
The effects of poor sampling and the financial
implications for mining companies, traders in
mineral assets, and sellers of metal as dore or
commodities is documented in a number of
studies, the most notable of which is that by
Carasco (2004). He examined the financial
impact of poor sampling practices in the
Chilean copper industry and found that finacial
losses due to poor sampling amounted to
hundreds of millions of dollars over the life of
a mining operation. Holmes (2004) examined
the effects of correct sampling and
measurement as the foundations of
metallurgical balances, and found that
revenues from the sales of large iron ore
shipments may be profoundly affected by poor
sampling practices. In South Africa the way in
which sampling of in situ gold-bearing reefs
affects the mine call factor has been an
ongoing study since the disparity between the

estimation of gold in the reef and the actual
gold bullion produced was noted by early
investigators such as Beringer (1938), Jackson
(1946), Sichel (1947), Harrison (1952), and a
number of others.

This study explores the ways in which
misclassification of ore and waste due to the
uncertainty in grade estimation has important
economic consequences, particularly if a cut-
off grade is superimposed on a metal grade
distribution, as is normally the case. In
addition, the study demonstrates how the
gross value of a mineral deposit can be eroded
as a result of poor sampling, taking into
account the fact that mineral deposits of
different metals, especially ferrous and non-
ferrous metals, are characterized by the
skewness of their distributions. Minerals
characterized by the normal distribution for
certain variables are also considered. The
means by which the value of primary mineral
deposits is affected as a result of the
introduction of sampling error and sampling
bias through poor sampling practise depends
significantly on the nature of the metal distrib-
utions in the deposit. 

The effects of poor sampling practise are
examined for specific metals and commodities
by introducing a 10% sampling error, and 0.9-
times to 1.1-times sampling bias into
otherwise unsampled mineral deposits. The
error and bias are introduced on positively
skewed, negatively skewed, and normal distri-
butions for three main commodity types,
namely gold, iron ore, and coal deposits. 

In most open-pit mining operations the pit
superintendent is responsible for directing
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trucks leaving the pit to the waste dump or the mill, based on
samples from blast-hole assays (Figure 1). Blast-holes are
drilled on an ongoing 24/7 basis, keeping evaluation of the
bench grade ahead of blasting and mining. Two problems
arise for the pit superintendent, the first of which is due to
the so-called ‘support effect’, sometimes also referred to as
the volume-variance effect. The support effect refers to the
size, volume, shape, orientation, and variability of samples
collected for evaluation compared to that of the ore blocks or
‘smallest mining units’ (SMUs) that will actually be mined.
Samples collected from typical blast-hole cuttings coming
from a 31 cm diameter hole with a depth of 15 m, give a cone
of rock cuttings around the drill steel with a volume of about
100 m3 which, at a density of 1.6 t/m3, weighs about 160 kg.
After splitting, only 600 g of this mass will be sent to the
assay laboratory, where analysts will probably use only a 30
g aliquot for the final assay. The mining block, by contrast, is
a 7.8 x 8.8 x 15 m block with a density of 3 t/m3, containing
about 2600 t of ore. The difference in support between the
sample and the block being evaluated means that the
variability in grade between the blast-hole samples is consid-
erably higher than the variability between mining blocks, a
characteristic referred to as the volume-variance effect. The
volume-variance effect arises because of the difference in
volume between blast-hole samples and the mining blocks,
the variability in grade of the blast-hole samples and the
mining blocks, and the way sample grades are applied to the
estimation of SMU grades and tonnages. The larger the
volume of the samples, the lower the variance. This problem
is encountered in all mining operations where samples of
relatively small mass are used to estimate the grade of much
larger volumes of SMUs.

The difference in support size of the samples relative to
the size of the blocks from which they are extracted leads to
significant problems in terms of estimation, which in turn
translate into considerable cost. Typically, bias observed due
to the volume-variance effect changes the nature of the
estimator from a perfectly straight line at 45° to a line with a
slope that is considerably less than 45°, as shown in 
Figure 2. 

This means that if the sample grade (true grade) is below
the average grade, the tendency is for the sample grade to
underestimate the grade of the blocks. However, if the sample
grade is above the mean then the tendency is for the face
samples to overestimate the grade of the mining blocks
(SMUs, Figure 2).

