
Introduction

Indirect techniques to estimate recoverable
resources during medium- to long-term
planning derive the unknown selective mining
unit (SMU) distribution estimates from the
observed distribution of relative large kriged
blocks (panels). The drawback of the indirect
methods is that only the probability distri-
bution of the SMUs within local panels can be
derived, but not their individual spatial
locations within the panel. A localized
multivariate uniform conditioning (LMUC)
post-processing technique has been proposed
to enhance the indirect uniform conditioning
by localizing the results at the SMU scale. 

In this regard, the tonnages and metals
represented by the grade-tonnage curves
estimated by traditional indirect uniform
conditioning (UC) are decomposed and
distributed into the SMUs within respective
panels according to a ranking of the main
element grade estimate of the SMUs. 

UC consists of estimating the grade distri-
bution on SMU support within a panel,
conditioned to the estimated panel grade,
usually based on ordinary kriging (OK) or
simple kriging (SK) with local mean to
accommodate a possible lack of stationarity
(i.e. when the average grade varies within the

deposit). The general framework that forms
the basis of UC is the discrete Gaussian model
of change of support, based in particular on
the correlation between Gaussian-transformed
variables. The mining industry’s acceptance of
the UC method has been apparent for several
years, and a good reconciliation is generally
found between UC medium- to long-term
estimates and production data. 

The UC method has been extended to the
multivariate case, where the correlations
between main and secondary variables can be
calculated on any support after transformation
into Gaussian space (Deraisme et al., 2008).
As the correlations between the different
grades and the main element are taken into
account in the multivariate uniform
conditioning (MUC), the local scale estimates
for the other multiple-commodity metals
contained in the tonnage, which in this case
are assumed to depend only on the main
commodity grade, are immediately obtained
from the metals attached to those tonnages.
The resultant local SMU estimates are referred
to as localized multivariate uniform condition
estimates. The correlations between the
different elements on the SMU support are
reproduced by means of the correlations
introduced in the multivariate change-of-
support model.  In addition, a rigorous
formulation of the information effect on panel
grade distribution has been developed that
allows the heterogeneity of the expected
production data configurations to be taken into
account when estimating future SMU
recoverable grades.

As highlighted above, the disadvantage of
traditional indirect UC is that the outputs
consist of panel-local grade-tonnage curves
representing a number of non-localized SMUs
within these panels. Therefore, it is difficult in
practice to use these models for underground
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and open pit mine planning that requires a grade model on
the SMU support. Abzalov (2006) proposed a solution using
the grade-tonnage functions from the indirect univariate UC
and then decomposing the panel-specific grade-tonnage data
into a suite of individual SMU-sized units within the
respective panels, according to a ranking of the main element
grade estimate of the SMUs. 

Deraisme and Assibey-Bonsu (2011) extended Abzalov’s
proposal to the MUC case for medium- to long-term
recoverable estimates for mine planning on a porphyry
copper-gold deposit in Peru. A multivariate conditional
simulation (MCS) comparative study with MUC by Deraisme
and Assibey-Bonsu (2012) also showed that the fundamental
assumption of the MUC technique, whereby the correlations
of the secondary elements are dependent solely on the main
element, is acceptable in practice. Although MCS takes into
account the complete set of correlations, a significant amount
of time is required for MCS; also, it does not readily provide a
base model for practical mine planning as several
equiprobable simulations are generated in the process.

This paper presents a brief review of the UC, MUC, and
LMUC techniques and provides a production reconciliation
case study for the same porphyry copper gold deposit that
was evaluated using the new LMUC technique (Deraisme and
Assibey-Bonsu, 2011). In this case study the long-term
LMUC estimates are compared to the corresponding
production blast-hole grade control model, as well as the final
plant production results. In order to avoid potential
conditional biases of the medium- to long-term LMUC
recoverable estimates,  simple co-kriging with local means
was used for the panel conditioning (Deraisme and Assibey-
Bonsu, 2011).

Discrete Gaussian model applied to recoverable
resource estimation

Review of the discrete Gaussian model

Let v be the generic SMU and Z(v) its grade, which will be
used for the selection at the future production stage.

