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Figure 2—(A, C, E) ratios of indicator variograms (Equation [7]); (B, D, F) variograms of indicator residuals (Equation [8]) (omnidirectional calculations)

Figure 3—Cross-correlograms between (A) truncated grade and residual, and, B) indicator and residual (omnidirectional calculations). Horizontal black line
indicates zero correlation



Capping and kriging grades with long-tailed distributions

Resources estimation

According to the previous models, three approaches for
estimating gold grade are compared:

1) Ordinary kriging of the truncated gold grade,
corresponding to the traditional capping approach

2) Cokriging of the truncated gold grade and indicator, as
proposed in Equation [6]. As stated previously, the
mean values of both variables are assumed unknown
but linearly related (Equation [9])

3) Cokriging of the truncated gold grade and indicator, as
above, together with ordinary kriging of the residual,
as proposed in Equation [5]. This third estimator is
tested because the residual exhibits a spatial structure,
as reflected in Figure 4D.

In each case, the same search neighbourhood is used,
consisting of an ellipsoid with semi-axes 400 m along the
main anisotropy direction and 100 m along the orthogonal
directions. This ellipsoid is divided into octants and up to
eight data are searched for in each octant. The dimensions of
the search ellipsoid as well as the large number of searched
data (up to 64 for each target block) have been chosen in
order to obtain as accurate and conditionally unbiased
estimates as possible, even if they inevitably yield smoothed
grade models (Rivoirard, 1987; Krige, 1996, 1997b; Vann et
al., 2003).

The traditional approach (kriging of truncated grade)
leads to an estimate that is mostly less than the chosen top-
cut grade (3 g/t) (Figure 5A), although the true grade is
likely to exceed this top-cut, as suggested by the data
histogram in Figure 1B. In contrast, with the cokriging
approaches (Figure 5B and 5C), the grade estimates are no
longer limited by the top-cut grade, which looks more

realistic. The locations of high grade estimates are controlled
by the indicator and by the residual, which correspond to the
two corrective terms introduced in the traditional estimate
(Equations [5] and [6]).

The differences between the three approaches can be
assessed globally, by calculating the mean grade above
different cut-off grades (Table III). It is seen that, for all the
cut-offs, the traditional approach (kriging of truncated grade)
yields biased estimates in comparison with the other two
approaches. The bias can be explained because the traditional
approach works only with the truncated grade and neglects
the excess above the top-cut grade, whereas the other two
approaches account for such an excess via the covariates
(indicator and residual). Although the differences between
the two top-cut models (with and without residual) are
distinguishable on the maps drawn in Figure 5, their effect on
the global statistics on the estimates is not significant, at
least for low cut-offs; this is explained because, by
construction, the residual has a zero mean value. 

Cross-validation

In order to compare the model performances, we realized
leave-one-out cross-validation: each data is successively
removed and re-estimated from the surrounding data (Journel
and Huijbregts 1978). The statistics on the cross-validation
errors (mean error, mean absolute error, and mean squared
error) are reported in Table IV, while the scatter diagrams
between true and estimated gold grades are shown in 
Figure 6. These results confirm the bias of the traditional
approach (mean error of -0.28 g/t), for which the estimates
are practically limited by the top-cut grade. These estimates
are also conditionally biased, insofar as the regression of the
actual gold grade upon the estimated grade is significantly
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Figure 4—Sample (dots and dashed lines) and modelled (solid lines) direct and cross-variograms for truncated gold grade and indicator (A, B, and C) and
direct variogram of residual (D). Black: direction of main continuity (dip 60°); red: orthogonal plane
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Table III

Statistics on estimated gold grade

Cut-off (g/t) Mean grade above cut-off (g/t)

Traditional capping Top-cut model without residual Top-cut model with residual

0.0 0.465 0.874 0.869
0.5 0.831 0.879 0.876
1.0 1.267 1.478 1.556
1.5 1.765 1.914 2.063
2.0 2.270 2.470 2.617
2.5 2.666 3.176 3.238

Figure 5—Gold grade estimates at a given elevation obtained with (A) traditional approach, (B) and (C) top-cut model without and with residual

Figure 6—Comparison of true vs. estimated gold grades with (A) traditional approach, (B) top-cut model without residual, and (C) top-cut model with
residual. Solid blue lines: linear regression of actual grades upon estimated grades. Solid black lines: main diagonal
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different from the diagonal, with a slope much greater than 1
(Figure 6A). The existence of a conditional bias is a pitfall for
the resource/reserve model, as it leads to an erroneous
assessment of the mining project (Krige, 1996, 1997a). In
contrast, the top-cut model does not suffer any global or
conditional bias in both cases (the mean errors are close to
zero and the regressions of the actual upon the estimated
grades are close to the diagonal line). A greater accuracy is
achieved when accounting for the residual, as indicated by
the smaller mean absolute and mean squared errors, and by
the smaller dispersion of the scatter diagram around the
diagonal line.

Conclusions

Top-cut modelling is a helpful tool to handle extreme high
values in the estimation of variables with long-tailed distrib-
utions, as it improves the accuracy of the estimates and
reduces global and conditional biases with respect to the
traditional capping approach. Some additional guidelines
have been proposed, consisting of checking the independence
of the residual with the truncated grade and with the
indicator above top-cut grade, through the use of cross-
correlograms, and in replacing the estimators based on simple
kriging and cokriging by ordinary kriging and cokriging with
related mean values.  

The case study presented shows that the residual should
not be discarded when it has a spatial correlation structure.
On the contrary, if the residual is pure nugget or if its
structure cannot be interpreted properly (due to large fluctu-
ations in the sample variogram or sample correlogram), the
estimation can be limited to truncated grade and indicator
cokriging, and the modelling can then be made in a
convenient manner as it does not involve extreme high data
values. In the case study, the resulting estimates turn out to
be globally and conditionally unbiased, whether or not the
residual is taken into account in the model. The top-cut
model therefore achieves a trade-off between accuracy,
simplicity of use, and robustness against extreme high
values.
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