
In the geological modelling of the laterite-type
deposits, the exploration boreholes may be
sparsely spaced for two major reasons: (1) the
attributed grades do not tend to vary
significantly across the deposit; (2) the overall
exploration costs must be minimized.
However, since the geological contact between
the ore and underlying waste unit fluctuates in
a rather complex manner, one should not rely
solely on the interpolation of the sparsely-
spaced borehole data, as the estimates would
not reflect the actual variability in the surface.
Therefore, it is imperative that the sparsely-
spaced borehole data be supplemented with
appropriate geophysical information for more
accurate resource estimations (Erten et al.,
2015, 2013). Ground-penetrating radar (GPR)
has widely been used to acquire a

complementary dense data-set to better
delineate the interface between two geological
units (bauxite/ferricrete) (Francke and Nobes
2000; Francke and Parkinson 2000; Watts
1997). Due to the tropical weathering and
leaching mechanisms that generate laterite-
type deposits, the geological interface
measured through GPR appears to be well
correlated with the easting (X) and northing
(Y) coordinates of the surface, which indicates
the presence of a spatial trend (McLennan,
Ortiz, and Deutch, 2006; Leuangthong, Lyall,
and Deutsch, 2002). Geostatistical techniques
are the main tools which are used to estimate
the elevation of the interface at non-sampled
locations, and there are different approaches
used to account for the trend in a data-set. In
this paper, we estimate the elevation of the
geological interface through ordinary kriging
(OK), universal kriging (UK), intrinsic random
function of order k (RF-k) methods and
compare the estimation performances. 

Geostatistical techniques are based on the
theory of regionalized variables (RVs) and are
used to estimate an attribute of interest at
non-sampled locations (Goovaerts, 1997;
Journel and Huijbregts, 1978). The idea
behind the theory is that a RV z(u ),{ +1,...,n}
is considered to be the realization of an order-
two random function (RF) Z(u) and is
assumed to have been generated according to
a probability density function (Matheron,
1971; Olea, 1974). Due to this characteristic of
the RV, there is a spatial correlation between
the samples, which allows the prediction of
Z*(u) at each non-sampled location u. The
prediction of Z*(u) requires the covariance
function C(h) of Z(u) to be known, and this
statistical inference can practically be made
from an available realization if the realization
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exhibits stationary characteristics. If there is a trend in the
realization/data-set and the realization exhibits
nonstationary characteristics, the change in the value of RV
is no longer dependent on the lag distance h, but is also
dependent on the location of the RV. In the case of a
nonstationarity, there are basically two geostatistical methods
to account for the trend in the data-set: universal kriging and
intrinsic random function of order k (IRF-k). These two
methods differ in the way they detect the trend and the type
of structural function used to describe the spatial
relationship.

In order to estimate the value of an attribute at a non-
sampled location, the kriging algorithm requires the
computation of a system of equations with a known
variogram (h). The problem with UK arises when the
underlying variogram or covariance function is not known. In
UK, the RF Z(u) is comprised of a trend m(u) and a residual
R(u) component. The variogram of residuals can be used to
calculate the underlying variogram, but this requires the
determination of the trend component m*(u). Calculation of
m*(u), on the other hand, requires the variogram to be
known. One solution to this circular problem is refining both
the variogram and the trend estimates iteratively, as
mentioned in Neuman and Jacobson (1984). However, it has
some associated drawbacks, such as underestimation of the
underlying variogram and extreme difficulties in determining
the degree of trend or the underlying variogram from the
residuals (Armstrong, 1984; Cressie, 1993). Another solution
to these problems exists if there is a particular direction or
subzone where there is a sub-stationary zone in a
nonstationary data-set. Journel and Rossi (1989) proposed
that experimental variograms inferred in these directions or
subzones can be used to estimate the trend optimally. Chilès
(1976) gives an example of such practice assuming an
isotropic variogram model computed from the sample
variogram in stationary directions or subzones.

