
A strategic mine plan sets the overall
objectives of a mining project. Mine planning
is a multidisciplinary process and its aim is to
develop the life-of-mine extraction plan to
meet some predefined goals (Dagdelen, 2007;
Henderson and Turek, 2013). Mine plans are
classified into long-, medium-, and short-term
plans. Normally, these plans are organized
such that the mining operations achieve the
highest cash flow or net present value
(Heureux, Gamache, and Soumis, 2013; Juarez
et al., 2014; King, 2014). These plans should
consider capacities, blending requirements,
block sequencing, reclamation requirements,
pit slope, and any other constraints that may
exist in each particular mine site (Caccetta and
Hill, 2003).However, many problems in the
field of mining engineering are characterized
by insufficient and incomplete data. The
stochastic and uncertain nature of geological,
technological, market, political, and ecological
factors are inherent in the context of mining
engineering. For example, the dynamic change
of ore and waste material due to the presence
of spatial grade uncertainty makes predictions
of the optimal mining sequence a challenging

task (Godoy and Dimitrakopoulos, 2004;
Azimi, Osanloo, and Esfahanipour, 2013;
Rahmanpour and Osanloo, 2016a). These
uncertainties highlight the importance of
careful and risk-based mine planning through
the development of new production planning
models (Osanloo, Gholamnejad, and Karimi,
2008; Newman et al., 2010). 

Long-term plans outline the strategies to
achieve a company's goals (the highest net
present value, for instance). Short-term plans
are aimed at following the strategies of the
long-term plan, and the other objective of
short-term plans is to minimize operating costs
as much as possible. For this purpose,
engineers try to find a reliable system with
minimal cost (Levitin and Lisnianski, 2001;
Rahmanpour and Osanloo, 2016b). Modern
and successful production systems are
characterized by high productivity, full
utilization of resources, flexibility, and
reliability. These characteristics enable an
operating system to adapt to changing
conditions. In any mining operation, ore is
mined from different blocks and is hauled to
predetermined destinations based on its
chemical or mineralogical properties. Mining
operations obtain the desired quality of the
plant feed by blending ore of different
qualities. The same practice is applied in a
mine complex where the ore is sourced from
different mines and has different chemical and
physical characteristics (Figure 1).

Since ore properties can vary considerably,
blending is a prerequisite in order to obtain a
consistent feed to the processing plant. The
run-of-mine quality depends on the quality
and quantity of ore mined from each face.
Uncertainty is the state of having limited
knowledge to perform a task. During feasibility
studies, the precise values of all the input
parameters are not known. Normally,
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parameters such as the grades, operating costs, commodity
prices, recoveries, and operational constraints are all
estimated using the data available at the time of planning,
based on the assessments of the mining engineers. Hence
blending and quality control plans are determined based on
some in-situ and estimated characteristics of a deposit.
Therefore, the optimum blending plan is affected by the
uncertainties of geological and chemical properties of the ore.
Short-term planning in open pit mines has been studied by
many researchers (Splaine et al., 1972; Wilke and Reimer,
1979; Zhang et al., 1992). Some researchers have
incorporated the effect of uncertainties in short-term
planning (Smith and Dimitrakopoulos, 1999; Kumral and
Dowd, 2002; Fioroni, Bianchi, and Luiz, 2008; Gamache,
Hébert, and Desaulniers, 2009; Jewbali and Dimitrakopoulos,
2009; Asad, 2010; Gholamnejad, 2008; Souza et al., 2010;
Askari-Nasab et al., 2011; Eivazy and Askari-Nasab, 2012;
Montiel and Dimitrakopoulos, 2015; Osanloo and
Rahmanpour, 2017). They applied a variety of mixed integer
linear programming models, Lagrangian parameterization,
simulation, linear programming (LP), and heuristic models.

It is obvious that as planning parameters change,
production plans should be re-optimized using the updated
data. Therefore, a simple and deterministic LP model is not
an appropriate tool for these types of problem, where
planning parameters are uncertain. Moreover, there is always
an acceptable limit (guarantee limit) for each mining
constraint. For example, a thermal power plant may require
coal with a maximum sulphur limit of 0.9%. It should be
noted that coal with a sulphur content of 0.91% is also
acceptable for the plant (Pendharker, 1997). In typical LP
models, the constraints ignore this option. In such
circumstances, fuzzy linear programming (FLP) seems to be a
suitable tool. An FLP model considers the possible
uncertainties by using fuzzy numbers. In addition, small
deviations from the acceptable limits are allowed in FLP
models, which leads to the determination of practical plans.
FLP has been applied in a coal mine and in a bauxite mine for
production scheduling (Pendharker, 1997; Vujic et al., 2011).
These studies carried out a procedure based on sensitivity
analysis and shadow prices to determine a reliable production
schedule. 

