attention in the mining industry over the last
few decades, as it offers varied tools and
models to assess mineral resources and ore
reserves (Journel and Huijbregts, 1978; David,
1988; Krige, 1999). Geostatistical analyses are
based on exploration data and/or production
data such as the grade assays in drill-hole or
blast-hole samples. Data integrity is essential
to obtain accurate estimates of resources and
reserves. In this regard, data with extreme
high values may be problematic, because of
the effect on the sample variograms and
resource and reserve estimates (Krige and
Magri, 1982; Armstrong, 1984). The modeller
is often tempted to consider such extreme data

as outliers or erroneous measurements and to
omit them from geostatistical analyses. Such a
procedure is questionable if the extreme data
corresponds to true values, because it may
lead to underestimate the resources or
reserves. The bias can be severe when
estimating the grades of elements with heavy-
tailed distributions, such as gold or silver, for
which removing the highest values can affect
the economic appraisal of the ore deposit.

To mitigate this impediment, a number of
sophisticated robust estimation procedures
have been proposed to reduce the influence of
extreme high values (Journel and Arik, 1988;
Parker, 1991; Arik, 1992; Costa, 2003;
Machado et al., 2011, 2012). A simple
alternative is to truncate the extreme high
values to some threshold or top-cut value, a
procedure known as ‘capping’ or ‘cutting’
(Sinclair and Blackwell, 2002; Rossi and
Deutsch, 2014). As an example, Costa (2003)
proposes to truncate the values that deviate by
more than their cross-validation standard
deviation error. With this method, the same
high value can result in different truncated
values, depending on the the kriging
neighbourhood, and no fixed top-cut is used.
In practice, a fixed top-cut value is often
considered, chosen (with some arbitrariness)
in the last percentiles of the data distribution.
This practice is widely used in the evaluation
of precious metal deposits (David, 1988; Krige,
1999; Dagbert, 2005) and is accepted in
current international codes for reporting
mineral resources and ore reserves (SAMREC,
2007; JORC, 2012).

However, although less detrimental than
removing extreme high values, considering
truncated values omits some part of the data
information and is likely to provoke a bias in
the estimates, which has to be assessed and, if
possible, fixed. On this subject, Rivoirard et al.
(2013) recently presented a model in which a
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fixed top-cut value is used and the estimates are corrected for
bias. The model is attractive from several points of view, as it
allows choosing the ‘optimal’ top-cut value and working with
truncated and indicator data, thus avoiding the use of
extreme high values for calculating sample variograms and
for performing spatial interpolation. This work presents an
application of this top-cut model to a case study in mineral
resources evaluation, together with proposed guidelines for
practical implementation. Before dealing with the case study,
a short review of the model is presented. Mathematical details
and proofs can be found in the paper by Rivoirard et al.
(2013).

Methodology

Spatial interpolation with top-cut model

Let x denote the vector of coordinates associated with a
spatial location, Z the variable targeted for estimation
(typically, the grade of an element of interest) and ze a top-
cut value. The variable (original grade) can be split into two
components, a truncated grade and an excess, as follows:

[1]

where 1Z(x)>ze denotes an indicator function:

[2]

In turn, the excess can be written as the sum of its
regression onto the indicator and a residual:

[3]

where m+(ze) is the mean value of Z above ze, so that m+(ze)
– ze is the mean excess above ze, and Rze (x) is the regression
residual. The proposed model assumes that this residual has
no spatial correlation with the indicator function or with the
truncated grade:

[4]

Under such an assumption, the estimation of the original
grade can be made by jointly estimating the truncated grade
and the indicator via cokriging (CK) and separately
estimating the residual via kriging (K):

[5]

If, furthermore, the residual has no spatial correlation
structure, its estimate is equal to its mean value, i.e. zero.
This results in the following estimate for the original grade:

[6]

The model therefore amounts to cokriging the truncated
grade and the indicator function. Both of them no longer
have extreme high values, in contrast to the original grade,
which lends more robustness to the calculation of sample
variograms and to the final estimates.