IRF-k was introduced by Matheron (1973) due to the
practical difficulties in the application of the UK approach. It
basically decomposes the trend and covariance structure
through increments of a sufficient order to filter out the trend
and to achieve stationarity (Chiles and Delfiner, 2012). The
kriging system of the IRF-k method is identical to the UK
method except that the variogram employed in UK is replaced
by the generalized covariance (GC) in the IRF-k method.
Contrary to UK, where the trend is required to be estimated
beforehand as a linear combination of known, linearly
independent functions to obtain the stationary residuals,
nonstationarity in IRF-k is accounted for through the
calculation of the GC. The advantage of using GC is that it has
wider class of admissible functions compared to the
variogram and the automatic detection of the parameters of
GC makes the application easier (Delhomme, 1978). On the
other hand, the use of GC creates some hurdles in practical
modelling since the method requires identification of the
order k and it is difficult to interpret the GC (Cressie, 1993).
Both UK and IRF-k methods have advantages and
disadvantages and as a result, the choice between the two
methods is based heavily on the practical difficulties of fitting
functions (Buttafuoco and Castrignano, 2005). Christensen
(1990) states that the IRF-k and UK are identical provided
that the GC is identified correctly.

UK, IRF-k, and OK have been compared in several
publications. Journel and Rossi (1989) compared OK and UK
in a case study in which they regionalized seam thickness
and coal quality variables. The results indicated that the OK
and UK methods gave similar results. It was also concluded
that any kriging algorithm with moving data windows is
equal to considering a nonstationary random function model
with a mean re-estimated at each new location. Similarly,
Zimmerman et al. (1999) compared the performances of four
interpolation algorithms, two of which were OK and UK. They
stated that although UK was expected to outperform OK in
situations where trends exist, OK performed slightly better
than UK. Odeh, McBratney, and Chittleborough (1994)
modelled soil variables by using different interpolation
methods, and stated that OK was the most inferior of all the
methods implemented, including UK. Odeh, McBratney, and
Slater (1997) compared the performance of several prediction
models, including OK and IRF-k, in prediction of soil
parameters. The IRF-k method performed slightly better than
OK. It is therefore apparent that the performance ranking of
UK, IRF-k, and OK algorithms varies between different
investigations.

The objective of this study is to predict the variability in
elevation of the base of the ore unit and compare the
performance of different kriging estimators using densely
sampled GPR data. The contribution of this paper is the
implementation of, and comparison of, the performance of,
different kriging algorithms in the case of a bauxite laterite
deposit. This was mainly done in order to ascertain which
kriging algorithm is more suitable for bauxite base elevation
data with a spatial trend. Since GPR data represents the
elevation of an interface surface, nonstationarity was
intuitively expected. This was also confirmed by the
omnidirectional variograms computed in the initial data
analysis. The omnidirectional variograms revealed the
existence of nonstationarity in the prediction data-set,
requiring handling of the trend by UK and IRF-k methods.
Therefore, these methods were employed to account for the
spatial trend in the data-set along with the OK algorithm,
which considers the spatial trend to be constant. In order to
evaluate the performances of each kriging algorithm, GPR
data representing the elevation was resampled to form
validation and prediction data-sets. The validation data-set
was used to assess the performance of the UK, IRF-k, and OK
estimators. 

The RF can be represented by the following model:

[1]

where m(u) represents the trend component and R(u)
represents the random part having a covariance function in
two-dimensional space u=(x,y). The covariance C(h) is
defined as the following:

[2]

where h is the lag distance. Considering the second-order
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stationarity assumption, R(u) is assumed to have a zero
mean value and the trend m(u) is assumed to be constant
(Oliver and Webster, 2015). Hence, C(h) is equal to:

[3]

In situations where the mean is not constant, the
covariance cannot exist. In these cases, the assumption of
stationarity is weakened to the one called intrinsic
stationarity (Matheron, 1963), where the expected
differences E[Z(u+h)–Z(u)]are equal to zero and the
covariance of the random part, which is used to measure the
spatial relations of the residuals, is replaced by the variance
of the differences:

[4]

where (h) represents the variogram at lag h. The following
relationship between the variogram (h) and covariance C(h)
function exists for a RF which is second-order stationary:

[5]

where C(0) represents the variance 2 of the RF. 

In OK, the RV is estimated at an unsampled location u as a
linear combination of available neighbouring data
{z(u ), =1,...,n} (Goovaerts, 2000). 