In most open-pit mines an operational cut-off grade is the
principal criterion by which the superintendent makes his
decision to send broken ore to the waste-dump or mill.
Material with blast-hole grades below the cut-off grade is
directed to a waste dump or low-grade stockpile, while
broken rock with grades above the cut-off goes to the mill or
a high-grade stockpile. The decisions to send material to the
mill or the waste dump are based on incomplete information –
the so-called ‘information effect’. Lack of complete
information is the root cause of imperfect decisions. The
problem of the ‘support effect’ is worsened by the
‘information effect’ in that blocks of ground that should be
sent to the waste dump are sent to the mill, and some blocks
that should be sent to the mill end up being delivered to the
waste dump, as shown diagrammatically in Figure 3. 
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The histogram along the y-axis represents the true grade
distribution for the deposit. The histogram along the upper x-
axis refers to material that is truly ore; most of it is sent to
the mill, but some of it is sent to the waste dumps as lost ore.
The histogram along the lower x-axis refers to material that
is truly waste; most of it is sent to the waste dump, but
portion of it is sent to the mill as dilution.

The superintendent’s problem is compounded by the fact
that he is required to impose a cut-off grade on the materials
mined, based on assumptions that are not true. The
imposition of the cut-off grade presupposes that firstly, the
decisions are based on the perfect estimator in the form of a
45° line in a plot of sample estimates versus block values,
and secondly that the cut-off grade perfectly defines what
broken rock should go to the waste dump and what to the
mill.

In the day-to-day pressure of mining production, all the
superintendent can do is base his decision on the estimated
value he is given. According to Myers (1997) two errors are
made; the first is an error of estimation because the value of
waste material is estimated to be above the cut-off grade, and
the second is an error of misclassification because the SMU is
incorrectly classified as lying within the domain of revenue-
generating ore.  Such errors of estimation and misclassifi-
cation arise because the decision about how to direct the ore
is based on incomplete information. The first is a Type I error
made when rock that is truly ore is rejected and sent to the
waste dump, where it is lost to the value chain. The second is
a Type II error made when rock that is truly waste material is
accepted as ore, and is sent to the mill, where it dilutes the
ore grade. The pit superintendent only has a 2D plan of the
pit floor with blocks marked either above or below the cut-off
grade. There are no blocks marked ‘Ore, but actually waste’,
or ‘Waste, but actually ore’. He must make a decision at the
point where the cut-off grade is imposed; either ore or waste.

The category of ‘lost ore’ arises because truly economic
ore is sent to the waste dump, where it is then ‘lost’ to the
mining operation. The amount of lost ore is never known
because it never adds value to the operation, it never appears
on the balance sheet, there is no direct means of accounting
for it, and it contributes to a low mine call factor. The only
opportunity it may ever have of contributing to the mineral
rents is at the end of the life of mine when the plant superin-
tendent, desperate to fill the plant with material, resorts to
using material off the low-grade stockpile. At one time South
Africa’s largest gold producer recovered 280 kg of gold per
month from treating waste dumps (Brokken, personal
communication, 2012).

The category referred to as ‘dilution’ arises because truly
uneconomic rock is sent to the mill where it is processed as
ore. Again, the amount of diluting rock is unknown, but it
firstly appears indirectly on the balance sheet as a
combination of higher milling and processing costs, and
secondly it contributes to a lower mine call factor.  Its overall
contribution to the cash flow is negative. Quantifying the
costs of dilution is difficult because the additional milling and
processing costs are evenly spread across the entire stream of
material arriving at the mill. This problem is amplified when
milling capacity is constrained. The old adage ‘a low-grade
tonne should never keep a high-grade tonne out of the mill’
should be kept in mind.

The question that this research attempts to answer is
whether these losses and additions to the mine revenue
stream can be quantified in terms of sampling error and
sampling bias, in terms of tons and grade, and in terms of
dollars. This study aims to show that such quantification of
the effects of sampling errors and sampling bias is indeed
possible.

Grade distributions in a 1500 x 1500 m domain for three
commodities gold (g/t), iron ore (%Fe), and coal (calorific
value, MJ/kg) were created from parent distributions for each
commodity, the histograms of which are shown in Figure 4. 