Validation of model assumptions

As assumed in Equation [4], the residual should be spatially
uncorrelated with the truncated grade and the indicator. In
other words, the high grade values (above ze), which account

for the non-zero residual values, should be independent of
the low grade values (below ze) and of the geometry of the
set A(ze) of locations with grade values greater than ze.
Rivoirard et al. (2013) state that this occurs when there is no
edge effects within A(ze), i.e. when the value observed at a
location of A(ze) does not depend on whether or not this
location is close to the boundary of A(ze).

The absence of edge effects can be verified by examining
the indicator variograms. Let us denote by γze (h) the
variogram of the indicator function 1Z(x)>ze and by γze,z (h)
the cross-variogram between the indicators 1Z(x)>ze and
1Z(x)>z with z greater than ze (under an assumption of
second-order stationarity, these variograms are functions of
the lag separation vector h). Then, in the absence of edge
effects, one obtains (Rivoirard, 1994)

[7]

Choice of optimal top-cut value

The previous ratio of indicator variograms is the main tool for
finding the most appropriate top-cut value ze. Indeed, one can
select several thresholds (candidate top-cut values) {z1,…,
zn} and calculate the ratios between the indicator cross- and
direct variograms associated with successive thresholds. The
first threshold for which the ratio is approximately constant
(independent of the lag separation vector) corresponds to the
minimal acceptable value (zmin) for choosing the top-cut
value ze.

Also, it is convenient (although not compulsory) to
choose the top-cut value so that the residual variability above
ze is pure nugget effect. In such a case, there is no advantage
in choosing a higher top-cut value, since this would amount
to incorporating poorly structured grade values in the
truncated variable. In other words, when the residual
variability above ze is pure nugget effect, there is little or no
loss of information entailed by working with the truncated
grade min{Z(x),ze} and the indicator 1Z(x)>ze instead of the
original grade Z(x). Following Rivoirard et al. (2013), this
condition can be checked by calculating a residual indicator
variogram defined as a difference between normalized
indicator variograms:

[8]

where z and z′ (with z < z′) are thresholds greater than zmin,
while T(z) and T(z′) are the proportions of grade values
above z and z′, respectively. The threshold z for which the
above difference is pure nugget provides the maximum
acceptable top-cut value (zmax).

In summary, the examination of indicator variograms
allows definition of an interval [zmin, zmax] in which to
choose the ‘optimal’ top-cut value ze. In addition to these
considerations (Rivoirard et al., 2013), the following
additional checks are proposed once the top-cut value has
been chosen:

1) Calculate the truncated grade, indicator, and residual at
each data location

2) Calculate the autocorrelation function (correlogram) of
the residual, in order to determine whether or not it is a
pure nugget effect. If so, the contribution of the
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residual can be omitted in the estimation of grade
(Equation [6]). Otherwise, one may prefer the
estimator that accounts for the residual (Equation [5])

3) Calculate the cross-correlogram between the residual
and the truncated grade, as well as the cross-
correlogram between the residual and the indicator,
and check that these are close to zero for every lag
separation vector. This corroborates that the residual
has no spatial correlation with the truncated grade and
with the indicator, as it is assumed in the model
(Equation [4]).

The use of sample correlograms and cross-correlograms is
suggested because of their robustness to outliers or to data
with extreme high values (Isaaks and Srivastava, 1988),
although these tools may be biased estimates of the true
underlying spatial correlations because of the centring and
normalization of the data for each lag separation vector (the
magnitude of the bias depends on the number of data and
their spatial distribution). Unbiased estimates of the spatial
correlation could be obtained with the variogram or with the
non-centred covariance, at the price of a loss of robustness
(Rivoirard et al., 2000, Chilès and Delfiner, 2012).

Type of cokriging

Let us return to the estimator in Equation [5]. This estimator
relies on cokriging the truncated grade and the indicator and,
if not nugget, kriging the residual. Rivoirard et al. (2013)
consider the use of simple and ordinary kriging/cokriging,
depending on whether the mean values of the variables are
deemed known or not.