This paper addresses short-term production planning in
open pit mines in an uncertain environment. The objective is
to provide a set of scenarios that represent the optimistic and
the pessimistic options for short-term planning. Further,

these scenarios enable the mine planner to incorporate some
extra information based on his/her experiences to conduct a
risk-based approach to select a suitable mining schedule. The
optimized plan would present a protective strategy against
unknown or highly uncertain events. For the purpose of this
paper, short-term planning is investigated using a procedure
based on FLP models. As an illustration, the model is applied
in a limestone mine complex.

An FLP model is a form of LP model where some or all of the
parameters are fuzzy numbers. FLP has many applications in
real-world problems, including production planning and
scheduling, transportation, finance, engineering design,
environmental management, and assignment
(Rommelfanger, 1996; Sahinidis, 2004; Ko and Chen, 2014).
This concept can be applied to optimize the mining schedule
and production planning in open pit mines. Consider the
general form of LP models (Equation [1]) where the objective
function’s coefficient (c~), resources (b

~
), and coefficients of

the constraints (A
~
) are all fuzzy numbers (Lie and Hwang,

1992; Wang, 1997; Sakawa, Yano, and Nishizaki, 2013;
Luhandjula, 2014).

[1]

It should be noted that the non-fuzzy version of the
model in Equation [1] should be feasible and an increasing
function of the model parameters. Assume that c~=[c0,c1), and
(b

~
)=[b0,b1)are defined as bounded fuzzy numbers (BFNs).

The lower bounds of these BFNs represent the risk-free
values that are conservative and implementable, and the
upper bounds represent the optimistic values of the
parameters (Figure 2).
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These parameters could also be represented as triangular
fuzzy numbers. The fuzzy interval or the fuzzy membership
function of each parameter must be specified initially. For
this purpose, the decision-maker, according to his
experiences and the mine conditions, specifies a membership
function for each parameter. After formulating the model, a
procedure similar to that presented by Carlsson and
Korhonen (1986) is used to determine the optimum solution
of the FLP model. This procedure is similar to a grid search
algorithm. It provides a set of solutions to the decision-
maker, who can select his/her preferred solution. The
optimum solution of the problem is a trade-off among the
degree of memberships (Lie and Hwang 1992). The full
trade-off exists where the membership degrees of all the
parameters in the model are equal (i.e. = c = A = b and

[0,1]). Therefore, the following equations are obtained, c =
gc ( ), A = gA ( ), b = gb ( )

where gc , gA, and gb are the inverse functions of c, A,
and b respectively. This converts Equation [1] into 
Equation [2].

[2]

This model (Equation [2]) is nonlinear but can easily be
converted into an LP model for any given value of
membership degree (i.e. ). Thus, for any given value of ,
an optimum solution (z*) can be determined. Finally, the
pairs of solutions (i.e. (z*, )) provide a guide for the
decision-makers to determine the suitable strategy. Each pair
of solutions represents the contribution of each mine site to
the run-of-mine. The procedure required to obtain the
optimum solution is as follows:

Step 1: Develop a scheduling model based on FLP models
Step 2: Determine the membership function of each fuzzy

parameter
Step 3: Determine a membership degree or the level of

uncertainty, or start with = 0
Step 4: Assuming a membership degree, convert the

nonlinear model into its LP equivalent, and solve
the LP format of the model

Step 5: Plot the optimized solution of the model against
the membership degree

Step 6: Let + [0,1] and if 1 go to step 7,
else go to step 4

Step 7:  The plot in step 5 shows the relationship between
the optimal schedule and the corresponding
membership degree. 

These steps are summarized in Figure 3. Considering the
optimized solutions and their membership degrees, the
decision-maker will select the optimal solution from among
the calculated solutions. The selected solution indicates the
optimum production plan. 

As shown in Figure 1, the aim of mine planners is to
determine the optimum amount of material that should be
mined from each specific mine site such that the customer (or

the processing plant) is provided with a suitable and
consistent quantity and quality of raw material. Therefore,
the mined material is blended to provide a consistent feed
with the required quality. Objectives are set at strategic and
long-term planning; then the short-term objective chiefly
concerns implementation to achieve those long-term goals.
Short-term plans are normally optimized to achieve high
productivity and full utilization of resources, which in turn
minimizes operating costs. In this paper, the objective
function of the short-term planning model is to minimize the
total mining costs by determining the minimum amount of
material that should be mined from each mine site. This is
obtained through determining the optimal blending plan.

