
Mineral processing is a vital part of mining
projects and mainly involves comminution,
sizing, concentration, extractive metallurgical
processes, and dewatering. Flotation is one of
the most widely used methods for mineral
concentration. Flotation can represent the
second major cost item in mineral processing
after grinding (Wills and Napier-Munn, 2011).
Accordingly, it is a main concern of mining
project managers to select and optimize
flotation circuits in order to decrease costs and
increase productivity. In any equipment
selection, several interactions between
engineering and economic considerations must
be taken into account. Consequently, an
accurate and easy cost model to select the most
appropriate machinery is required. Moreover,
cost models could be used in flow sheet
simulations applied in design and
optimization. Models of unit operations built
into the simulators could be improved by
linking the equipment cost models (Khalesi et
al., 2015).

A number of approaches can be employed
with the aim of developing the cost models. A
review of these methods can be found in
recent papers by Niazi et al. (2006) and
Huang, Newnes, and Parry (2012). Regression
is one the most frequently applied techniques
for cost modelling (Smith and Mason, 1997).
Several cost models have been established
related to mining and milling projects 
(Table I). One of the preliminary works was
undertaken by Prasad (1969) and has been
carried on in the recent work of Sayadi,
Khalesi, and Khosfarman (2014). Almost all of
these models have been developed based on
exponential single regression approaches;
correlating only one independent variable to a
cost value (Stebbins, 1987). Consequently, in
spite of the usefulness of these models in
preliminary cost estimation, the role of other
effective parameters has simply been
overlooked. Some of these models have
become old and updating them also may cause
significant errors. Furthermore, these models
mainly estimate total operating cost, and
estimation of detailed operating cost items
such as maintenance, lubrication, etc. is not
possible. To overcome these deficiencies, this
paper aims to introduce up-to-date capital and
detailed operating cost models considering
multiple effective factors of flotation machines.
Two sets of single (SRA) and multiple
regression (MRA) cost functions are
presented. The first set is suitable for cost
estimation at the initial phases of a project and
is mainly appropriate for building rapid cost
estimates where only one particular design
factor of a flotation machine is accessible.
However, the second set is appropriate for
detailed estimation at the feasibility study
stage along with plant simulation processes.
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Thirty-seven major flotation machines (16 columns, 11 self-
aerating, and 10 standard cells) are considered in this study.
The data descriptions are presented in Table II (InfoMine,
2013). InfoMine conducts annual surveys on costs of
equipment from manufacturers and distributors; fuel, energy,
and lubricant suppliers; and US mining companies and
provides the data without mentioning the manufacturers'
names:

� Column flotation: based on 36-foot, mild steel column,
includes automatic sparger system, wash water system,
and level control

� Self-aerating cells: individual cells based on a 10-cell
row and including paddles, feed boxes, junction boxes,
discharge boxes, skimmer drives, and motor guards,
but not motors or launders

� Standard cells: individual cells based on a 10-cell row
and including paddles, feed boxes, junction boxes,
discharge boxes, skimmer drives, and motor guards,
but not motors, blowers, and launders.

�
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Table I

Mohutsiwa and Musingwini 2015 Parametric capital costs estimation for coal mines in South Africa

Sayadi et al. 2014 Parametric cost modeling for mineral grinding mills

Lashgari and Sayadi 2013 Overhaul and maintenance cost of loading equipment in surface mining

Sayadi et al. 2012 Estimating capital and operational costs of backhoe shovels

Sayadi et al. 2011 Hard-rock LHD cost estimation using regression techniques

McNab 2009 Simplified cost estimation for processing of iron ores

Loh et al. 2002 Processing equipment cost estimation

Mular 1978 Estimation of capital costs of mining and mineral processing equipment using regression analysis

Mular 1982 Estimation of capital costs of mining and mineral processing equipment using regression analysis

Mular and Poulin 1998 Estimation of capital costs of mining and mineral processing equipment using regression analysis

Camm 1994 Cost modeling for mine and mill

Noakes and Lanz 1993 Estimating the costs of mining and milling industry, using graphical or formulation methods

O’Hara 1980 Development of a set of cost formulas as estimators of capital and operating costs of mining and milling

O’Hara and Suboleski 1992 Development of a set of cost formulas as estimators of capital and operating costs of mining and milling

