
Production and validation of multivariate simulations
for the Dôme orebody
Several tests were first carried out on bivariate simulations of
Ts/m3 and Ni*Ts/m3 to help calibrate some key simulation
parameters (number of bands in the turning band algorithm
used for producing the non-conditional simulations,
definition of the neighbourhood search parameters), and
define the overall strategy to simulate the complete variable
set. The number of simulations to be produced was a
particular concern from a pragmatic viewpoint, as the
implications of producing 50, 100, or 200 simulations are
certainly not trivial from a performance viewpoint.

Initial tests were performed in the central area (see 
Figure 6) of the deposit by producing 100 simulations and
testing how post-processing statistics of the first lot of 50
realizations compared to the statistics of the second lot of 50
simulations.  

One of the comparisons performed is illustrated in 
Table I, which shows the average estimation error incurred in
estimating the portion of the deposit above the economic cut-
off for the different lot of simulations sampled at different
drill spacings.  The fact that the first lot of 50 realizations
strictly reproduces the statistics for the second lot of 50
suggests that for the global characterization of the resource at
Dôme, working with 50 realizations is acceptable.

The initial step for the simulation of the six studied
variables is to implement their histogram modelling via
Gaussian anamorphosis. The histograms reconstructed by the
anamorphosis functions offer a satisfactory fit of the
weighted experimental histograms. The weighting of the
distribution is mandatory as the data-set mixes different
sampling grids (58×26 m2 for exploration, 20×20 m2 centred
for mine planning, and 5x5 m2 for grade control) obtained
via a cell declustering technique using a window of 20×20 m

rotated at 45 degrees in keeping with the orientation of
drilling (corresponding to step 4 in Figure 7). 

Multivariate block simulations of a lateritic nickel deposit

The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 114                    AUGUST  2014 677 ▲

Table I

Statistics on estimation errors for 5x5x3 m3 SMUs
passing the economic cut-off

Simulation lots* 1–100 1–50 51–100

Average stdev error Ts/m3 5 m 6.34 6.33 6.33
Average stdev error Ts/m3 10 m c 8.53 8.53 8.53
Average stdev error Ts/m3 10 m 10.37 10.38 10.37
Average stdev error Ni*Ts/m3 5 m 21.41 21.43 21.40
Average stdev error Ni*Ts/m3 10 m c 28.44 28.40 28.46
Average stdev error Ni*Ts/m3 10 m 34.93 34.90 34.96

*5 m stands for 5x5 m2 sampling grid, 10 m c for a 10 m centered (or
diamond) grid and 10 m for a 10x10 m2 grid

Figure 5—Omnidirectional calculation of the ratio of the square root of
the variogram to the madogram for Ni*Ts/m3 (3 m composites –
saprolites)

Figure 6—3D view of sample locations and wireframes defining the
floor of the laterites (gold) and the saprolites (red). The central area
used for preliminary testing is delimited by the thick black line

Figure 7—Declustering statistics (mean, stdev) for Ni*Ts/m3 (3 m
composites – saprolites)
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Experimental variography is then performed on the
Gaussian transforms in the two main directions of continuity
in the horizontal plane (azimuth 135° and azimuth 45°) and
along the vertical direction. A model is fitted using the linear
model of coregionalization (LMC). The LMC is a general-
ization of the nested variogram model to the multivariate
case. In this model, all simple and cross-variograms are linear
combinations of the same elementary components. This can
be interpreted by a decomposition of the variables themselves
into linear combinations of independent random functions.
The quality of the fitting obtained for the main variables
(Ts/m3 and Ni*Ts/m3) is shown in Figure 8. 

Following the regularization of the variogram on 5×5×
3 m3 support, the DGM change of support parameters are
determined (see Deraisme et al., 2008).