Uncertainty is a problem that all mining operations are
faced with. The most important factors that affect the mining
schedule and are associated with uncertainty are the in-situ
quality of mineable reserves, mining and processing
capacities, mining costs, and commodity price. Mining and
processing recoveries are functions of the chemical, physical,
and mechanical properties of the material at each mine site
and the type of mining operation. To analyse the effect of ore
quality, mining and processing recoveries, and mining cost
uncertainties on the optimum mining schedule and blending
plan, an LP model is formulated (Equation [3]). Considering
the mine characteristics and the requirements of the customer
or the plant, the constraints of the mine planning model are
recognized (Equation [3]). The notation used in the model is
as follow:

N The set of mines in the mining complex
ci The average operating cost at site i
xi The decision variable which is the amount of

material that should be mined from site i
ri The recovery of material from site i
Mc The minimum mining rate
Mi The maximum possible mining rate at site i
PC The feed rate required by the plant or the customer
gi The average grade of economic material at site i
qi,k The average grade of penalty element of impurity

k at site i
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Gmin The minimum acceptable grade of economic
material

Qi,max The maximum acceptable grade of impurity k
K The number of impurities or the penalty elements

The objective function is:

[3a]

subject to:

[3b]

[3c]

[3d]

[3e]

[3f]

[3g]

The objective function of the model (Equation [3a]) is
defined as the minimization of the total mining costs of the
production system. Equation [3b] ensures that the
summation of the mined material is equal to or greater than
the amount required by the plant or customer. Equation [3c]
restricts the mining capacity of each mine site considering a
possible and implementable mining capacity. Equations [3d]
and [3e] are quality control constraints. Equation [3d]
ensures that the total amount of penalty elements in the feed
does not exceed the prescribed upper bounds. For example, in
limestone mining, the presence of dolomite and silica is not
tolerated. These constituents are considered as impurities or
penalty constituents and they are modelled using Equation
[3d]. Equation [3e] ensures that the total amount of
economic material in the feed is always greater than the
prescribed lower bounds. Equation [3f] ensures that the total
amount of the final product produced in the mining complex
is greater than the quantity required by the plant or
customers. Finally, the logical constraints are embedded into
the model as represented by Equation [3g]. 

The FLP model defined in Equation [3] is capable of
determining the optimum blending plan. The symbol ~
indicates the fuzzy parameters in the model, which are
assumed to be BFNs. As stated, for each BFN the lower
bounds represent a possible and risk-free value and the
upper bounds represent an optimistic value. Considering the
fuzzy numbers and their membership functions, the FLP
model in Equation [3] is then converted into a nonlinear
programming model (Equation [4]).

The objective function becomes:

[4a]

subject to:

[4b]

[4c]

[4d]

[4e]

[4f]

[4g]

where y(k,i) = qk,i – Qk,max and i = – gi + Gmin are
substituted in the model to simplify the formulation. The
inverse membership functions of mining costs, grade of
economic material, grade of penalty elements, and ore
recovery are defined by gc(i) ( ), gy( j,i) ( ), gu(i) ( ), and 
gr(i) ( ), respectively. Also, the inverse membership
functions of the right-hand side parameters corresponding to
the quality and quantity constraints in Equations [4d], [4e],
and [4f] are shown as gpe(k) ( ), gue ( ), and gPC ( ) ,
respectively. After formulating the nonlinear model in
Equation [4], steps 3 to 7 described in the previous section
should be carried out to convert the model into a linear one
and to obtain the optimum mining schedule and
blending plan.

The model (Equation [4]) was applied to a limestone mine
complex in Iran. The mine is located in Semnan province
about 230 km east of Tehran (Figure 4A). There are five
distinct mining areas in the complex and the quantity and
quality of the mineable limestone in each mine is different. In
these mines, the limestone and dolomite beds are
accompanied by cherty lenses. The limestone beds are
Triassic light-gray, regular bedded limestone. The limestone
bed is located beneath a siliceous or cherty limestone. This
formation is covered by a dark-coloured basaltic and some
ferruginous layers. The beds have a dip of 50 to 65 degrees
(Figure 4B) and the thickness the of limestone layers varies
from 30 to 65 m. 

According to the long-term plan, the amount of mineable
reserve in each mine is determined. For the purpose of short-
term planning (within a one-month horizon), it is also
assumed that the entire amount of materials scheduled is
mineable within the short time periods. The limestone is
supplied to a soda ash plant for the  production of sodium
carbonate, which has many uses in industrial processes. The
quality control (QC) office of the plant specifies the required
quality of the feed. The grade of CaCO3 in the feed should be
more than 93.5%, and the grades of MgCO3 and SiO2 should
be less than 3.5% and 3% respectively. 

