




Stochastic simulation for budget prediction for large surface mines

Deriving the budget description in a mathematical
expression

The budget ƒ can be described from Xeras® in terms of
fixed (Fc) and variable costs (Vc). The variable costs are a
function of ROM tons, which are a function of operational
performance (OP).

Budget (Pareto-based) cost function ƒ = 
Fc_Other + Fc_Salaries + (Vc_Salaries x tons)
+ Fc_Energy + (Vc_Energy x tons)
+ Fc_Diesel + (Vc_Diesel x tons)
+ Fc_Plant Maintenance + (Vc_Plant Maintenance x tons)
+ Fc_Maintenance + (Vc_Maintenance x tons)
+ Fc_Explosives + (Vc_Explosives x tons)

Budget Income ƒ = (AvePrice x tons)
ROM tons can be described by the operational performance

drivers. These drivers can be described by probability distrib-
utions which can be measured and managed and influenced.
The relationship between the operational performance drivers
and tons can be determined with a function. The main
operational performance drivers are:

➤ Maintenance (availability and utilization)
➤ Operators (FTEs, skills, production rate)
➤ Fleet units. 

Stochastic simulation
The Arena® Dynamic simulation model was used to simulate
the cash flow model analysis. The objective of the model is to
vary chosen business drivers in order to obtain a net cash flow
distribution for the budget.

The model uses Excel® driver inputs (per destination per
bench) obtained from an Xpac® life-of-mine schedule. Typical
driver inputs like cycle times, bench ratios, payloads, fleet
hours, and physical standards are read in by the model. The
model then uses probability distributions to independently vary
the drivers like cycle times, payloads, and fleet hours, also
making provision for force majeure events and operator
absence.

The model adjusts the driver values and then ensures that
the fleet size and bench ratio are kept constant in order to
simulate new bench tons and product tons. The model has
product prices per bench, per destination, and per product, and
also has the variable and fixed costs as derived from the Table
600 Budget, in order to calculate a net cost and net income.

Ten thousand variable runs of each independent driver are
simulated and the values are recorded in order to apply a
statistical analysis of the net profit spread using an Excel®
input sheet with built-in formulae for evaluation. Because
Arena® does not use ’time’ in the sense that the scheduling
model does, an extra iteration to limit the total production
hours available had to be implemented. This increased the
complexity of the model without influencing the stability.

The final Monte Carlo model was also expanded to be able
to ‘randomize’ more than one parameter simultaneously so that
influence on the budget of any combination of parameters can
be tested . The interaction between the different environments
and accompanying models is depicted in Figure 4.

Data used
The data for the probability distributions is obtained from the
mine’s history through a sequel server database. Values are
generated fitting Weibull distributions with an Excel®-linked
spreadsheet.

The curves fitted are three-parameter Weibull curves. The
maximum likelihood estimation (MLE) method is generally
considered to be the best method for estimating the curve
parameters for a two-parameter Weibull curve (balancing
resources and accuracy), but poor with three-parameter
methods (Cousineau, 2009). Therefore the method for
estimating the shape of the distribution is a modified MLE,
which intelligently identifies the offset parameter before
applying the MLE. The accuracy of the resulting curve has
proven to be consistently adequate during testing on real data.
Some results are shown below in graphical format as
probability distribution and cumulative probability distribution
curves.

The following are examples of curve-fitting to real data as
obtained from the dispatch sequel server database: The
payload distribution (depended on the material density) and
total cycle times are shown. Not shown, but fitted, were: empty
hauling time, spot time, queuing, loading, full haul, dump, and
reassign time. From a visual inspection it is clear that the
methodology applied, i.e. using a three-parameter Weibull
curve-fitting technique, yields the desired results. Typical
results obtained are shown in Figures 5 and 6.

Results
The following results are based on a real case study. The
budget has been normalized so as not to release sensitive
information. The answers are given in profit units, called net
profit, and expressed as millions of rands.

In the analysis that follows, it must be borne in mind that
the budget was completed at least 3 months prior to the start of
the budget year. The cycle time and payload information that
were used were the actual for 3 months into the budget, as well
as the preceding 3 months, i.e. 6 months of real-time data. All
examples refer to a large open pit mine.

Cycle and payload 
In this particular example, the mine had a problem, prior to
budgeting, with the standards used cycle times. They either
were under pressure not to drop the physical standards too
much, or did not fully understand the implication of the trend
that they were seeing, or a combination of both. It would
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Figure 4 – Model interaction



appear that they thought that the longer cycle times could be
countered by increasing the payloads that the trucks were
carrying. In other words, they ‘under-budgeted’ on payloads.

Figures 7 and 8 show the situation. The budget was set at
1862 units (Table I). The effect of the poor cycle times at 50%
results in a target of 1401 – below the budget. It is clear that
the effect of the cycle time deterioration was not apparent when
the budget was compiled. The strategy of countering the poor
cycle time performance with loading (1933 units at 50%) is
obviously not working as the increase in payload moves the
target to only 1554 units compared with a budget of 1862,
clearly indicating that the budget will be at risk.

Production hours (FMs)
In the following example, the influence of lost production
hours is examined (see Table II). A triangular distribution is
deemed to be the best fit to describe this problem, as depicted
in Figure 10. The mine has on average two trucks down, either
through an accident or an unforeseen rebuild. Section 54
(Mine Health and Safety Act) stoppages cause a loss of on
average four production days. The rest of the loss is made up
of ‘truck standing no operator’ (dispatch code). The fit for the
data is a triangular distribution with a mean of 21 340
production hours, less 10% plus 5% (these events are seen as
a force majeure, hence the terminology FM.) The mean drops to
1519 against the budget of 1862, with a very narrow distri-
bution as indicated (Figure 10).