Fifty direct 5×5×3 m3 block co-simulations of Ts/m3,
Ni*Ts/m3 Al2O3*Ts/m3, Fe2O3*Ts/m3, MgO*Ts/m3, and
SiO2*Ts/m3 are then produced within the saprolites. The
number of turning bands used for the non-conditional
simulations is set at 1000 to avoid potential streaking
artefacts. The conditioning by SK is performed within a
(300×200×12 m3) neighbourhood rotated at azimuth 135°
using eight sectors and seven 3 m composites per sector
(total of 56 composites per neighbourhood).

To allow the incorporation of information effect incurred
during grade control from a 10 m centred (10 m C) pre-

exploitation (‘pre-ex’) drilling grid, a kriging of the variables
of interest from the pre-ex sampling grid extracted from each
realization is done following the production of the direct
block simulation values and associated 3 m point values.
The ranges of the neighbourhood utilized for that kriging are
adapted (40×30×12 m3) to reflect the density of information
available at pre-ex stage.

A post-processing (utilizing all the realizations from the
simulation platform) is then implemented to estimate the
tonnage and metal quantities recoverable for each variable
within 20×20×3 m3 panels.  The same post-processing will be
applied ultimately to each realization retained by scenario
reduction.

In summary, the estimation of multivariate recoverable
resources at 20×20×3 m3 panel level is performed for the
series of economic cut-offs in the following manner:

1. For each 5×5×3 m3 SMU simulated, 3 m composite
values are extracted at random 

2. A selection corresponding to the 10 m centered pre-ex
sampling grid (10 m C) is made on the simulated points 

3. 5×5×3 m3 SMU values are re-estimated from the 10 m
C sampling set

4. Then, for each cut-off grade:
– For each realization of the simulation platform,

select the SMUs such that the estimated values
kriged at step 3 are above the cut-off grade 
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Figure 8—Extract of the multivariate variogram model of the Gaussian transforms for Ts/m3 and Ni*Ts/m3 (main direction azimuth 135°, 3 m composites –
saprolites)



– For each 20×20×3 m3, calculate tonnage and
metal contents for all variables  and all 5×5×3 m3

smu making it past the cut-off
– Looping on all realizations, calculate the

recoverable estimates as the average of the values
obtained at step b for all the realizations

5. Repeat for all cut-offs.

Scenario reduction
The above procedure allowed production of a robust estimate
of the recoverable resources for the six variables of interest,
which can be fed into the reserve calculation process. We
present here the application of a scenario reduction algorithm
that selects a representative subset of a few simulations out
of the original platform to help appraise the risk attached to
the downstream phases (reserve optimization, mine
sequencing) of the project. 

The implementation presented here is for the first
generation of the scenario reduction plug-in built in Isatis®

software (see Bleines et al., 2012), where measurement of
the distance between the initial set of scenarios and the
reduced set is based on Ni quantities only. Research is under
way to adapt the measure to the true multivariate nature of
the problem.

The central idea to the algorithm used is to characterize
the difference between any two simulations by integrating,
over all the panels, the difference in recoverable metal
quantities between the two simulations for all the cut-offs.
Once a dissimilarity matrix has been established for the 50
simulations in the platform, a combinatorial based on k-mean
clustering is used to select the k (here, k=5) simulations that
best capture the space of uncertainty as characterized by the
50 realizations. A detailed presentation of the underlying
concepts is given by Armstrong et al. (2010), who base the
minimization of the distance between the selected subset of
simulations and the remainder set on a random sampling
procedure of the combinatorial to be treated. The current
selection procedure is based on a genetic sampling algorithm,
which is presented in a companion paper in this volume. The
parameters of the genetic sampling are optimized for the prior
selection of three simulations out of 50 for which it is

possible to perform an exhaustive sampling of all
possibilities.

The set of simulations selected (29, 49, 2, 31, 32) comes
with associated probabilities (76%, 18%, 2%, 2%, 2%).  As
can be seen, realization 29 can be viewed as a representative
case, while realization 49 represents more marginal
situations, and realizations 2, 31, and 32 can be considered
as representative of the extremes.

Post-processing of each one of these five realizations is
then possible, and will help qualify the answer given by the
resource estimate.