Application of fuzzy linear programming for short-term planning
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According to the data gathered from the mine sites during
the year 2014, the characteristics of the limestone mined
from each mine site are modelled as BFNs. As the lower
bound of each BFN represents a possible and implementable
value, the minimum value of the gathered data is selected as
the lower bound. In case of positive parameters, such as ore
grade (the percentage of CaCO3), the upper bound is selected
as the expected grade of the gathered data. However, in case
of negative parameters such as the grade of penalty elements
(the percentage of SiO2 and MgCO3) the opposite applies (Table I).

The other parameter that governs the scheduling of the
mine is the possible production capacities of each mine site.
In this case, the lower bound of fuzzy representation
indicates the current mining capacity of each site. These
values are determined based on local factors, including pit
geometry and the thickness of limestone beds. The upper
bound is an optimistic possible mining rate for each site. This
value is determined based on the maximum mining rate that
was reported from each mine site during the year 2014, as
shown in Table I. 

Application of fuzzy linear programming for short-term planning
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The plant requires limestone with a size distribution of 5–
12 mm. The overall recovery of the material in the crushing
unit depends on the mining operation itself and the
mechanical characteristics of the limestone from each mine.
After blasting, the blasted material is moved to a loading area
by dozers and then loaded onto trucks by excavators. The
material is hauled from each mine site to a crushing and
blending unit. The fragmentation of the limestone feed to the
plant from each mine site is a function of blasting and dozing
operations. The relative location of each mine site with
respect to the crushing and blending unit is shown in Figure
5. According to the data and experience of the mining crew,
the overall recovery of the limestone mined from each mine
site is also modelled using BFNs (Table I). 

The crushed material with the prescribed size distribution
is fed into the soda ash plant. The current capacity of the
plant is 1500 t of crushed limestone per day, and the nominal
quality required by the plant is given in Table II. This data is
fuzzified considering a deviation of 1% for the ore grade and
2% for the penalty elements from the nominal quality
requirements.

After fuzzification of the planning parameters, the model
in Equation [4] is applied to determine the mining schedule
and the blending plan for the mining system. The steps
described in Figure 3 are applied to solve the planning model.
The procedure was programmed in MatLab and was solved
using the Simplex method.

The membership degrees of the planning parameters are
varied from risk-free or conservative values to optimistic
values. Following the steps described in Figure 3, the
optimum pairs of solutions are obtained. Each pair defines a
scheduling scenario for the mine for each particular degree of
membership. According to the results (Table III), as the
membership degree of the planning parameters increases (i.e.

it changes from optimistic values to risk-free values), the
mines should exploit and process more material in order to
fulfil the predetermined goals on limestone quality and
quantity. The plant requires 45 000 t of crushed limestone
monthly (equals 1500 t/d). As stated earlier, BFNs are used
to represent the uncertainty of the planning parameters,
where the lower and upper bounds define the conservative
and optimistic values of each parameter. Considering the
concept of BFNs, one could define the optimistic and
conservative strategies for mine scheduling. In Table III, the
schedule corresponding to a membership degree of 100% is
regarded as the conservative schedule, and that with a
membership degree of zero as the optimistic schedule. When
the membership degree of the planning parameters decreases,
it means that the optimistic values of the parameters are
considered in the model and the results are optimistic as well.

According to the results, Mine 2, Mine 3, and Mine 4 are
operating at their maximum nominal production rates in all
the cases. When the inherited positive error of the planning
parameters increases (i.e. the membership degree of the
parameters decreases), the value of these parameters tends to
improve to the optimistic values, then the production rate at
Mine 5 decreases as shown in Figure 6. According to the
results, Mine 5 should produce 30 708 t and 18 629 t of
limestone per month based on the conservative and the
optimistic mining schedules, respectively. Considering the
reserve characteristics at each mine site (Table I), the reserve
of Mine 1 is low in quality compared to the others, and
according to the results, mining should be halted at this site.
However, the costs at Mine 1 and Mine 2 are low compared to
the other mines and the model tends to exploit from these
sites to decrease the total mining costs. The amount of
material mined from these two sites is controlled by the
blending requirements. In other words, the limestone
available at Mine 1 and Mine 2 is a balancing reserve for the
production system in order to obtain the required output and
to lower the mining costs. 