[6]

As with all kriging algorithms, the objective of OK is to
minimize the estimation variance as well as ensure the
unbiasedness of the estimator. OK weights (u) are
determined to satisfy this unbiasedness and minimized
variance goals. The following OK system is used to obtain the
kriging weights:

[7]

where (u) represents the Lagrange parameter used to
minimize the variance. The only information needed for the
OK system is the variogram value corresponding to every lag
distance h. The kriging variance of OK is calculated by:

[8]

In UK, the trend component is modelled as a smoothly
varying deterministic function of u and is expressed as:

[9]

where m(u) represents the local mean, l , the unknown
coefficients of the trend function, and fl(u) represent the
known functions of the coordinates u and are called trial or

base functions (Kitanidis, 1997; Rossi and Deutsch, 2014).
The residual component R(u) is modelled as a second-order
stationary RF with a zero-mean, E[Z(u)]=0. Combining the
trend and the residual, the RV is represented by the following
equation:

[10]

The trend can be modelled as a low-order polynomial
function of the spatial coordinates u. Previous studies have
indicated that increasing the number of order of trend
functions does not lead to better modelling of the trend
(Journel and Rossi, 1989). 

To satisfy the unbiasedness condition E[Z*(u)–Z(u)]=0,
Equation [9] can be rewritten as:

[11]

where the set of L constraints is termed the universality or
unbiasedness conditions. The kriging system satisfying these
requirements is then defined by:

[12]

where are the UK weights and l are the Lagrange
parameters used to determine the coefficients minimizing
the error variance. 

The UK estimate variance is defined as:

[13]

The inference of the residual variogram R(h) is,
however, not straightforward, as the only available data is in
fact Z values, not R values. The experimental variogram of Z
values is defined by:

[14]

For UK, the underlying (trend-free) variogram is assumed
to be known (Armstrong, 1984). To predict this variogram,
the form of the trend should be known. However, to estimate
the form of the trend, the variogram must be known. Various
approaches have been developed to resolve this circular
problem. The most common approach is to select a direction
or a subzone in which the trend m(u) can be negligible and
calculating the experimental covariance along these selected
directions or within this subzone (Atkinson and Lloyd. 2007;
Chihi et al., 2000; Journel and Rossi, 1989; Myers, 1989).

Intrinsic random function of order k was developed by
Matheron (1973) and later refined by Delfiner (1976). It is
an alternative tool used in nonstationary data to remove the
trend by filtering out the low-order polynomials and is
commonly used when it is difficult to infer the underlying

Accounting for a special trend in fine-scale ground-penetrating radar data

175VOLUME 118                     �



variogram of the variable of interest (Wackernagel, 2002). In
the IRF-k method, the deterministic functions f1(u) used to
represent the trend model m(u) in Equation [9] are restricted
to those which are only translation-invariant and pairwise
orthogonal (Wackernagel, 2002). 

Considering a set of weights applied to particular
points u , a discrete measure u is defined as:

[15]

where u represents the Dirac measure at point u . Any
linear combinations of the weights with RV at locations u
are defined as: 

[16]

The expression shown in Equation [16] is called the
allowable linear combination of order k(ALC-k) in Equation
[17]

[17]

holds true for all monomials of order k. Considering a
nonstationary Z(u), if the expression given in Equation [16]
is second-order stationary regardless of any translation h and
whatever the ALC-k ,  the RV Z(u) is called as IRF-k.

The variogram in IRF-k is replaced by a new function
called the GC function (Chiles and Delfiner, 2012). GC is
denoted by K(h) and is used to describe the correlation
structure of the random part R(u). The GC function of an IRF-
k is a symmetric function, K(h)=K(–h), and satisfies the
condition:

[18]

An example to GC function is known the as polynomial
generalized covariance function. The equation of the
polynomial generalized covariance function is given as: 

[19]

The conditions on bp are satisfied if bp p. 
The intrinsic kriging system minimizing the variance is

expressed in terms of the GC and shown in the following:

[20]

The estimation variance is defined by:

[21]

The region where the mine site is located is composed of
Proterozoic and Palaeozoic basement in the eastern part. This
basement comprises acid intrusives, extrusives, and
metamorphics. Overlying the basement to the west, Mesozoic
and Cenozoic sediments dominate. The sediments were

intensively weathered, which played a crucial role in the
formation of laterites rich in alumina and bauxites. The
bauxite sits above an almost entirely kaolinized pallid zone
(Morgan, 1992).

The bauxite deposit in the mine area is thought to have
formed from in-situ chemical weathering of kaolinite, quartz,
and iron oxide minerals (Loughnan and Bayliss, 1961). The
occurrence of the alumina-rich was horizon controlled by
climate, vegetation cover, chemical conditions, bedrock
composition and texture, groundwater circulation, relief,
time, and tectonic conditions (Gow and Lozej, 1993). There is
a regolith zone in the mine area comprising, from top to
bottom, post-weathering sediments (red soil), bauxitic
cement, pisolitic bauxite, nodular ferricrete, the kaolinite
zone, and the saprolitic zone (Bardossy and Aleva 1990).