The recoverable resources above cut-off grade z for such
blocks are:

➤ the ore T(z) = 1Z(v)≥z
➤ the metal Q(z) = Z(v)1Z(v)≥z

(where 1Z(v)≥z stands for the grade indicator at cut-off z, i.e.:
1Z(v)≥z = 1 if Z(v)≥z; 1Z(v)≥z = 0 if Z(v)<z

We use here the discrete Gaussian model for change of
support (Rivoirard, 1994). A standard Gaussian variable Y is
associated with each raw variable Z. Let Z(x) = Φ(Y(x)) be
the sample point anamorphosis. The block model is defined
by its block anamorphosis Z(v) = Φr(Yv), given by the
integral relation :

[1]

where the change of support coefficient r is obtained from the
variance of blocks.

Then, the global resources at cut-off z are:
➤ ore: 

[2]

➤ metal:

[3]

where g and G are the standard Gaussian probability density
function (p.d.f.) and cumulative distribution function (c.d.f.),
and y is the Gaussian cut-off related to z through z = Φr(y).

Review of the uniform conditioning in the univariate
case

UC by panel grade (Rivoirard, 1994) aims at estimating the
recoverable resources on a generic selection block v randomly
located within a large block or panel V, conditioned on the
sole panel grade, or for more generality, the panel grade
estimate Z(V)*. Tonnage and metal at cut-off z are then:

[4]

[5]

The estimation of the metal at zero cut-off must then
satisfy the relation: E[Z(v) | Z(V)*] = Z(V)*. This implies that
the panel grade estimate Z(V)* has to be conditionally
unbiased i.e. 

E[Z(V) | Z(V)*] = Z(V)*. 

The model also assumes that the Gaussian anamorphosis
of Z(V)* is linked to that of Z(v): 

Hence the relationship:
[6]

This is used to compute the correlation (‘corl’) between
the block and the panel estimate:

The ore tonnage and metal at cut-off z = Φr(y) are then 

[7]

[8]

Uniform conditioning in the multivariate case

MUC consists of estimating the recoverable resources of
blocks v in panel V from the panel estimates (Z1(V)*, Z2(V)*,
…). 

The problem is simplified by making the following
assumptions (i denotes the index of a secondary variable 2,3,
…):

➤ Z1(v) is conditionally independent of Zi(V)* given
Z1(V)*, and so the UC estimates for the main variable
correspond to the univariate case

➤ Similarly, Zi(v) is conditionally independent of Z1(V)*
given Zi(V)*,
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➤ Z1(v) and Zi(v)Z2(v) are conditionally independent of
the other metal panel grades given (Z1(V)*,
Zi(V)*)(Z1(V)*, Z2(V)*. It follows that the multivariate
case reduces to a bivariate case. In particular we have:

The development of the equations makes practical
computations achievable (Deraisme et al., 2008).

The important point is that the multivariate model
requires correlations between all variables and one main
variable. The choice of that variable is then of prime
importance, particularly because the correlations between the
secondary commodities are not directly modelled but are
partly inferred through their respective relations with the
main variable. It should be noted that the panel estimates
must be calculated using co-kriging. As highlighted above,
simple co-kriging has been used for the case study in this
paper. The aim was to avoid conditional biases that were
observed for the ordinary co-kriging estimates as a result of
the limited resource drilling data on a relatively large grid.

Case study

Geology

The case study is based on a porphyry copper-gold deposit in
Peru. The mineralization is found in intrusive rocks within
sedimentary rocks. Oxidation, weathering, leaching, and
subsequent secondary enrichment have led to the formation
of four mineral domains with distinct different metallurgical
behaviours. 

The uppermost domain is the oxide domain. It is charac-
terized by the complete removal of copper mineralization
through oxidation and leaching. Gold mineralization within
the oxide domain is characterized by some improvement in
grade and is free-milling due to the complete breakdown of
primary sulphide minerals.

All of the ore beneath the oxide domain makes up parts
of the sulphide zone, which is separated into three domains
on the basis of degree of oxidation and consequent change in
sulphide mineralogical composition. The sulphide zone
domains are, from top to bottom, the mixed domain, the
supergene domain, and the hypogene domain. The supergene
domain is an enriched copper blanket comprising chalcocite-
covellite-chalcopyrite (Figure 1). 