Pascoe 1992 Capital and operating costs of minerals engineering plants

USBM 1987 Estimation of mining and milling costs using regression analysis

Prasad 1969 Mineral processing plant design and cost estimation

Table II

Column Sulfide Variables Diameter (m) 0.91 4.00 2.28 0.95

Required air flow rate (m3/min) 8.50 850.00 212.97 261.18

Costs Capital (US$) 112600 393700 224558 78526

Operating (US$/h) 3.25 11.36 6.48 2.27

Coal Variables Diameter (m) 2.4 4.3 3.35 0.82

Required air flow rate (m3/min) 850 3398 1876.25 1152.20

Costs Capital (US$) 179200 289400 240200 45801

Operating (US$/h) 5.17 8.35 6.92 1.32

Self-aerating Variables Cell volume (m3) 0.31 85 17.20 26.22

Required floor space (m2) 0.83 23.2 7.56 7.44

Power (kW) 2.23 149.14 35.96 46.56

Costs Capital (US$) 17800 279900 74372.73 77819

Operating (US$/h) 0.51 8.07 2.14 2.24

Standard Variables Cell volume (m3) 0.28 158.6 35.64 52.87

Required air flow rate (m3/min) 0.42 85 21.11 28.42

Air pressure required (kP) 10.34 103.42 32.95 31.29

Power (kW) 1.11 149.14 35.94 48.79

Costs Capital (US$) 17600 302600 100580 95962

Operating (US$/h) 0.51 8.73 2.89 2.77



The data contained technical and cost specifications of the
machines. Technical parameters were diameter (D), required
air flow rate (AF), cell volume (CV), required floor space (FS),
required air pressure (AP) and power (P) depending on the
type of flotation machine (Figure 1). These parameters were
individually or simultaneously used as predictor variables in
cost models.

Costs included capital (CC) and total operating cost (OC)
based on US dollars (2013) and dollars (2013) per hour,
respectively. Moreover, the operating costs could also be
estimated in detail, i.e. the overhaul (parts and labour),
maintenance (parts and labour) and lubrication cost items.
The operating costs data is provided based on certain unit
costs in the USA in 2013: electrical power, lubricant and
repair labour were assumed as 0.076 US$ per kWh, 3.32 US$
per litre, and 37.57 US$ per hour, respectively.

The overhaul costs (including both parts and labour) are
those associated with scheduled refurbishing or replacement
of major wear parts. Likewise, the maintenance costs
(including both parts and labour) are associated with both
unscheduled repairs and scheduled servicing of all of minor
and major components, excluding overhaul actions and
lubrication. The cost of operator’s time was not included in
this study. The data and therefore the developed models
represent flotation machines with separate motors. The costs
of motors are generally estimated separately. Here, for ease
of use of the models, separate capital and operating cost
functions for variable-speed DC motors are provided later.

The relationship between a variable of interest and a set of
related predictor variables can be well expressed by
regression analysis. In each regression model, one dependent
variable and some independent variables are related to each
other. The regression is called single regression (SRA) if just
one independent variable exists, while in multiple linear
regression (MRA) several independent variables are
correlated to the dependent variable. In this regard,
independency of regressors (so-called independent variables)
is a must. Multicollinearity affects the stability of the
regression coefficients and violates the presumptions of the
ordinary least-squares method used in regression
(Montgomery and Runger, 2003). 

In this paper, both single and multiple regression analysis
were conducted on the data. MATLAB software was used in
order to evaluate different univariate structures for capital

and operating costs and as a result, the power function
framework of Equation [1] was chosen for the univariate
model:

[1]

where Y refers to capital or operating costs, X defines an
independent variable (one of the machine predictor
variables), and a and b are constant values (parameters) of
the models. 

In the case of multivariate models, the multiple linear
regression framework (Equation [2]) showed promise in this
research, based on testing different model structures and also
on previous works (Sayadi, Khalesi, and Khosfarman, 2014). 

[2]

where xi defines independent explanatory variables and ai are
regression coefficients (model parameters). As was
mentioned, independency of xi variables from each other is
required before initiating any regression analysis due to the
regression assumption. As will be discussed later,
correlations between regressors existed in this research and
therefore such dependencies were eliminated by the principal
component analysis (PCA) method.