An electromagnetic (EM) wave that travels through shallow
ground shows different responses to subsurface structures
with varying electromagnetic properties such as dielectric
permittivity, conductivity, and electromagnetic permeability.
GPR utilizes the dielectric permittivity contrast that exists
between the geological structures (ASTM D 6432-99 2005).
The EM wave emitted into the ground from the transmitting
antenna at the surface is reflected back when there is a
difference in the electrical properties of the subsurface
structures. This reflected wave is then received by a receiving
antenna and recorded as a function of time (Davis and
Annan, 1989). Being a function of depth, antenna spacing,
and average radar-wave velocity, the time taken for the wave
to travel to the interface and back up to the surface is called
the two-way travel time. Knowing the radar wave velocities,
this two-way travel time is then converted into depth. 

The main aim of the survey was to map the lateral variability
at the bauxite/ferricrete interface. As the area to be surveyed
was large (360 × 800 m), the method chosen needed to be
easy to implement as well as provide fast data acquisition so
that the surveying results could be checked immediately.
Other considerations in selecting a suitable geophysical
method were spatial resolution capability, cost-effectiveness,
and data processing requirements (Erten, 2012). 

In order to be sure about the applicability of the method
selected, the petrophysical properties established in previous
work on samples collected from another location within the
mine site were considered. The laboratory results revealed
that the conductivities of the bauxite and ferricrete are rather
low and there is a dielectric permittivity contrast between the
bauxite and the ferricrete. This indicated that the emitted
waves would reflect from the bauxite interface, favouring the
use of the GPR method.

The mine area chosen in this case study is approximately 360
× 800 m in size. The data-set comprises the GPR pick-points
acquired from the surface of the mine area using a radar
device. The specifications of the radar device are given by
Francke and Utsi (2009). The total areal coverage of the GPR
survey at the mine area was 142 300 m2 with GPR profiles
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17 940 m in length, which provided 64 670 GPR pick-points
distributed along the GPR profiles at 0.25 m interval (Figure
1). The GPR profiles were arranged in a square grid with a
line spacing of about 15 × 15 m (Erten, 2012). 

Due to the nature of GPR data acquisition, it is expected
that there might be multiple points that have the same
coordinates. Therefore, the data-set was first pre-processed to
mask the potential duplicates in order to avoid any kriging
matrix instability in the estimation process. This was carried
out by masking all the sample points that were within 0.25 m
of the other data-points. The number of raw GPR pick-points,
after processing, reduced to 30 630. In order to compare the
performance of each kriging method, the data was split into
two parts: prediction and validation data-sets. The prediction
data-set was generated by re-sampling the GPR pick-points
randomly on a regular 15 × 15 m grid. This process yielded
735 pick-points as a prediction/training data-set to be used
in the estimation. The remaining 29 895 pick-points were
kept for the validation. The flow chart of the data processing
and the methodology are presented in Figure 2.

The target variable to be regionalized in this study is the
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elevation of the bauxite/ferricrete interface. This variable was
obtained through the GPR survey, the depth to the interface
being calculated from the two-way travel time. This depth
was then subtracted from the ground surface elevation to
obtain the elevation of the bauxite/ferricrete interface. The
unit of the variable is metres (m).

The histograms of both prediction and validation data
corresponding to the elevations of the base of the ore unit are
shown in Figure 3. 

As it can be seen in Figure 3, the histograms of the
prediction and validation data are closely similar. This
resemblance is also revealed in the descriptive statistics of
these two data-sets given in Table I. 

The calculated coefficients of skewness of the
prediction/training and validation data-sets are –0.70 and 
–0.64, respectively. 

Scattergrams plotted against X and Y coordinates in
Figure 4 reveals that the elevation variable decreases towards
the east and increases towards the north, which suggests a
possible trend dipping in southeasterly direction. 

The raw omnidirectional variograms of the ore unit base
elevation were computed from the prediction data with 50
lags, having a lag distance of 15 m and a lag tolerance of 7.5
m. This lag distance was the average distance between the
samples in the prediction data-set. The experimental
omnidirectional variogram is shown in Figure 5. 

The apparent increase in the variogram parallel to the
increasing lag distance also confirms the existence of a trend
or nonstationarity of the elevation variable. This conclusion
is supported by the scattergrams shown in Figure 4.

A variogram map was computed to detect the maximum
and minimum spatial continuity directions as well as any
possible anisotropies. The variogram map and experimental
variograms in these directions are shown in Figure 6. 