Impact on economic evaluation
Several pit optimizations (using Whittle software) are then
implemented using as an input to the process either:

➤ The traditional estimates based on the independent
ordinary kriging of the accumulated variables panel by
panel (leading to what is referred to in the following
tables as the ‘Traditional Pit’), or

➤ The recoverable resource estimation based on the full
multivariate conditional simulation platform (leading to
what is referred to in the following tables as the ‘Pit
based on the CS platform’).

To help assess the risk and sensitivity to the uncertainty
on the recoverable resources, the reserves are then calculated
for both pits using the above resource models as well as the
five simulations selected by scenario reduction.

Tables II and III give the ore tonnage for the seven input
models (actual = traditional estimates, recov = recoverable
resource based on CS platform, simu29, simu49, simu2,
simu31, simu32 for the simulations selected by scenario
reduction) in the two pits selected. The total tons are split
according to the ore circuit they follow (TRADI is ore sent
straight for shipment to the mill, UTM is marginal ore that is
pre-processed at the plant).

The results highlight the following:

➤ The risk of underachieving actual ore tons mining the
current pit geometry

➤ The higher value, longer LOM within the pit optimized
using the conditional co-simulation (CS)  platform
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Table II

Ore tons in pit based on traditional estimate for alternative input models

Esti R Tradi ore UTM concentrate ore TOT % ts % Cashflow

Kth % Distribution Kth % Distribution Kth Tni

Actual 10.8 26 26% 74 74% 100 100

Recup 20 x 20 13.2 31 37% 51 63% 82 80 -18.8% -36.5%

Simu2 13.0 31 37% 53 63% 84 81 -17.1% -34.8%

Simu29 12.7 31 37% 54 63% 85 83 -15.4% -32.3%

Simu31 12.8 32 37% 53 63% 85 82 -16.1% -32.0%

Simu32 12.8 31 37% 53 63% 85 82 -16.0% -32.9%

Simu49 13.0 31 37% 53 63% 84 81 -17.1% -35.4%

Actual= ‘Ordinary kriging estimation‘. R =‘ratio mining extracted (handled) to ore production’ Kth (wet tons) and Tni(Ni grade) are expressed in relative terms to
the figures based on the ordinary kriged estimate within the traditional pit. %ts and %cashflow represents the relative differences in recoverable dry tonnes and
generated cashflow when compared to the results for the ordinary kriged estimate within the traditional pit
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➤ The risk factor based on the selected simulations in the
CS pit is acceptable (3% variation on tons; from -1 to
+6% on cash flow)

➤ The improved product mix within the CS pit (35% of
TRADI (i.e. rich) ore instead of 25% for the actual pit),
meaning a reduction in cost and time lost remobilizing
material.

Conclusions
The objective of the procedure developed for Tiébaghi was to
estimate the recoverable proportions of 5×5×3 m3 SMUs
within each 20×20×3 m3 panel when a cut-off is applied on
Ni, and to attach to that proportion the grade of all five
relevant elements being studied. An original procedure, based
on direct block simulations, which is capable of handling the
impacts of information and support effects as well as the
non-additivity of the input variables has been developed.

The advantage of resorting to a conditional simulation
platform is that it allows a full and proper characterization of
the variability of key elements at all scales within the
orebody. The post-processing proposed allows for a robust
single recoverable estimate to be produced that is amenable
to treatment by pit optimization.  Although this summarizes
the information in a way that allows an adapted economic
valuation of the project (which properly captures the
multivariate nature of the valuation criteria) to be
undertaken, valuable information regarding the characteri-
zation of variability that is carried by the platform of
simulations is lost in the process.  

The scenario reduction procedure that is implemented
offers a way to circumvent that issue by allowing an efficient
selection of a subset of realizations that properly samples the
space of uncertainty and paves the way for an industrial
characterization of the risk attached to the project due to the
uncertainty on the resource.

References

ANAND, R.R. and PAINE, M. 2002. Regolith geology of the Yilgarn Craton,

Western Australia: implications for exploration. Australian Journal of

Earth Sciences, vol. 49, no. 1. pp. 3–162.

