
Production planning for open pit mines is a
complex and significant problem that has been
investigated by many researchers. The
planning process usually starts with the
construction of a geological block model,
which comprises the set of imaginary regular
blocks that covers the ore deposit and
surrounding host rock. A set of attributes such
as grade, specific gravity, and coordinate is
then assigned to or estimated for each of these
blocks using drill-hole sample data. Geological
attributes are combined with technical and
economic parameters in the next stage to
determine the monetary value of each block
and construct the economic block model,
which provides the basic input for the
production planning problem.

Generally, production planning for an open
pit mine entails finding the sequence of blocks
for the optimal annual schedules in a way that
leads to the highest net present value (NPV) of
the project cash flows, while meeting the
technical constraints such as mining capacity,
processing capacity, sequencing, and pit slope
(Dagdelen, 2001).

Long-term production planning could be
categorized into two major classes, of
deterministic and stochastic-based approaches.
Deterministic open pit production planning has

been studied since 1968 (Johnson, 1968) and,
conventionally, several methodologies have
been developed, such as integer
programming(Caccetta and Hill, 2003;
Dagdelen and Johnson, 1986), mixed integer
programming (Boland et al., 2009; Elkington
and Durham, 2011), dynamic programming
(Wang and Sevim, 1992), and meta-heuristic
approaches such as the genetic algorithm
(Denby and Schofield, 1994), particle swarm
algorithm (Khan and Niemann-Delius, 2014),
and ant colony algorithm (Sattarvand and
Niemann-Delius, 2009; Shishvan and
Sattarvand, 2015). The fundamental and
significant drawback of these approaches is
the assumptions about input parameters.
Assuming exactly known (deterministic)
parameters, unlike reality in which a
significant degree of uncertainty is associated
with these parameters, may lead to unrealistic
and incorrect production planning (Abdel
Sabour and Poulin, 2010; Dimitrakopoulos,
Farrelly, and Godoy, 2002; Marcotte and
Caron, 2013).

Unlike the conventional deterministic mine
design process, which is usually implemented
based on deterministic input parameters,
stochastic planning of open pit mines
considers uncertainty in input parameters.
This approach has attracted research during
the last decade and several methods have been
developed, which can be divided into three
main categories: mathematical-based,
heuristic, and meta-heuristic approaches.
Mathematical formulations using linear
programming (Dimitrakopoulos, Farrelly, and
Godoy, 2002), integer linear programming
(Dimitrakopoulos and Ramazan, 2008;
Kumral, 2010; Marcotte and Caron, 2013;
Moosavi et al., 2014) or maximum flow (Asad
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and Dimitrakopoulos, 2012; Asad, Dimitrakopoulos, and van
Eldert, 2014; Chatterjee et al., 2016) have been developed to
solve stochastic problems. The maximum upside potential /
minimum downside risk method (Dimitrakopoulos, Martinez,
and Ramazan, 2007) is predominant among the heuristic
techniques.  Genetic algorithms (Denby and Schofield, 1995),
simulated annealing (Albor Consuegra and Dimitrakopoulos,
2009), Tabu search (Lamghari and Dimitrakopoulos, 2012),
and ant colony algorithm (Gilani and Sattarvand, 2016)
meta-heuristic approaches have also been reported to be
successfully applied. The majority of research has been
focused on incorporation of metal grade uncertainty.
Investigation into commodity price uncertainty seems to be in
need of further development.

In this paper we propose an efficient solution
methodology based on the imperialist competitive algorithm
(ICA) to solve real-scale planning problems that are present
due to commodity price uncertainty. The procedure has the
capability to simultaneously optimize the ultimate pit limit
(UPL) and production scheduling.

A review of price fluctuations of raw minerals shows that the
prices of mining products are highly volatile. For example, as
illustrated in Figure 1, the price of copper has been highly
volatile during the past 30 years (Indexmundi, 2018), with
variations of approximately 200% from 2004 to 2011.
Commodity price uncertainty clearly plays an important role
in production planning, as constant-price-based planning
would lead to an unrealistic answer, increasing the
investment risk and the risk due to economic downturns.