The sampling distribution for each of the mineral deposit
types examined here, gold, coal, and iron ore, are radically
different and represent positvely skewed lognormal, normal,
and negatively skewed distributions respectively. It is
precisely the problem of sampling skewed distributions and
the superimposition of error and bias on such distributions
that this paper aims to investigate. The skewness of the
distributions seriously affects sampling programmes and the
overall estimation of the average grade of a mineral deposit.
Even if we could eliminate all sampling errors and biases, the
very nature of the distribution would mean that limited
numbers of samples collected from positively skewed
lognormal distributions, typical of precious and base metal
deposits, will generally underestimate the average grade. For
negatively skewed distributions, typical of bulk commodities
such as iron ore, manganese, vanadium, and chromite, a
limited number of samples will overestimate the mean, but in
the case of mineral deposits with normally distributed
variables, such as coal qualities and alumina, the mean grade
of samples taken from these materials will generally be
statistically correct. 
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The parent distributions were normal-score transformed
and a transform table was generated for each commodity.
This was followed by the creation of a single, simulated,
nonconditional Gaussian distribution of 5 x 5 m pixels shown
in Figure 5 using a spherical variogram model. 

This single realization is the primary simulation from
which three simulations of the commodities of interest, gold,
iron ore, and coal, shown in Figure 6, were created. The
domain file arising from the nonconditional simulation
(Figure 5) was back-transformed using the normal score
transform tables for each commodity (Au, Fe, and coal). This
back-transformation produced three visually similar
simulated distributions, which differ from one-another in
grade distribution only (Figure 6). These three domains are
made up of 5 x 5 m pixels in a 1500 x 1500 m domain and
constitute the base case or reference distributions from which
the 10 x 10 m block averages were created.

The 10 x 10 m block averages for each commodity of
interest, created by block averaging the simulated distrib-
utions shown in Figure 6, were sampled on a 25 x 25 m grid.
The locations of these samples for each of the commodities
are shown in Figure 7. These constitute the control data-sets,
containing no error and no bias.

Experimental and modelled semivariograms for the data
shown in Figure 7 are presented in Figure 8, and show a
relatively higher nugget effect for gold compared to coal and
iron ore.

Ordinary kriging (OK) of the data shown in Figure 7 into
10 x 10 m blocks using the 25 x 25 m data and the semivar-
iogram models (Figure 8) is shown in Figure 9. These three
kriged models constitute the base-case reality containing no
sampling error and no sampling bias, against which the
effects of introducing error and bias can be compared. 

Percentage sampling errors and multiplicative sampling
bias are introduced into data-sets drawn from the 10 x 10 m
block model for each commodity. This data is then kriged into
10 x 10 m blocks and the kriged outputs are compared
against the reality base-case models shown in Figure 9. 

The daughter simulations for gold, coal, and iron ore at 5 x 5
metre pixels (Figure 6) were block-averaged into 10 x 10 m
blocks and then sampled on a 25 x 25m grid (Figure 7) to
produce an array of 900 points in each of the domains. Four
sampling events, which drew the 900 samples on a regular
25 x 25 m grid from the 10 x 10 m block averages, were
investigated. The first was a control data-set without the
inclusion of any error or sampling bias and established the
base-case reality against which the effects of sampling error
and bias will be evaluated. The second, third, and fourth
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data-sets include 10% sampling error with no bias, a 10%
sampling error with 0.9-times multiplicative bias, and 10%
sampling error with 1.1-times multiplicative bias, respec-
tively. 

The actual 10 x 10m ‘block average’ control data-sets for
gold, iron ore. and coal with no error and no bias are
compared against the OK values in 10 x 10 m blocks in
Figure 9. The effect of the differently skewed distributions is
evident in the scattergrams. Lognormally distributed gold
grades are concentrated in the lower left corner of the
scattergram, negatively skewed iron ore grades occur mainly
in the upper right of the scattergram, while normally
distributed coal calorific values are evenly distributed across
the scattergram. The effects of conditional bias are not
evident in the gold or iron ore scattergrams, but are clearly
evident for the coal scattergram, resulting in underestimation
for low grades and overestimation for the higher grades
(Figure 9, bottom row).