The maximum spatial continuity in the variogram map is
seen in the N20° direction as the variogram values do not
change significantly along this direction. On the other hand,
perpendicular to this direction, which is N110°, the elevation
varies more rapidly, indicating the minimum spatial
continuity direction. In the N70° direction, there are relatively
high variogram values. As seen in Figure 6b, the variogram
values in the N70° direction are higher only for the lag values
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Table I

Ore unit base m 735 15.01 2.60 8.14 19.77 0.17
elevation prediction
data
Ore unit base m 30,630 14.92 2.57 7.81 19.90 0.17
elevation original
data



greater than 180. Since the GPR data is densely sampled,
only samples that are around 80–100 m apart from the
estimation grid node are considered for the estimation and
are of greatest importance. This fact confirms the selection of
the N110° direction as the minimum spatial continuity
direction, since the experimental variogram values in the
N110° direction are higher in the 0–100 lag distance range. 

UK was the first approach used in this study to account for
the nonstationarity seen in the data. UK requires a prior
determination of the L trend functions Fl(u) and the
covariance CR(h) of the residual component R(u) inferred
from the residual variogram R(h) (Goovaerts, 1997). The
the L trend functions were identified by testing low-order
polynomial functions, k 2, by locally fitting the polynomial
functions through the ordinary least-squares method. The
trend component identification of the elevation variable is
summarized in Table II.

In order to identify the order k of the trend component,
the degree of trend, a number of varying orders of
polynomials were selected and fitted to the data-points. In
this process, errors obtained from the fitting of different
orders of k polynomials are calculated at each point and
ranked by order of absolute magnitude. The ranks obtained
from each point are then averaged and the order k having the
lowest average rank selected as true k. In this case study,

polynomials of order 0, 1, and 2 were tried. As is seen from
Table II, the smallest mean rank value was 1.850, and it was
yielded by the first-order polynomial, k=1. Therefore, the
first-order trend function, which is comprised of 1,x,y
monomials, was selected as the best-fit trend. It would,
therefore, be expected that the OK, UK, and IRF-k estimates
would be similar due to the linear model fitted to the trend. 

The first step in determining the underlying variogram
for UK was to estimate the coefficients of the drift function
with a least-squares based estimator. Once the coefficients of
the drift function are determined, the residuals are computed
by subtracting the drift from the data. An experimental
variogram of the residuals is then calculated and a model is
fitted to the residuals experimental variogram. The bias
associated with the experimental variogram is computed and
an iteration is applied to compute the corrected experimental
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Table II 

1 x y 0.0025 0.6008 1.850
No trend -0.0006 0.8851 2.149
1 x y x2 xy y2 0.0082 1.221 2.001
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variogram. This iteration is carried out n times, n being a
user-defined maximum iteration number. Variogram fitting
for UK was carried out by using ISATIS software. The
mathematical expression of the model fitted to the underlying
variogram model is as follows:

The mathematical model fitted to the underlying
variogram is given in Figure 7.

The second approach used to account for the nonstationarity
was the IRF-k method. Nonstationary modelling with the IRF-
k method involves three steps: (1) determination of order k,
(2) inference of the optimal GC model, and (3) kriging the
elevation variable based on the inferred GC. The GC model is
readjusted (if necessary) based on the comparison of the
obtained error with the theoretical standard deviations
(Delfiner, 1976). Trend analysis has already been carried out
for the UK case and the results were summarized in Table II.
It was found that the best fit trend for the variable was the
order 1 trend (k=1).

In order to infer the optimal GC, several arbitrary models
of GCs were proposed and tested. The optimality of a GC
model was determined on the basis of the ratio called
‘Jacknife’ which is basically the number indicating the ratio
of the theoretical variance to the experimental one
(Farkhutdinov et al., 2016). The calculated Jacknife numbers
were ranked in ascending order and the GC model
corresponding to the Jacknife number closest to unity was
selected as the optimal GC. The tested GC models and their
scores can be seen in Table III.  

It can be seen in Table III that the order 1 GC function
yielded the Jacknife score closest to unity. Hence, order 1 type
of the GC function was selected with a sill value of 3.148 and
a range value of 170 m. Any possible anisotropy that may
exist in the data-set is accounted for by the polynomial
function which filters out the trend (Delfiner, 1976). 