Uncertainty in metal prices in future arises because of
two main factors:

1. The lack of exact knowledge of factors leading to the
increase/decrease in metal supply and demand

2. The practices of producers or consumers in the face of
powerful speculative and political motives (Macavoy,
1988).

Forecasting is the process of making statements about
events whose actual outcomes have not yet been observed. It
is the prediction of future events and is often based on past
experiences. The accuracy of predictions of input
assumptions is a key factor for success of the procedure.

Several forecasting approaches have been developed to
date that could be utilized to simulate future price

fluctuations. Using stochastic processes is a popular
commodity price forecasting method. A stochastic process
changes a variable over time in a random way, such as in a
Wiener process. A Wiener process is a continuous-time
stochastic process with three important properties. Firstly, it
is a Markov process. This means that the probability
distribution of all future values of the process depends only
on its current value and is unaffected by past values of the
process or by any other current information. Secondly, a
Wiener process has independent increments. This means that
the probability distribution for the change in the process over
any time interval is independent of any other time interval.
Finally, changes in the process over any finite interval of time
are normally distributed, with a variance that increases
linearly with the time interval. The most commonly used
stochastic processes are the geometric Brownian motion
(GBM) and the mean reverting process (MRP) (Dixit and
Pindyck, 1994). Generally, the MRP is appropriate for
modelling variables that have a long-term equilibrium level,
such as metal prices (Schwartz, 1997). The logic behind a
MRP derives from microeconomics: when prices are
depressed (or below their long-term mean level), the demand
for the product tends to increase while production tends to
decrease. The opposite will occur if prices are high (or above
the long-term mean) (Pindyck and Rubinfeld, 1998). The
simplest form of MRP is the one-factor Ornstein-Uhlenbeck
process, which is defined by:

[1]

where xt is the variable, the mean reversion speed, x- is the
long-term average to which xt reverts, the volatility of
process, and dzt is the standard Wiener process (Dixit and
Pindyck, 1994). The natural logarithm of the variable is used
since in the case of commodities it is generally assumed that
these prices have a lognormal distribution. Under this
condition, Schwartz (1997) proposed the commodity price (S)
follows the mean reversion process, as:

[2]

where S– is the long-term mean price.

The uncertainties in input parameters could be divided into
those that arise from the nature of the variables and those
that are too expensive to be defined. For example, metal
grade of the orebody is a variable whose uncertainty would
be diminished by extension of the exploratory studies, which
requires time and money (Abdel Sabour, Dimitrakopoulos,
and Kumral, 2008). In contrast, commodity price is a variable
where uncertainty arises from a number of factors and exact
forecasting is not possible for future years. From an economic
point of view, uncertain future commodity prices have a
critical influence on mine project evaluation (Asad and
Dimitrakopoulos, 2013; Haque, Topal, and Lilford, 2014).

Open pit production planning under commodity price
uncertainty may be effectively modelled as a stochastic
integer programming (SIP) formulation with the objective of
NPV maximization subject to a set of technical and
operational constrains. It can be expressed as follows:
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[3]

where:

T: Number of time periods
N: Number of mine blocks
R total number of price realizations for each year of the

mine life
pr: Probability of realization r
vrtn: Economic value of a block n in period t and realization r
xtn: Binary decision variables of the model (xtn=1 if block n

is mined in time period t, otherwise xtn=0)
d: Annual discount rate.

The economic value of a block equals the difference
between revenue earned from selling the commodity
(mineral) content of that block and the total costs involved in
its mining and processing. For example, for a copper mine,
the economic value of block n is calculated as follows:

[4]

[5]

The described objective function is subject to the
following constraints.

Mining capacity constraints: Total tonnage of extracted
material should be between a pre-determined upper and
lower limit for each scheduling period.

[6]

where

Wn:  Tonnage of block n
MCmax

t    , MCmin
t   :  Maximum and minimum acceptable mining

capacity for period t.
Processing capacity constraints: Quantity of ore

production should satisfy processing capacity limitations:

[7]

where
Orn: Tonnage of ore block n in realization r. If the block
economic value is greater than zero (vn>0), it will be
considered as ore
PCmax

t , PCmin
t : Maximum and minimum tolerable processing

capacity for period t.
Reserve constraint: This constraint is mathematically

necessary to ensure that a block is mined only once in the
model.