Typical exploration-stage or grade-control cut-off grades,
1.5 g/t for gold, 42 %Fe for iron ore, and 23 MJ/kg for coal
(personal experience; Nel, 2013, personal communication;
Steyn, 2013, personal communication) are superimposed on
the scattergrams, and divide the scattergrams into quadrants
containing ore, waste, dilution, and lost ore. 

We now compare the kriged models in the scattergrams for
the data-sets with and without the presence of sampling error
and sampling bias. Introducing a 10% sampling error with no
bias (third row, Figure 11) simply results in an increased
spread of data in the scattergram. Error also increases the
variability and decreases the correlation coefficient of the
scattergram. The effect of 10% sampling error on changes in
the tonnages and value of the deposits is negligable. The
actual sample values versus OK results are presented in the
scattergrams for gold, iron ore, and coal (columns 1 to 3,
Figure 11). The first row of scattergrams in Figure 11 provide
a visual standard with no error and no bias in the samples,
against which the scattergrams with 10% error and differnt
amounts of bias shown in rows 3, 4, and 5, can be compared. 

Although the kriged diagrams are colourful and show the
columns with 10% error and different levels of bias, any
visual interpretation is subjective. However, simple visual
inspection indicates that the negative bias leads to underval-
uation while the positive bias will result in overvaluation for
the deposit. The effect of the error and bias is further
emphasized in the scattergrams of actual grades against
kriged results shown in Figure 11. 
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The effects of poor sampling are better seen in the
scatterplots of the control data when compared against the
data including error and bias. It is difficult to see the effects
on the gold estimates, but the coal and iron ore estimates are
clearly shifted in their positions on the scattergram. The
effect of 10% error is simply to enlarge the distribution of the
estimated points, while the negative bias shifts the points
below the 45° line and the positive bias shifts the points
above the 45° line. Again, these shifts are noteworthy, but of
relatively little importance until we superimpose the cut-off
values on the scattergrams.

Scattergrams in Figure 11 illustrate the difficulty that the
pit superintendent faces, because the decisions he makes in
sending broken rock to the mill or the waste dump can
seriously affect the financial outcomes and profitability of the
mining operation. The effects of bias on tonnage and deposit
value are more obvious and severe than those of error. The
sampling bias imposed on the already-introduced sampling
error is multiplicative at 0.9 times and 1.1 times, 0.5 times
and 1.5 times for gold. Bias shifts the cloud of points above
or below the 45 degree line of unbiassed correlation.
Inspection of Figure 11 indicates the points are shifted
downwards for a 0.9x bias causing a significant increase in
dilution, but a decrease in lost ore. In the same way a 1.1x
bias causes a significant increase in lost ore, but a decrease
in dilution, especially for iron ore and coal.

The value associated with mining waste, dilution, ore, and
lost ore can be estimated through a profit/loss function. This
provides a framework in which to evaluate the changing
value of the four categories of mined materials affected by
error and bias. Srivastava (1990) applied the loss function
framework to evaluate the benefits of pumping solvent into
an oil reservoir in order to improve recovery. He noted that
any time an estimate involving over- or underestimation,
rather than perfect information, is used to a make a decision,
sub-optimality in the form of a loss will be incurred. He also
noted that very often the error-induced loss is asymmetric
and that the penalties for overestimation are different to
those for underestimation. The application of profit and loss
functions was carried further by Glacken (1997) and Verly
(2005), who in a study of grade control classification of ore
and waste undertook a critical review of estimation- and
simulation-based procedures showing that misclassification
due to uncertainty in grade estimation had economic

consequences. The profit functions (g(z)) for blocks of waste,
dilution, ore, and lost ore are listed in Table I.

The profit/loss function is shown graphically in Figure 12
and provides a means of capturing the economic influence of
mining the four classifications of material – waste, dilution,
ore, and lost ore – in a single diagram. This allows the effects
of error and bias to be seen in economic terms. The following
mining and processing costs and cut-off grade parameters
apply.

The profit/loss functions listed in Table I were applied for
each class of mining material using the parameters listed in
Table II in order to account for the characteristics of the
material, its final destination, and the costs that the company
incurs, or revenues it may lose as a result of a grade control
decision. The curves showing the change in value for the four
classes of materials – waste, dilution, ore, and lost ore – for
gold, iron ore, and coal calculated in this way are shown in
Figure 13. The standard reference for these plots is the OK
result, which is shown in red in Figures 13 and 14. 