For evaluation of the SRA models, R2, RMSE (root mean
square error), and MAER (means absolute error rate) were
carried out. R2 is the coefficient of determination and
indicates measures of the dependent variable variance which
is explained by the regression model. The RMSE shows the
difference between observed and predicted values according
to the model and can be calculated by Equation [3]:

[3]

where Xobs is the observed value, xe the estimated value
at time/place I, and n, is the number of observations. 

For evaluation of the MRA models, analysis of residuals,
tests of MAER values and evaluation of R2 were conducted.
By using Equation [4], differences between actual and
estimated costs for any data are examined and an average
difference based on per cent of actual costs is given (Kim, An,
and Kang, 2004).

[4]

where Ce is the estimated cost, Ca the actual cost, and n the
number of data. MAER values should be in low levels as
much as possible. 

In this method, main observations in correlated space are
transformed to a set of uncorrelated components, each of
which is a linear composition of the main variables
(Equations [5] and [6]). The new uncorrelated variables 
are called principal components (PCs). As can be seen in
Figure 2, neither X1 nor X2 is the main direction of the data,
while the ellipse with main diameters PC1 and PC2 matches
the direction of the data. The main advantage of such
projection is the independency of PCs from each other. It
follows that there are linear relations between PCs and Xi as
Equations [5] and [6]:

[5]
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[6]

In this research, main variables of X1, X2 … Xn were first
transformed into PCs in order to eliminate the
multicollinearity, and then the multiple linear regression
model was built with PCs as the regressors. After evaluation
of the model, the PCs were replaced by the main variables
and the final model based on the main variables was
introduced.

To clarify the steps by which multivariable costs models have
been obtained, the development of capital cost function for
the column sulphide flotation machine (CSFM) is presented
here as an example. Table III illustrates the high correlation
between predictor variables for the CSFM.

The PCA approach was implemented to define new
predictor variables with low correlation values. Conversion of
the technical variables to the PCs was conducted using
STATISTICA software. Table IV shows the main variables and
the new generated PCs of the CSFM together, while Table V
demonstrates the correlation matrix of the new PCs. As can
be seen, the new PCs are completely independent from each
other and therefore multiple regression models can be built
using PCs as regressors.

Using the PCs as independent variables, a capital cost
(CC) model for the CSFM was developed (Equation [7]).
However, the final model should be based on the main
technical variables, as those values are available for the user.
Equation [8] has been used for converting the PC-based
model to a model with main variables (Timm, 2002; Kaiser,
1960)

[7]

[8]

where Xi are main technical variables (like power or required
air), ai are calculated by multiplication of coefficients of the
model based on PCs as predictors by the eigenvectors of PCs
(as illustrated in Figure 3), Six and Xi,ave are the standard
deviation and mean of main variables, respectively (can be
found from Table II) and C refer to constant value of PC-
based model (here 224 558.3). Equation [9] shows the final
capital cost model for the CSFM.

[9]

Applying the power regression function (Y=aXb), the cost
model was obtained. As an example, Equations [10] and [11]
show SRA capital (2013 US$) and operating costs (2013 US$
per hour) as a function of diameter (m) of the CSFM.

[10]

�
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Table III

Diameter 2.2792 0.9471 1.000 000 0.931 963

Required air 212.9667 261.1806 0.931 963 1.000 000
flow rate

Table IV

0.91 8.5 -1.57 581 -0.468 686
1.22 11.3 -1.33 678 -0.244 814
1.52 22.7 -1.08 193 -0.051 691
1.68 50.1 -0.88 829 -0.006 414
1.82 68 -0.73 530 0.049 652
2.1 102 -0.43 419 0.166 656
2.3 136 -0.19 282 0.223 930
2.4 170 -0.02 611 0.206 542
2.7 227 0.35 220 0.276 210
3.0 312 0.80 631 0.270 071
3.7 598 2.10 324 0.018 404
4.0 850 3.00 948 -0.439 861

Table V

PC1 0.0 1.389 951 1.0 0.0
PC2 0.0 0.260 839 0.0 1.0



[11]

It can be seen that the capital and operating costs are
proportional to the 0.791 and 0.790 power of diameter in the
case of the column sulphide flotation machine. The R2 is
about 0.94 for both cases, i.e. 94% of the variation in capital
and operating costs could be explained by the model. Tables
VI to IX demonstrate results for the machines modelled in
this research. 