The production reconciliations presented in this paper
covered mainly the supergene and hypogene domains, which
have significant economic importance on the mine. The
variables studied were gold (AUTOT), total copper (CUTOT),
and net smelter return (NSR).

Database and analysis 

The resource drilling data on average was on 25×25 m to
50×100 m drill spacing. The samples were composited on a 2
m basis and used to derive the LMUC estimates. The initial
MUCs were based on simple co-kriging of 40 m × 40 m ×10 m
panels assuming 10 m × 10 m × 10 m SMUs. The SMUs were
based on equipment capacities and mining selectivity as
applied at the mine. Figure 2 provides the drill-hole layout for
the Annulus hypogene domain.

Production reconciliation of a multivariate uniform conditioning technique
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Figure 1—Plan view of the deposit showing geological domains
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In addition to the resource drilling data, a comprehensive
6 m × 5 m blast-hole data grid was available from mining.
The blast-hole data was not used for the MUC/LMUC resource
estimates. The three variables  AUTOT, CUTOT, and NSR
generally have a positively skewed distribution as shown in
the hypogene annulus domain (Figure 3), with coefficients of
variation from 0.65 to 0.85. Significant correlations of about
0.7 are observed between gold and copper. Declustering
weights have been applied to calculate histograms and
variograms. Figure 4 shows one of the typical variograms in
the hypogene domain. 

As proposed by Abzalov (2006) and based on the
extended multivariate UC work done by Deraisme and
Assibey-Bonsu (2011), the grade-tonnage functions from the
indirect multivariate UC were decomposed into a suite of

individual 10×10×10 m SMU-sized units within the
respective panels. These decomposed 10×10×10 m SMU
estimates are referred to as localizsed multivariate uniform
conditioning (LMUC) estimates as highlighted above. The
main advantage of the LMUC approach is to derive non-
smoothed SMU grades with variability closer to the future
production SMU block grades.

Change-of-support models for MUC and LMUC

The distribution of 2 m composites has been modelled using
a Gaussian anamorphosis function decomposed into Hermite
polynomials. The change of support on SMUs is then
achieved; the coefficients are calculated according to the
selected main variable. The interpretation of these coefficients
(Table I) as coefficients of correlation between different

▲
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Figure 3—Histograms of the 2 m composites for AUTOT, CUTOT, and NSR variables

Figure 2 – Drill-hole layout of the main domain displayed in horizontal projection and in perspective



variables in the Gaussian space shows that the correlations
between block values are slightly higher than the correlations
on composites. 

In providing the co-kriging panel conditioning estimates
required for the MUC/LMUC, significant conditional biases
were observed with ordinary co-kriging (OK) as
demonstrated by the large negative kriging efficiencies (KEs)
and poor slopes of regression associated with a substantial
number of the OK-based estimates in Figure 5. The
conditional biases observed for the OK estimates are a result
of the limited available resource data. These significant
conditional biases observed with the OK estimates have
adverse consequences on ore and waste selection for mine
planning as well as financial planning. As a result, simple co-
kriging with local means was used for the panel conditioning
in all cases. 

Basis for the production reconciliations

The LMUC recoverable estimates were compared with the

corresponding ‘actual’ grade control (GC) block values based
on the available comprehensive 6 m × 5 m blast-hole data
grid. The LMUC estimates were also compared with plant
production data. Reconciliations have been analysed on a
monthly, quarterly, and annual basis. The efficiency of the
LMUC reconciliations is measured on the basis of the spreads
of percentage errors defined as:

Percentage Error = (Actual/Estimate -1)100%
Actual represents either in situ GC block estimates based

on 6 m × 5 m blast-hole data or plant production data (PD);
and Estimate is the corresponding LMUC resource estimates
before production. 