The latter case (unknown mean values) is interesting in
practice, insofar as the means can vary in space, provided
that they remain approximately constant at the scale of the
kriging or cokriging neighbourhood (assumption of local
stationarity). When omitting the residual term and using the
estimator in Equation [6] with ordinary cokriging, one
further assumes that the mean grade above top-cut value,
m+(ze), is constant in space and known (but the probability
that Z(x) exceeds ze may vary locally and is unknown), so
that the local mean value of the residual is zero everywhere
(Rivoirard et al., 2013). Now, if one denotes by m-(ze) the
mean grade below top-cut value, it is possible to establish a
relationship between the mean values of the truncated grade
and indicator, as shown in Table I. 

Accordingly, the relationship between the mean values of
the indicator (m1) and truncated grade (m2) can be modelled
in the following fashion:

[9]

Even when considering that m1 and m2 are unknown, it
is reasonable to assume that the previous relationship
remains valid and to incorporate this relationship in the

ordinary cokriging system (Emery, 2012). This is more
restrictive than traditional ordinary cokriging, which assumes
that m1 and m2 are unknown and unrelated (a somehow
naive assumption, because of the strong dependence between
the indicator and the truncated grade, as highlighted in Table
I), but more versatile than simple cokriging, which assumes
that both mean values are known without any uncertainty.
For the coefficients of the relationship between m1 and m2 to
be constant (Equation [9]), it is assumed that the mean
grade below top-cut value, m-(ze), is constant in space and
known, while the probability that Z(x) exceeds or falls short
of ze may be locally variable and unknown.

In the next section, these tools and models are applied to
a case study in mineral resources estimation.

Case study: porphyry copper-gold deposit

Presentation of the data set and deposit

The available data consists of samples taken from 167
exploration drill-holes over an area of about 0.24 km2 in a
porphyry copper-gold deposit (Figure 1A). The mineralization
is disseminated and subvertical in orientation, with a main
direction dipping about 60° with respect to the horizontal
plane. Mineralization comprises chalcopyrite, bornite,
digenite, chalcocite, covellite, molybdenite, and pyrite. Gold
mineralization occurs as native gold associated with gangue
minerals, with particle sizes up to 160 µm, and as blebs
within bornite and chalcocite. 

In the following, it is of interest to estimate the gold grade
within the deposit. To this end, the available samples have
been composited to a length of 5 m. The distribution and
statistics of the grade data are summarized in Figure 1B and
Table II, indicating a long-tailed distribution with a median of
0.30 g/t, a mean of 1.01 g/t, and a maximum of almost 19
g/t. To preserve the confidentiality of the data, the original
values have been multiplied by a constant factor.

Choice of top-cut value

A set of thresholds (from 3 g/t to 6 g/t) are considered as
candidate top-cut values and the associated indicator
variograms are calculated. From these, it is determined that,
in every case, the ratio of cross-to-direct variograms
(Equation [7]) does not vary significantly with the lag
separation distance (Figure 2A, 2C, and 2E), denoting the
absence of edge effects within the set of locations with grade
greater than the thresholds under consideration. Following
Rivoirard et al. (2013), any top-cut value greater than or
equal to 3 g/t is therefore eligible. On the other hand, the
variograms of indicator residuals (Equation [8]) display
some spatial structure at short scales (up to approximately
20 m) (Figure 2B, 2D, and 2F). Accordingly, the maximum
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Table I

Relationships between mean values of indicator and truncated grade

Case Mean of indicator (m1) Mean of truncated grade (m2)

True grade less than or equal to ze 0 m-( ze)
True grade greater than ze 1 ze
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eligible top-cut value is not well-defined, since the residual
variability above the candidate top-cut values is not pure
nugget effect.

Based on these premises, a top-cut value of 3 g/t has
been finally chosen, corresponding to the 92% percentile of
the gold grade distribution. This choice instead of a higher
top-cut value (4, 5, or 6 g/t) is motivated by the fact that the
truncated gold grade is likely to exhibit a better spatial
continuity, as it is no longer ‘contaminated’ by outlying data.
The gold grade can therefore be split into three components
(a truncated grade, an indicator associated with the chosen
top-cut, and a residual), as per Equation [3]. To validate the
model, it is convenient to check that there is no spatial
correlation between the truncated grade and the residual, as
well as between the indicator and the residual. This is done
by calculating the cross-correlograms between the residual
and the truncated grade and between the residual and the
indicator, and verifying that these correlograms are close to
zero for every separation distance (Figure 3).