By analysing the results and the given scheduling
scenarios, the mine planner is able to determine the best
mining schedule. Based on the experiences in this mine, and
considering the selected membership degree, which indicates
the strategy of the decision-maker, the mining schedule is
selected from among the generated scenarios. According to
Table III, selection of a membership degree of 20% for the
planning parameters indicates that the mine planner is
somewhat optimistic (80%) about the mine condition. At
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20%, the optimum mining schedule for the system is to
produce 71 218 t of limestone per month. This is a decrease
of 10% in the total mining rate compared with the most
conservative case. This will decrease the total mining costs by
18% (Figure 7A). This is true for the rest of the cases as well. 

The results show that the operation should produce less
limestone when the mine planner is optimistic about the

precise value of the planning parameters. This will reduce the
total amount of mined material by about 12% compared to
the case where the planning parameters are determined
conservatively (Figure 7B). The difference in total mining
costs between the optimistic and the conservative schedules
is about 22% (Figure 7A). This shows that there is a chance
of a considerable saving in costs.

Application of fuzzy linear programming for short-term planning
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The blending plan could be analysed based on the
reliability of the production system. From a reliability point of
view, as shown in Figure 7, in the conservative mining
schedule the mine system must produce extra limestone in
order to increase the probability of obtaining the required
quality. To check the validity of this statement, a Monte Carlo
simulation was conducted on the conservative and optimistic
schedules. For this purpose, a beta distribution function was
fitted to the data. The general form of a beta distribution
function (i.e. f(x, , )) is as follows:

where  and  are the shape parameters of the beta
distribution, and is a normalization constant to ensure that
the total probability integrates to unity. 

The simulation results provide the distribution function of
the conservative and the optimistic schedules with respect to
CaCO3, MgCO3, and SiO2 variations. If the grade of the mined
material is not within the predetermined range, it is defined
as failure for the mine schedule. The distribution functions
are used to predict the reliability function of the conservative
and the optimistic scenarios as shown in Figure 8. Here,
reliability of quality (RQ) is defined as the probability that the
average grade of the mined limestone is within the range
dictated by the QC as represented by Equation [5]. 

[5]

where g represents the minimum grade required by the
quality control, G is the average grade of the mined
limestone, and UB is the upper bound of the beta distribution
function. 

According to the results, the likelihood of attaining the
required quality by implementing the optimistic and the
conservative schedules is about 88%, and the probability of
failure is 12% in both cases. This means that there is no
bottleneck on attaining the required quality. In the next step,
the plans are analysed to evaluate the overall tonnage of
material produced by the plant. The reliability of tonnage
(RT) is defined as the probability that the tonnage of the
crushed and sized limestone is within the range dictated by
the quality control as represented by Equation [6]. 

[6]

where t represents the tonnage required by the plant (in
this case t is equal to 45 000 t/month), T is the tonnage of
mined limestone, and UB is the upper bound of the beta
distribution function. 

The reliability in this case is a function of recovery in the
plant. The result shows that the reliability of the conservative
schedule is 100% and the reliability of the optimistic schedule
is almost zero, as shown in Figure 9. Based on the results,
the conservative option is the most reliable schedule.
However, decision-making about the scheduling option
depends on the utility function of the decision-maker and
his/her knowledge and experience at the mine site. 

A mine production-scheduling model based on fuzzy linear
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programming has been developed and applied to optimize the
mining schedule and blending plan in the presence of
uncertainty. Fuzzy linear programming is a useful tool for
modelling and optimizing mine production planning. Due to
the fact that at the time of mine planning the precise values
of all input data are not known in advance, the uncertainty of
the input parameters (or simply planning parameters) should
be considered in any mine planning optimization. The input
data was fuzzified (into bounded fuzzy numbers) according
to the data gathered from the mine during the year 2014. In
addition, the ‘right-hand side’ values of the constraints were
fuzzified with a deviation of 2% from the nominal values. 

The procedure presented is capable of determining
variable scenarios for the mining schedule. Therefore the
mine planner, considering a degree of preciseness and
optimism about the planning parameters, will be able to
select the optimum mining schedule from among the
presented options. Introducing uncertainty into the
production planning model has increased the total amount of
material that should be mined. This means that the mining
operation pays for the cost of uncertainty by excess
production. Mining and processing extra material would
increase the reliability of the mining operation (Figure 9). In
case of full uncertainty (the conservative option), the mine
system should produce about 78 708 t of limestone in each
month in order to satisfy the quality and quantity
requirements of the blending plant. In the optimistic case,
however, the operation should be producing about 69 629
t/month, which is 12% less than the conservative option. 
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