Production reconciliation of a multivariate uniform conditioning technique
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Figure 4—Experimental and modelled variograms for CUTOT and AUTOT variables

Table I

Change-of-support coefficients on SMU support
when the main variable is NSR

NSR CUTOT AUTOT

Punctual variance (anamorphosis) 276.117 0.08 0.528
Variogram sill 270.45 0.076 0.536
Gamma(v,v) 128.191 00.45 0.212
Real block variance 147.926 0.035 0.316
Real block support correction (r) 0.7754 0.69 0.8285
Kriged block support correction (s) 0.7754 --- ---
Kriged-real block support correction 1 --- ---
Main-secondary block support correction --- 0.8733 0.9804

Figure 5—Scatter diagram of kriging efficiency versus slope of
regression, ordinary co-kriged (OK) grade of Au, showing substantial
number of OK panel estimates with significant negative kriging
efficiencies and poor slopes of regression
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Results

As highlighted above, the main advantage of the LMUC
approach is to derive non-smoothed SMU grades with
variability closer to the future production SMU block grades.
Table II shows the LMUC-estimated SMU dispersion
variances against the corresponding ’actuals’ based on final
production blast-hole data. The table shows that the LMUC
dispersion variance estimates compare well with the ‘actuals’.
Figure 6 further illustrates that the smoothing effect due to
the information effect has appropriately been improved by the
LMUC technique. However, as shown later, on an individual
block basis the assigned LMUC grades sacrifice local
accuracy, as noted also by Journel et al. (2000): ‘It appears
that global accuracy (semivariogram reproduction) cannot
be obtained without sacrificing local accuracy. [Proper]
kriging, notwithstanding its smoothing effect, remains the
best local estimator’. (See also Assibey-Bonsu et al., 2008).

Table III shows the production reconciliation of the
monthly LMUC resource estimates with the corresponding
plant results. The reconciliation results in Table III are
provided on the basis of the spreads of the percentage errors.
The analyses of the spreads of the monthly percentage errors
show upper and lower 10% confidence limits of –12%/+10%,
–6%/+14%, and –8%/+8% for tons, gold grade, and copper
grade respectively (the lower and upper 10% confidence
intervals have been read directly off the histogram of the
percentage of errors as observed over the production period).
Figure 7 further shows the analyses of the spreads of errors
in a graphical form. The figure shows that during the
monthly production periods the percentage errors were well
within the above confident limits. (The top two benches of
the LMUC resource model incorporate what is referred to on
the mine as a ‘short-term model’, which is discussed later in
this paper).

The results further show percentage errors of +6%, +2%,,
and -7% on a quarterly (ie 3 monthly) basis for tons, gold
grade, and copper grade respectively (Table IV). The mine
reports production results on a quarterly basis to
shareholders. Over an annual production period, the observed
percentage errors were –1%/+3%, demonstrating the
narrowing of the observed percentage errors over the annual
period.

▲
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Figure 6—Typical example of CUTOT estimated grades on one bench. Anticlockwise from the top: kriged panels, kriged SMUs, SMUs indirectly estimated
by LMUC 

Table II

SMU dispersion variance of ‘actual’ versus LMUC
estimates

Variable Estimated LMUC ‘Actual’ 
dispersion variance dispersion variance

Gold 0.33 0.38
Copper 0.08 0.05

Table III

Distribution of monthly percentage errors between
resource model and plant production over
12–month period

Tons
Grade

Gold Copper

Limits Limits Limits

Lower Upper Lower Upper Lower Upper 
10% 10% 10% 10% 10% 10%

-12% 10% -6% 14% -8% 8%



Table V also shows the production reconciliation of the
LMUC resource estimates with the corresponding ‘actual’ GC
block values for the entire reconciliation period. As per the
plant reconciliation, these results are on the basis of
percentage distribution of errors. Both the 2011 and the
updated 2012 LMUC resource models were used for the
reconciliation over the same production period. The table
shows that the resource models compare well with the grade
control model (e.g., when compared to the internationally
accepted 15% errors for an annual production period – see
Stoker, 2011). 

Reconciliation of LMUC and grade control models in
the short-term model area

The mine replaces the first two benches of the LMUC resource
model with what is termed a short-term (ST) model. The ST
model is developed by extrapolating the blast-hole data from
the mined-out areas and is used as interim short-term
estimates for the first two benches (i.e. before blast-hole data
become available in the short-term model area). The
observed reconciliations of the LMUC model with the GC and
ST models show similar good results (Tables VI and VII, see
also Table IV above on errors for respective periods). 