[8]

Sequencing constraints: The sequencing constraints
ensure that a block can be removed only if all overlying
blocks have been removed earlier periods or are considered
for the same period, t.

[9]

where A is the set of pairs (i, j) of blocks such that block j is

a key block to block i and must be removed before block i can
be mined.

The fundamental and significant drawback of this
approach is the high computational cost when applied to real-
world problems. In most cases, the block model contains
thousands to millions of blocks that make up a SIP model
with millions of integer variables and constraints, which can
be extremely difficult or expensive to solve. Investigation
using a higher class of heuristics, called meta-heuristics, has
been of interest recently. A meta-heuristic is a set of
algorithmic concepts that can enhance the applicability of
heuristic methods to difficult problems. These concepts are
usually inspired by biology and nature. The use of meta-
heuristic methods has significantly increased the ability to
find very high-quality solutions for hard combinatorial
problems in a reasonable computation time (Dorigo, Birattari,
and Stützle, 2006). 

Imperialism is the strategy of expanding the power and scope
of rule of government beyond its own boundaries through
any type of domination, such as direct rule or by less obvious
instruments such as cultural influence, market control, or
control of energy and other important commodities. The
imperialist competitive algorithm (ICA) is a novel population-
based meta-heuristic algorithm proposed by Atashpaz-
Gargari and Lucas (2007), mimicking the socio-political
process of imperialism and imperialistic competition as a
source of inspiration (Khabbazi, Atashpaz-Gargari, and
Lucas, 2009). The algorithm’s capability in dealing with
different types of optimization problems has been proven by
the authors (Atashpaz-Gargari and Lucas, 2007). Similar to
any evolutionary algorithm, ICA also starts with an initial
population of solutions, called countries, representing the
concept of nations. Based on the quality of the objective
function in each solution, some of the best countries in the
population are chosen to be the ‘imperialists’ and the rest are
assumed to be the ‘colonies’ of those imperialists. A set of
one imperialist and its colonies is called an ‘empire’
(Shokrollahpour, Zandieh, and Dorri, 2011). Over time,
imperialists try to extend their own characteristics to the
governing colonies; however, it is not a tightly controlled
procedure and ‘revolutions’ may happen in each country.
Countries can also leave an empire and migrate to another if
they see a better chance of promotion there. Within each
empire the position of imperialist could be altered too.
Iteratively, the algorithm evolves towards better countries
and empires. ICA has been used extensively to solve different
kinds of optimization problems. For example, this method is
used for stock market forecasting (Sadaei et al., 2016),
digital filter design (Sharifi and Mojallali, 2015), travelling
salesman problems (Ardalan et al., 2015), multi-objective
optimization (Maroufmashat, Sayedin, and Khavas, 2014),
integrated product mix-outsourcing problems (Nazari-
Shirkouhi et al., 2010), and scheduling problems
(Behnamian and Zandieh, 2011, Lian et al., 2012).

The following sections describe the practical
implementation of ICA in open pit mine production planning.
The flow chart of the proposed procedure is illustrated in
Figure 2.
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The main purpose of optimization is to find an optimal
solution; each solution in this algorithm is called a ‘country’.
In an n-dimensional optimization problem, a country is an
n×1 array as follow:

[10]

where pis are decision variables whose values need to be
determined in order to maximize or minimize the objective
function. The decision variables of an open pit mine
production planning problem are the extraction time of the
blocks in the economic block model, and the objective is to
maximize the NPV of the project. 

To start the optimization algorithm, an initial population
is generated containing Npop solutions (mine schedules),
among which Nimp of the most powerful solutions (according
to their NPVs) are selected as ‘imperialists’. The rest of the
population members (Ncol = Npop - Nimp) will be the colonies
of the chosen empires. To form the primary empires, colonies
are randomly divided among the imperialists based on their
power as the higher the power of an empire, the more
colonies belong it. To proportionally distribute the colonies
among imperialists, the normalized cost of the nth imperialist
is defined as:

[11]

where cn and Cn are the cost and the normalized cost of nth

imperialist respectively. The objective of ICA is set to
minimize the sum of the cost function value of all countries.