A noteworthy feature of the ‘Value of ore’ shown in row
four of Figure 13 is that the variability in value for gold is
relatively small compared to that for iron ore and coal. In
addition, the values for the commodities are concave-up for
gold, concave-down for iron ore, and change from concave-
down at low cut-offs to concave-up at higher cut-offs for
coal. 

The relative effects of 10% error, 10% error plus 0.9x bias,
and 10% error plus 1.1x bias on gold grades, iron ore grades,
and coal CV values are summarized in Figure 14.

Table I

Waste g(z) = -cm Correct rejection

Dilution g(z) = -cm + (ω1)(prz-cp)
False acceptance; ω1 is a coefficient (0< ω1<1) quantifying the opportunity cost of dilution, i.e.

that low grade ore keeps high grade ore out of the mill, (the risk aversion of the company). ω1 = 0.7

Ore g(z) = prz – cm - cp Correct acceptance

Lost ore g(z) = -cm – (ω2)(prz-cp) False rejection; ω2 is a coefficient (0< ω2<1) quantifying the opportunity cost of losing ore. ω1 = 0.7

p = price, r = recovery rate, z = grade, cm = cost of mining, cp = cost of processing
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The effect of 10% sampling error on estimated deposit
value is negligible for gold (about 0.3%), about 3.3% for iron
ore, and 5.3% for coal. The effects of bias are asymmetric and
significant with differences in estimated relative deposit
value, as shown in Figure 14. The range in value due to bias
in lognormal grade distributions for gold deposits is approxi-
mately 18%, for iron ore with negatively skewed distributions
the range is about 47%, and for normally distributed CV
values in a coal deposit the range in value is about 50%.
Positive bias (1.1x) results in overestimation of value,
whereas a negative bias (0.9x) results in significant underes-

timation of value with increasing cut-off grade. A positive
bias (of the same magnitude as a negative bias) appears to 
have less effect on overvaluation than the negative bias has
on undervaluation. 

In order to protect the value in our projects from the influence
of poor sampling, we need to ask three questions (Francois-
Bongarçon, 2013). Firstly we should ask ‘How much?’, as
this relates to the mass of sample material required if we are 
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Table II

Mining Cost $/t –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100

Processing cost $/t 0 –100 –100 0 0 –100 –100 0 0 –100 –100 0

Min+Proc cost $/t –100 –200 –200 –100 –100 –200 –200 –100 –100 –200 –200 –100

Recovery % 0 0.4 0.9 0 0 0.4 0.9 0 0 0.4 0.9 0

Commodity Price Gold (R/g)
Iron ore (R/t) 600 240 540 0 800 320 720 0 800 320 720 0

Coal (R/t)



to achieve required levels of precision, and the need to
customize the sampling protocol through heterogeneity
studies. Secondly we need to ask ‘How?’, as this relates to
minimizing segregation and upholding correctness through
application of appropriate technology to ensure appropriate
precision and biases are eliminated. Thirdly, we should ask
‘Why?’, as this relates to the fact that this is the only way in
which representative samples can be extracted and the
economics of the deposit can be preserved.

This study highlights the fact that only by minimizing
error, and in particular the bias, is there the possibility of
minimizing the adverse effects of dilution and lost ore, both
of which cost the mining company money that can never be
accounted for. Lognormally distributed gold grades suggest
that gold mineralization is less susceptible to the effects of
bias and error than iron ore (negatively skewed grade distrib-
utions) and coal deposits (normally distributed grades for
calorific value). 

This study arose out of discussions with Professor Clayton
Deutsch, Centre for Computational Geostatistics, University of
Alberta, on research around the topic of cokriging and the
representation of its appropriate benefits. The proposed
research project was discussed with Professor Chris Prins,
MinRED, Anglo American plc, who helped to refine the
geostatistical work flow. Their contributions to this study are
gratefully acknowledged. This paper is a modified version of
‘Changes in deposit value associated with sampling error and

sampling bias’ presented by the author at the 6th World
Conference on Sampling and Blending (WCSB6) held in Lima,
Peru, in 2013 and published with the permission of Gecamin.
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