Yield (influence)
Because yield causes a distribution around the budget line
(Figures 9 and 10) it gives a target of only 1802 against the
budget of 1862, as expected.

Murphy (if everything that can go wrong, goes wrong)
It is clear that if all of the above events occur, then the results
(called ‘Murphy’) are catastrophic, with a mean of only 1345
units.

Example of capex optimization
The following example demonstrates the power of the model to
determine where money should be spent. In striving to achieve
the budget, the mine now has the option of:

➤ Spending R10 million on upgrading the roads and
improving the rolling resistance. This gives a minimum
advantage of 2 minutes per cycle and a maximum of 4
minutes per cycle

➤ Alternatively, buy two additional trucks for R75 million,
which will add 2 x 5500 hours = 11 000 hours for the
year.

The results are compared in Table III and Figures 11 
and 12.

The mean moves from 1401 to 1542 with two extra trucks,
or 142 units. If the cycle is adjusted by 2 minutes, (through
better roads) it moves to 1570, generating 159 units. A saving
of 4 minutes will give 248 units. It is clear that the better
option will be to spend money on the roads instead of buying
more trucks.

Conclusion
Monte Carlo simulation is not widely used in the industry as a
budgeting tool, although there are a few examples of it being
used mainly for capital budgeting and the prediction of the
variations within the budget. The main reason for it not being
used in the normal budget process is that the multiplication
effect of the distributions of the key budget drivers leads to a
spread in the budget distribution that gives an unreliable
conclusion, or no conclusion at all.

The strength of the probabilistic logic model lies in the
determination of the main drivers (first-order) that are
independent of each other and can be influenced through the
application of money. Probability logic offers a highly
expressive account of deduction of where funds should be
applied to optimally influence the achievement of the budget.

The probabilistic logic model circumvents the original
problem of expressing the budget as a single deterministic
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Figure 5 – Payload data fit

Figure 6 – Cycle time data fit
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Figure 8 – Probability distribution – cycle time and payload

Table II

Yield and FMs added to cycle time and payload

Base case Cycle and payload HRS/FM Yield Murphy

Description R m net profit R m net profit R m net profit R m net profit R m net profit

Low (5%) 1 862 1 154 1 472 1 731 977

Mean (50%) 1 862 1 554 1 519 1 802 1 354

High (95%) 1 862 1 987 1 570 1 861 1 774

Median 1 862 1 544 1 519 1 802 1 341

Mode 1 862 1 580 1 524 1 803 1 357

Figure 9 – Cumulative probability distribution – yield and FMs added to
cycle time and payload

Figure 10 – Probability distribution – yield and FMs added to cycle time
and payload

Table I

Cycle time and payload *

Base case Cycle Payload Cycle and payload 0

Description R m net profit R m net profit R m net profit R m net profit R m net profit

Low (5%) 1 862 1 064 1 730 1 155 -

Mean (50%) 1 862 1 401 1 933 1 544 -

High (95%) 1 862 1 756 2 142 1 986 -

Median 1 862 1 395 1 931 1 544 -

Mode 1 862 1 430 1 981 1 540 -

• 0 indicates a control run

Figure 7 – Cumulative probability distribution – cycle time and payload



value by using the related activity-based costing, so that when
standards change the influence is clearly reflected in the new
probability distribution of the budget.

The robustness of the model is guaranteed through the
exploitation part of the model that directly links the deviation
in standards to production. Correcting standards through the
application of men, materials, or money is something that
management has been trained to do and is good at. The impact
and value of changing the standards are directly reflected in
the probability of achieving the budget.

The stochastic model uses real data wherever possible.
Hubbard (2010) makes the point that the model should only
be accurate enough, and states that uncertainty can be
overcome by adding more complexity to the model. This is
precisely wrong in the stochastic modelling environment. The

robustness of the model proposed lies in the fact that it differ-
entiates between the primary drivers and secondary drivers
which, while appearing to be important, generate so much
noise that the answers become invaluable or worthless.

Testing of a real budget proved the ability of the model and
the value that may be unlocked through this novel approach.

Acknowledgements
The authors wish to thank Professor Kris Adendorff for his
valuable comments. 

Acronyms
➤ Arena® - Simulation software
➤ force majeure – Act of God, i.e. unforeseen and

uncontrollable
➤ Murphy – Refers to Murphy’s Law, an adage typically

stated as ‘Anything that can go wrong will go wrong’ 
➤ SAP® - Enterprise software used in the industry
➤ Table 600 – A generic budget summary used in SAP®
➤ Xeras® - Software from the Rung suite for costing

schedules
➤ XPAC® – Scheduling software from the Runge suite,

widely used in mine planning 
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Figure 11 – Cumulative probability distribution – capex optimization

Figure 12 – Probability distribution – capex optimization

Table III

Capex optimization

Base case Cycle Cycle 2 min saving Cycle 4 min saving 2 New trucks + cycle

Description R m net profit R m net profit R m net profit R m net profit R m net profit

Low (5%) 1 862 1 065 1 190 1 241 1 179

Mean (50%) 1 862 1 401 1 570 1 649 1 542

High (95%) 1 862 1 757 1 975 2 084 1 928

Median 1 862 1 395 1 562 1 641 1 536

Mode 1 862 1 397 1 545 1 643 1 545