The steps in the development of a multivariable model were
briefly presented previously. As was mentioned, the validity
of regression models like Equation [9] were tested by
different statistical approaches. Figure 4 shows the residuals
of the capital cost model of the CSFM, confirming their correct
normal distribution. Table X represents the coefficients of the
final MRA models (a1, a2, a3) and new intercept (a0) along
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Table VI

Diameter a 118 226.4 3.410 613 0.493 788 0.462 357 0.914 055 0.914 055 0.861 211 1.7752 0.673 749
(m) b 0.791 01 0.790 883 0.790591 0.795 579 0.791 869 0.791 869 0.792 835 0.7923 0.793 598

R2 0.9379 0.9377 0.9391 0.9375 0.9369 0.9369 0.9387 0.9378 0.9383
MAER 4.86 4.88 4.77 4.86 4.83 4.83 4.85 4.84 4.82
RMSE 113.90 0.61 0.23 0.23 0.32 0.32 0.31 0.44 0.27

Table VII

Diameter (m) a 95 523.91 2.754 794 0.4006 0.3691 0.7697 0.74 194 0.7013 1.4433 0.543 649
b 0.765 573 0.765628 0.7614 0.7780 0.769 50 0.76 200 0.7603 0.76 122 0.76 731

R2 0.9284 0.9290 0.9282 0.9285 0.9284 0.9315 0.9271 0.9294 0.9246
MAER 11.63 11.45 12.02 11.89 11.64 11.80 11.53 11.66 11.53
RMSE 94.46 0.51 0.19 0.19 0.27 0.26 0.26 0.36 0.23

Table VIII

Cell volume a 23 907.727 0.690 0.098 0.092 0.190 0.186 0.175 0.361 0.137
(m3) b 0.469 0.469 0.474 0.474 0.474 0.467 0.467 0.467 0.469

R2 0.8655 0.8655 0.8671 0.8700 0.8685 0.8611 0.8624 0.8618 0.8665
MAER 11.63 11.45 12.02 11.89 11.64 11.80 11.53 11.66 11.53
RMSE 110.92 0.59 0.23 0.22 0.31 0.31 0.30 0.43 0.26

Table IX

Cell volume a 25 351.280 0.715 0.103 0.101 0.174 0.196 0.185 0.381 0.146
(m3) b 0.452 0.457 0.460 0.449 0.496 0.452 0.453 0.452 0.450

R2 0.9561 0.9571 0.9618 0.9541 0.9776 0.9561 0.9561 0.9561 0.9552
MAER 10.82 11.99 9.93 10.91 15.55 10.90 10.55 10.73 10.56
RMSE 108.32 0.58 0.21 0.21 0.27 0.30 0.29 0.42 0.26
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with the MAER. As an example, the validity of the developed
model in reproducing the measured data of capital costs for
the CSFM machine is demonstrated in Figure 5. 

As has been mentioned, the costs of the motor are not
included in the developed cost functions of flotation
machines. Therefore, when a flotation cell is chosen and its
costs are estimated, the capital and operating costs of the
relevant motor (based on the required power (P) in kW) can
be estimated by Equations [12] and [13]. Motors are
assumed to be variable speed with 1150 r/min drive rating. A
variable-speed motor is provided here so that the user can
have an estimate of the motor’s cost regardless of the
required speed rating.

[12]

[13]

Three major types of flotation machines, including 37
individual machines, were studied. The explanatory variable
in SRA was either diameter or cell volume; whereas in MRA
(depending on the machine type), different technical
variables such as diameter, required air flow rate, required
floor space, cell volume, required air pressure, and power
were considered as predictor variables simultaneously. 

The models were classified into capital and operating
costs. Moreover, the operating cost was detailed in different
cost items. The cost models are valid within a certain range,
indicated in Table II, and major extrapolation should be
avoided.

�
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The most expensive machine is a type of flotation column
that has capital and operating costs of about $394 000 and
$11 per hour, respectively. The capital cost of a CSFM and
CCFM is proportional to the 0.79 and 0.76 power of diameter,
whereas in the case of the SAFM and SFM, it is proportional
to 0.47 and 0.45 of the cell volume, respectively. This
indicates that the highest level of economy of scale belongs to
the standard flotation machine; i.e. the SFM cost advantage
increases with increasing size of the machine. The R2 values
between 0.87% and 0.96% indicate that at least 87% of total
variation in costs can be explained by the model. The lowest
MAER of SRA belongs to the CSFM (4.86%) that designates
the cost model with the maximum accuracy. In the MRA
cases, this property is owed to the SFM (3.05%). 