Variogram modelling

The direct and cross-variograms of the truncated grade and
the indicator are calculated along the identified main
anisotropy directions and are fitted with a spherical structure
(Figure 4A, 4B, and 4C):

[10]

The above equation gives a valid coregionalization model,
as the eigenvalues of the sill matrix are non-negative
(Wackernagel, 2003). The direction of main continuity (with
a correlation range of 40 m) is dipping 60° with respect to the
horizontal plane, in agreement with the known direction of
mineralization, whereas the variograms are found to be
isotropic with a correlation range of 7 m in the plane
orthogonal to this direction. Note that the fitting relies mainly
on the sample variograms at lag distances greater than 5 m
(composite length), since few data pairs are involved in the
calculation of the very first experimental point along each
direction (only 1 pair for the direction of main continuity and
36 pairs for the orthogonal plane, while all the other experi-
mental points involve several hundreds to thousands of data
pairs).

It is also interesting to determine whether or not the
residual is spatially correlated, in order to determine which
estimator (Equation [5] or Equation [6]) is best suited to the
data. To this end, instead of the traditional sample variogram
of the residual, we calculated its sample correlogram, which is
a more robust spatial continuity measure (Isaaks and
Srivastava, 1988). This sample correlogram is then converted
into a standardized variogram, showing the existence of a
spatial correlation structure, although with a shorter range
(28 m) than the truncated grade or the indicator. The residual
variogram can be modelled by an anisotropic spherical
structure, with the same anisotropy directions as the
indicator and truncated grade (Figure 4D): 

[11]
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Table II

Summary statistics on gold grade data (g/t)

Mean Standard deviation Minimum Lower quartile Median Upper quartile Maximum

1.02 2.00 0.01 0.12 0.30 0.91 18.86

Figure 1—(A) Location of drill-hole samples (projection onto horizontal plane); (B) histogram of gold grade data
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Figure 2—(A, C, E) ratios of indicator variograms (Equation [7]); (B, D, F) variograms of indicator residuals (Equation [8]) (omnidirectional calculations)

Figure 3—Cross-correlograms between (A) truncated grade and residual, and, B) indicator and residual (omnidirectional calculations). Horizontal black line
indicates zero correlation
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Resources estimation

According to the previous models, three approaches for
estimating gold grade are compared:

1) Ordinary kriging of the truncated gold grade,
corresponding to the traditional capping approach

2) Cokriging of the truncated gold grade and indicator, as
proposed in Equation [6]. As stated previously, the
mean values of both variables are assumed unknown
but linearly related (Equation [9])

3) Cokriging of the truncated gold grade and indicator, as
above, together with ordinary kriging of the residual,
as proposed in Equation [5]. This third estimator is
tested because the residual exhibits a spatial structure,
as reflected in Figure 4D.

In each case, the same search neighbourhood is used,
consisting of an ellipsoid with semi-axes 400 m along the
main anisotropy direction and 100 m along the orthogonal
directions. This ellipsoid is divided into octants and up to
eight data are searched for in each octant. The dimensions of
the search ellipsoid as well as the large number of searched
data (up to 64 for each target block) have been chosen in
order to obtain as accurate and conditionally unbiased
estimates as possible, even if they inevitably yield smoothed
grade models (Rivoirard, 1987; Krige, 1996, 1997b; Vann et
al., 2003).

The traditional approach (kriging of truncated grade)
leads to an estimate that is mostly less than the chosen top-
cut grade (3 g/t) (Figure 5A), although the true grade is
likely to exceed this top-cut, as suggested by the data
histogram in Figure 1B. In contrast, with the cokriging
approaches (Figure 5B and 5C), the grade estimates are no
longer limited by the top-cut grade, which looks more

realistic. The locations of high grade estimates are controlled
by the indicator and by the residual, which correspond to the
two corrective terms introduced in the traditional estimate
(Equations [5] and [6]).