Furthermore, Figures 8 and 9 show the regression of the
LMUC model SMU estimates on the corresponding ‘actual’ GC
block values. As highlighted previously, the GC values are
based on the available comprehensive 6 m × 5 m blast-hole
data grid in the GC area. The figures demonstrate a
reasonable general agreement of the LMUC individual block
estimates with the corresponding follow-up production data,
with correlations of 0.65 and 0.62 for Au and Cu respectively.

The average global errors between the follow-up and the
LMUC model are within acceptable limits (<6%, Tables VI 
and VII). 

However, the individual LMUC selective mining block
estimates, based on simple  co-kriging conditioning (SK)
using local means,  show some conditional biases as reflected
by the slope of regressions of 0.7 and 0.52 for Au and Cu
respectively (Figures 8 and 9). The conditional biases are a
result of the limited available resource data used for the
LMUC resource estimates as well as certain geological model
changes on waste and ore contacts, which were updated

Production reconciliation of a multivariate uniform conditioning technique

The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 114                    MARCH 2014 291 ▲

Table IV

Distribution of percentage errors between resource
model and plant production over various
production periods

Period Tons Grade
Gold Copper

Qaurterly 6% 2% -7%
6-monthly 7% 5% -2%
Annually -1% 3% -1%

Figure 7–Distributions of percentage errors (tons, Au and Cu grades) for
monthly reconciliation (resource model vs plant) Table V

Reconciliation between resource models and the
grade control model 

Period Tons Grade
Gold Copper

2011
3 months -0.6 9.6 5.2
6 months -0.6 6.5 1.7
Annual -0.6 0.6 -1.8

2012
3 months -0.1 2.5 -5.6
6 months -0.4 6.5 0.9

Figure 8—LMUC resource model vs GC in short-term model area (Au)

Figure 9—LMUC resource model vs GC in short-term model area (Cu)
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using the detailed blast-hole data. Additional significant
conditional biases (i.e. significantly higher than that of SK
co-kriging above) were observed when ordinary co-kriging
(OK) conditioning was used as discussed in a previous
section of the paper. 

Conclusions

➤ Gaussian models (in this case multivariate uniform
conditioning, MUC) used for calculating recoverable
resources provide consistent results in modelling the
change of support and the information effect in the
multivariate case

➤ The production reconciliation results show the overall
advantage gained by using localized multivariate
uniform conditioning (LMUC) estimates based on SK
co-kriging as demonstrated by the narrow spreads of
the monthly percentage errors. The central 80%
confidence limits of the monthly production errors were
-12%/+10%, -6%/+14%, and -8%/+8% for tons, and
gold, and copper grades respectively. The case study
also showed percentage errors of +6%/+2%/-7% on a
quarterly basis for tons, and copper and gold grades
respectively. The narrowing of the observed confidence
limits is also observed as shown by the reduced
observed average percentage errors of –1%/+3% for the
plant production reconciliations on a macro or long-
term production basis 

➤ The study further showed that on a local production
scale (and especially for short- to medium-term
planning), regression effects and conditional biases

were still evident with the assigned LMUC individual
SMU estimates, thus sacrificing local accuracy.
Significant conditional biases were particularly evident
with the ordinary co-kriging estimates, which were
mainly due to the limited data that was available for
the LMUC resource estimates (limited obtainable data is
typical of all long-term and project resource estimates).
In this regard, the simple co-kriging estimates based on
local means showed more efficient panel conditioning
estimates for the purpose of the MUC/LMUC resource
assessment and the reconciliations. 
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Table VII

Percentage errors in short-term model area for
resource and short-term models - Cu cut-off of
0.5%. GC = grade control, ST = short-term model,
LMUC = LMUC resource model (excludes blast-
holes)

Model Tons Grade
Gold Copper

GC vs ST12 -2.8% 3.1% 5.9%
GC vs LMUC12 5.3% 4.4% -5.3%

Table VI

Percentage errors in short-term model area for
resource and short-term models - Au cut-off of
0.5g/t. GC = grade control, ST = short-term model,
LMUC = LMUC resource model (excludes blast-
holes)

Model Tons Grade
Gold Copper

GC vs ST12 -3.8% -2.9% 5.6%
GC vs LMUC12 2.5% 4.6% 0%