Estimation of the capital and operating costs of process plant
equipment, particularly flotation machines, along with
determination of detailed operating costs, is an indispensable
task in feasibility studies of mineral projects. Almost all of
the current models are obsolete and need to be updated.
Moreover, the majority of the available models have a

univariate structure, and the role of other operative variables
has simply been disregarded. A new up-to-date statistical
cost model for flotation machines (column as well as coal and
sulphide, self-aerating, and standard) has been developed. 

Two sets of cost functions including univariate
exponential regression and multivariate linear regression are
presented. Individual cost functions are presented for each
operational cost item category such as overhaul (parts and
labour), maintenance (parts and labour), power and
lubrication items. However, costs can vary from mine to mine
and from time to time, and should be adjusted for conditions
specific to the operation based on local unit costs (such as
electrical power, lubricants, and repair labour), and annual
cost index of mineral processing equipment. The proposed
cost models are reliable in device specifications ranged as
noted in Table II, and over- extrapolation could result in
misguiding estimates. 

The MAER, RMSE, R2, and residual analysis methods
were applied for the evaluation of the models. Maximum
MAER of 13.5% and minimum R2 of 0.86 indicate that these
models can be used as a reliable tool in cost estimation of
flotation machines at the pre-feasibility and even feasibility
study level of projects.
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Table X

Column, Intercept a0 55 057.22 1.5927 0.2284 0.2129 0.4272 0.4272 0.3947 0.8219 0.3112

sulphide D a1 70938.63 2.0429 0.2974 0.2801 0.5478 0.5478 0.5219 1.0697 0.4070

AF a2 36.7212 0.0011 0.0001 0.0001 0.0003 0.0003 0.0003 0.0005 0.0002

MAER 4.98 4.98 4.94 5.07 5.04 5.04 4.93 4.98 5.08

R2 0.9417 0.9416 0.9427 0.9409 0.9408 0.9408 0.9420 0.9414 0.9417

Column, Intercept a0 -7769.630 -0.19 900 -0.0088 -0.0359 -0.0448 -0.0235 -0.0431 -0.0667 -0.06008

Coal D a1 88 745.590 2.545 99 0.358 75 0.348 56 0.707 31 0.668 26 0.642 32 1.310 59 0.514 09

AF a2 -26.29080 -0.00075 -0.0001 -0.0001 -0.0002 -0.0002 -0.0002 -0.0003 -0.00016

MAER 3.3 3.3 3.42 3.4 3.41 3.28 3.33 3.31 3.37

R2 0.9509 0.9509 0.9471 0.9495 0.9483 0.9511 0.9493 0.9502 0.9490

Self- Intercept a0 24 976.6 0.7206 0.1021 0.0951 0.1971 0.1951 0.1840 0.3791 0.1425

aerating CV a1 4130.6 0.1190 0.0172 0.0160 0.0331 0.0327 0.0304 0.0632 0.0236

FS a2 1114.9 0.0319 0.0045 0.0050 0.0094 0.0086 0.0078 0.0164 0.0068

P a3 -624.4 -0.0179 -0.0025 -0.0024 -0.0049 -0.0051 -0.0047 -0.0098 -0.0036

MAER 13.48 13.55 13.09 13.88 13.45 13.19 13.56 13.37 13.43

R2 0.9940 0.9939 0.9943 0.9939 0.9941 0.9941 0.9940 0.9940 0.9937

Standard Intercept a0 30 240.78 0.8330 0.1216 0.1146 0.2241 0.2307 0.2162 0.4469 0.1728

CV a1 -5415.50 -0.1552 -0.0241 -0.0206 -0.0527 -0.0419 -0.0396 -0.0814 -0.0306

AF a2 10 220.11 0.2944 0.0422 0.0392 0.0871 0.0795 0.0739 0.1534 0.0573

AP a3 -13354.40 -0.3664 -0.0568 -0.0472 -0.1242 -0.1011 -0.0944 -0.1955 -0.0746

P a4 2312.0450 0.0649 0.0111 0.0085 0.0252 0.0175 0.0170 0.0345 0.0133

MAER 3.05 5.05 3.56 2.56 11.78 3.4 3.06 3.12 2.81

R2 0.9997 0.9993 0.9996 0.9997 0.9988 0.9996 0.9997 0.9996 0.9997
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