The differences between the three approaches can be
assessed globally, by calculating the mean grade above
different cut-off grades (Table III). It is seen that, for all the
cut-offs, the traditional approach (kriging of truncated grade)
yields biased estimates in comparison with the other two
approaches. The bias can be explained because the traditional
approach works only with the truncated grade and neglects
the excess above the top-cut grade, whereas the other two
approaches account for such an excess via the covariates
(indicator and residual). Although the differences between
the two top-cut models (with and without residual) are
distinguishable on the maps drawn in Figure 5, their effect on
the global statistics on the estimates is not significant, at
least for low cut-offs; this is explained because, by
construction, the residual has a zero mean value. 

Cross-validation

In order to compare the model performances, we realized
leave-one-out cross-validation: each data is successively
removed and re-estimated from the surrounding data (Journel
and Huijbregts 1978). The statistics on the cross-validation
errors (mean error, mean absolute error, and mean squared
error) are reported in Table IV, while the scatter diagrams
between true and estimated gold grades are shown in 
Figure 6. These results confirm the bias of the traditional
approach (mean error of -0.28 g/t), for which the estimates
are practically limited by the top-cut grade. These estimates
are also conditionally biased, insofar as the regression of the
actual gold grade upon the estimated grade is significantly

▲
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Figure 4—Sample (dots and dashed lines) and modelled (solid lines) direct and cross-variograms for truncated gold grade and indicator (A, B, and C) and
direct variogram of residual (D). Black: direction of main continuity (dip 60°); red: orthogonal plane
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Table III

Statistics on estimated gold grade

Cut-off (g/t) Mean grade above cut-off (g/t)

Traditional capping Top-cut model without residual Top-cut model with residual

0.0 0.465 0.874 0.869
0.5 0.831 0.879 0.876
1.0 1.267 1.478 1.556
1.5 1.765 1.914 2.063
2.0 2.270 2.470 2.617
2.5 2.666 3.176 3.238

Figure 5—Gold grade estimates at a given elevation obtained with (A) traditional approach, (B) and (C) top-cut model without and with residual

Figure 6—Comparison of true vs. estimated gold grades with (A) traditional approach, (B) top-cut model without residual, and (C) top-cut model with
residual. Solid blue lines: linear regression of actual grades upon estimated grades. Solid black lines: main diagonal
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different from the diagonal, with a slope much greater than 1
(Figure 6A). The existence of a conditional bias is a pitfall for
the resource/reserve model, as it leads to an erroneous
assessment of the mining project (Krige, 1996, 1997a). In
contrast, the top-cut model does not suffer any global or
conditional bias in both cases (the mean errors are close to
zero and the regressions of the actual upon the estimated
grades are close to the diagonal line). A greater accuracy is
achieved when accounting for the residual, as indicated by
the smaller mean absolute and mean squared errors, and by
the smaller dispersion of the scatter diagram around the
diagonal line.

Conclusions

Top-cut modelling is a helpful tool to handle extreme high
values in the estimation of variables with long-tailed distrib-
utions, as it improves the accuracy of the estimates and
reduces global and conditional biases with respect to the
traditional capping approach. Some additional guidelines
have been proposed, consisting of checking the independence
of the residual with the truncated grade and with the
indicator above top-cut grade, through the use of cross-
correlograms, and in replacing the estimators based on simple
kriging and cokriging by ordinary kriging and cokriging with
related mean values.  

The case study presented shows that the residual should
not be discarded when it has a spatial correlation structure.
On the contrary, if the residual is pure nugget or if its
structure cannot be interpreted properly (due to large fluctu-
ations in the sample variogram or sample correlogram), the
estimation can be limited to truncated grade and indicator
cokriging, and the modelling can then be made in a
convenient manner as it does not involve extreme high data
values. In the case study, the resulting estimates turn out to
be globally and conditionally unbiased, whether or not the
residual is taken into account in the model. The top-cut
model therefore achieves a trade-off between accuracy,
simplicity of use, and robustness against extreme high
values.
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