ARMSTRONG, M., NDIAYE, A., RAZANATSIMBA, R., and GALLI, L. 2013. Scenario

reduction applied to geostatistical simulations in mining. Mathematical

Geosciences, vol. 45, no. 2. pp. 165–182.

BLEINES, C., DERAISME, J., GEFFROY, F., PERSEVAL, S., RAMBERT, F., RENARD, D.,

TOUFFAIT, Y., and WAGNER, L. 2012. ISATIS software manual. Geovariances

and Ecole des Mines de Paris. 531 pp.

CLUZEL D., AITCHISON J.C., and PICARD C. 2001. Tectonic accretion and

underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of

New Caledonia (SW Pacific): geodynamic implications. Tectonophysics,

vol. 340. pp. 23–59.

CHILÈS, JP. and DELFINER, P. 1999. Geostatistics – Modeling Spatial Uncertainty.

Wiley, New York.  pp. 478–508.

DERAISME, J., RIVOIRARD, J., and CARRASCO CASTELLI, P. 2008. Multivariate uniform

conditioning and block simulations with discrete gaussian model:

application to Chuquicamata deposit. GEOSTATS 2008, Proceedings of the

8th International Geostatistics Congress, Santiago, Chile, 1–5 December

2008. pp. 69–78.

EGGLETON, R.A. 2001. The Regolith Glossary. Cooperative Research Centre of

Landscape Evolution and Mineral Exploration, Perth, Australia. 144 pp.

EMERY, X. and ORTIZ, J. 2005. Internal consistency and inference of change of

support isofactorial models. Geostatistics Bannf 2004, vol.2. Leuangthong

O. and Deutsch, C.V. (eds.). Springer, Dordrecht. pp. 1057–1066.

JOURNEL, A.G. and HUIJBREGTS, CH. J. 1978. Mining Geostatistics. Academic Press,

London. p. 199.

NAHON, D., COLIN, F., and BOULANGE, B. 1992. Metallogeny of weathering: an

introduction in weathering and soils and paleosols. Weathering, Soils and

Paleosols. Martini I. P. and Chesworth W. (eds.). Developments in Earth

Surface Processes, vol. 2. Elsevier, Amsterdam. pp. 445–471. 

PELLETIER, B.G. 2003. Les minerais de nickel de Nouvelle-Calédonie. Revue

Géologues, vol. 138. pp. 30–38.

RIVOIRARD, J. 1994. Introduction to Disjunctive Kriging and Non-linear

Geostatistics. Clarendon Press, Oxford.

TARDY, Y. 1997. Petrology of Laterites and Tropical Soils. Balkema, 

Amsterdam.    ◆

▲

680 AUGUST  2014                                VOLUME 114     The Journal of The Southern African Institute of Mining and Metallurgy

Table III

Ore tonnes in pit based on recoverable resource estimate for alternative input models

Esti R Tradi ore UTM concentrate ore TOT % ts % Cashflow

Kth % Distribution Kth % Distribution Kth Tni

Actual 13.4 26 25% 75 75% 101 101
Recup 20 x 20 12.5 38 35% 70 65% 108 104
Simu2 12.5 38 35% 70 65% 108 104 0.2% 0.1%
Simu29 12.1 39 35% 73 65% 111 108 3.4% 6.5%
Simu31 12.5 38 35% 71 65% 109 106 0.8% 6.5%
Simu32 12.2 38 35% 72 65% 111 107 2.6% 4.2%
Simu49 12.5 37 34% 71 66% 108 104 0.2% -1.1%

Actual = ‘Ordinary kriging estimation’. R = ‘ratio mining extracted (handled) to ore production’ Kth (wet tons) and Tni(Ni grade) are expressed in relative terms to
the figures based on the ordinary kriged estimate within the traditional pit.%ts and %cashflow represents the relative differences in recoverable dry tonnes and
generated cashflow when compared to the results for the ordinary kriged estimate within the traditional pit