To convert the production planning problem from
maximization to minimization, the negative value of the NPV
is used as the cost function.

[12]

Hence the normalized power of each imperialist can be
determined as below:

[13]

The normalized power of an imperialist indicates the
number of colonies that should be probably controlled by that
imperialist. Thus, the initial number of colonies of an empire
will be as follows:

[14]

where ColEmpn is the initial number of the colonies of the nth

empire; those are chosen randomly from the whole colony
population. Each imperialist together with its colonies will
form an empire.

The goal of an assimilation policy is to improve the properties
of the colonies. This policy is implemented by moving all the
colonies toward their corresponding imperialist. The colonies
will approach the imperialist along different socio-political
axes such as culture, language, etc. As shown in Figure 3,
the assimilating operator for the open pit mine production
planning problem follows the steps below:

� Create the country array with the size equal to the
number of blocks in the block model of the mine. The
value of the cell n in array is equal to unity if block n is
mined (the coloured blocks in Figure 3), and equal to
zero otherwise

� Select a sub-array randomly in the imperialist array
(for example, cells 5 to 11)

� Copy the imperialist sub-array to the colony array.

There is not an explicit mechanism for constraint handling in
ICA. Considering the special structure of constraints involved
in the production scheduling of an open pit mine, the
following two constraint handling techniques may be used. 

Usually, the assimilated colony (Figure 3) does not result in a
feasible pit shape with acceptable slope angles and block
precedency. A feasible pit generation procedure is called

�
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normalization. Consequently, normalization is required to
satisfy any sequencing constraints (Equation [9]), as shown
in Figure 4. 

To deal with violations of mining and processing capacity
constraints a constant penalty method has been used. The
objective function (Equation [5]) can be written as follows:

[15]

where

Pt
M-, Pt

M+: Represent the discounted unit costs (penalty) for
a shortage or surplus in the total weight of rock
mined in period t, respectively

Mrt
–, Mrt

+   : Denote the shortage or surplus in the amount of
rock mined during period t if scenario r occurs,
respectively

Pt
O-, Pt

O+:   Represent the discounted unit costs (penalty) for
a shortage or surplus in the ore produced in
period t, respectively

Ort–, Ort
+ :     Represent the shortage or excess amount of ore

produced in period t if scenario r occurs,
respectively.

While the assimilation process is responsible for
intensification, a revolution mechanism diversifies ICA to
explore new regions. The revolution mechanism prevents the
algorithm from being trapped in local optima. It is only
applied to colonies, and imperialists remain untouched
(Mortazavi, Khamseh, and Naderi, 2015). For this purpose,
the weakest colony (production plans with the lowest NPV) in
each iteration is selected and replaced with a new one,
randomly.

When moving toward the imperialist, a colony might reach a
position with a lower cost function than that of its imperialist.
In this condition, the positions of the imperialist and colony
are swapped. Afterwards, the algorithm continues using the
new imperialist, and colonies move towards the new leader of
the empire.

The total power of an empire is mainly based on the power of
its imperialist country; however, the powers of its individual
colonies have also an effect, albeit relatively insignificant.
Therefore, the total cost of an empire is described as:

[16]

where TC is the total cost of the nth empire and is a positive
number which is considered to be less than unity. A small
value of causes the total power of the empire to be
determined by mainly the imperialist, and a larger value will
increase the role of the colonies in determining the total
power of the empire.

In general, empires try to take possession of colonies of the
other empires and control them. Through this process, the
power of weaker empires will decrease and that of the more
powerful ones will increase. This competition is modelled by
choosing one of the weakest colonies of the weakest empire
and creating competition among all empires to possess this
colony. Each of the empires (based on its total power) will
have a chance to taking ownership of the mentioned colony.
In other words, a colony has no certainty of belonging to the
most powerful empire; however, the more powerful empires
will be more likely to possess it. The possession probability of
each empire is proportional to its total power. The normalized
total cost of each empire is determined as:

[17]

where TCn and NTCn are respectively the total cost and
normalized total cost of the nth empire. Now the possession
probability of each empire can be given by:

[18]

To divide the mentioned colonies among empires based
on the possession probability of them, vector P, is formed as
follows:

[19]

Then, the vector R with the same size as P whose
elements are uniformly distributed random numbers between
0 and 1, is created.

[20]

Then, vector D is formed by subtracting R from P.

[21]

Referring to vector D, the mentioned colonies in an
empire whose corresponding index in D is maximum will win
the possession competition (Atashpaz-Gargari and Lucas,
2007).
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Powerless empires will collapse in imperialistic competition
and their colonies will be distributed among other empires. In
modelling the collapse mechanism, different factors can be
defined to consider an empire as powerless. In the current
study, an empire collapses when it loses all of its colonies.

The algorithm continues until no iteration is remaining or
just one empire exists in the world.

A three-dimensional numerical example was used for
examination of the proposed methodology. It consists of a
copper deposit with geological block model containing 36 720
blocks that are 15×15×15 m and with a pit slope angle of 45°
along all azimuths. Mining will be operated for 5 years and
the maximum and minimum mining capacities are 21.04 and
16.82 Mt/a respectively. The maximum and minimum
processing capacities are considered to be 16.05 and 9.63
Mt/a respectively and the discount rate is assumed to be
10%. Table I displays the technical and economic parameters
required for the construction of the economic block model.
Equation [2] was used for forecasting of future copper price,
which was simulated for the next 5 years in 20 realizations
(Figure 5). The proposed procedure for applying ICA to a
production planning problem in open pit mines has been
implemented using the C++ programming language.

The most common performance measure of algorithms
that is used in the literature is the relative percentage
deviation (RPD). The performance measure for this study has
been calculated as follows: 

[22]

where ICAbest and Math are respectively the best solutions
generated by ICA and the optimal mathematical solution.

A hypothetical examination was conducted to test the
performance of ICA in an open pit mine production planning

problem. Different levels for various control factors ( ,
number of countries, and number of imperialists) were used
in the optimization and are shown in Figure 6. The small RPD
show the effectiveness of ICA in mine production planning.
Hence, ICA was used for long-term production planning of a
real-world copper mine, based on copper price realizations for
the next 5 years. Figure 7 shows north-south and east-west
sections of the production planning using the ICA approach.

�
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Mill recovery rate 80%
Mill concentrate grade 28%
Smelting loss (kg/t) 10
Refining loss (kg/t) 5
Mining cost ($/t) 1.5
Milling cost ($/t) 5.5
General and administration cost ($/t) 0.5
Amortization and depreciation cost ($/t) 0.8
Transport cost of mill concentrate to the smelter ($/t) 30
Smelting cost ($/t) 92
Transport cost of the blister copper to the refinery ($/t) 2
Refining cost ($/t) 184
Selling and delivery cost ($/t) 0.01
General plant cost ($/kg) 0.01



In order to compare the new ICA approach with stochastic
integer programming methods (SIP), production planning
was also performed by SIP. Table II compares the SIP and ICA
approaches. It shows the CPU time of the ICA approach
equals 8446 seconds, which is less than for the SIP method,
and the small RPD shows the effectiveness of ICA in
stochastic production planning of a real-world mine. All the
numerical experiments were completed on an AMD Athlon
(2.01 GHz) and 2.5 GB RAM running Windows 7.

Open pit mine production scheduling is difficult as there are a
large number of blocks, with the future economic value of the
blocks unknown at the time decisions are made. This results
in a large-scale stochastic optimization problem. In this work,
we proposed a meta-heuristic method based on an imperialist
competitive algorithm to solve an important real-world
problem that arises in surface mine planning, namely open
pit mine production planning with commodity price
uncertainty. The approach has been tested on a copper mine.
By comparing ICA with the more commonly used stochastic
integer programming method, it was shown that the proposed
ICA method can produce good quality robust solutions with
low RPD and CPU time for mine stochastic production
planning.
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