In the OK case, the residual variogram R(h) was inferred by
calculating the experimental variogram of Z(u) along the
direction in which the trend m(u) was deemed negligible. The
deemed trend-free direction was detected as N20° from the
variogram map shown in Figure 6, and the experimental
variogram and the model fitted are shown in Figure 8.

However, since the GPR data is densely sampled, only the
samples that are 80–100 m away from any estimation grid

are considered and are of greater importance. Therefore, the
variogram model reaching the sill value at range value of 256
is considered as robust. 

Two spherical models without a nugget variance provided
the best fit to the experimental variogram computed by using
15 m as the lag distance and 0.5 h as the lag tolerance. The
mathematical representation of the fitted model is shown in
the following:

The cross-validation technique was used to assess the
accuracy of the variogram models fitted to the experimental
variograms. It utilizes diagnostic statistics and the accuracy
of the prediction is evaluated through various tools (Webster
and Oliver, 2001). The criteria used to estimate the accuracy
in this study are the mean absolute error (MAE) and mean
squared deviation ratio (MSDR). The MAE should ideally be
zero, which satisfies the unbiasedness condition. The MSDR
is basically the ratio of the computed squared errors to the
kriging variances, and the closer the MSDR is to unity, the
better the model for kriging (Oliver 2010). These two criteria
are calculated as follows:

where N is the number of data values (which is 735 for this
study), Z(u ) is the true value, Z*(u ) is the predicted value,
and 2(u) is the kriging variance. The results of the cross-
validation technique that was implemented to assess the
accuracy of the variograms used for UK, IRF-k, and OK are
given in Table IV.
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Table III 

3.148 0.000 0.000 0.000 0.902
0.000 1.469 0.000 0.000 0.733
0.000 0.000 2.062 0.000 0.892
0.000 0.000 0.000 8.087 0.624



The results of the diagnostic statistics show that,
although the variogram modelled for OK has the minimum
MAE and the closest MSDR value to unity, all of the
computed MAE values are small, indicating that there is no
significant difference among the error statistics. Based on
these results, all of the modelled variograms are considered
to be appropriate for spatial prediction.

The first step of the prediction of the elevation of the ore unit
base is to define an estimation grid that is capable of
covering the whole area containing the data-points as well as
minimizing the extrapolation. In this case study, a two-
dimensional grid having the following properties was created:
the origin is X0 = –1872.00 m, 0 = 10181.00 m, the
dimensions of the mesh are dx = 5.00 m, dy = 5.00 m, the
number of meshes is 75 along the x direction and 163 along
the y direction, resulting in 12 225 meshes in total. This was
then followed by constructing a polygon delineating the
boundaries of the data, which defines the resource estimation
area. The number of meshes within the polygon boundary is
7 089.

A moving type of neighbourhood was used in all the
aforementioned algorithms to estimate the ore unit base
elevations. In order to make the data around the estimation
grid evenly distributed, eight angular sectors around the
estimation grid were defined with a minimum of four samples
in each sector. Delfiner (1976) states that the number of

angular sectors should at least be twice the number of
unbiasedness conditions, and considering the linear trend,
there should at least be six angular sectors around the data.
Hence, the number of angular sectors selected satisfies the
given rule of thumb. Based on the parameters selected, a
minimum of 32 samples around the estimation grid were
used in each search neighbourhood. The radius of the search
window circle was determined to be 170 m. However, since
GPR pick-points were densely sampled, 32 samples around
any estimation grid node do not fall further than 80 m radius.
In another words, points that are 80 m away from any
estimation grid node are not taken into account for
estimations through kriging techniques due to this
neighbourhood selection. This selected neighbourhood was
used for all the kriging methods. 

UK was used to estimate the ore unit base elevation variable
by making use of the inferred underlying variogram of the
residuals and the trend function, which describe the spatial
relationships between the sample data. The spatial maps of
the ore unit base elevation obtained from the UK estimation
are given in Figure 9.

Contrary to UK, IRF-k does not require the trend and the
underlying variogram of the residuals to be determined
beforehand, since it has its own automatic structure
identification algorithm allowing it to pick up the best set of
parameters within a preselected set of models (Chiles and
Delfiner, 2012). Hence, parameters describing the spatial
relationship for IRF-k algorithm in this study were
automatically detected. These parameters are the trend and
the chosen optimal GC model. The spatial maps of the
estimates from IRF-k method are given in Figure 10.

In addition to these nonstationary methods, OK was
implemented by neglecting the nonstationarity present in the
data. In this method, the variogram model obtained along the
trend-free direction was used as a structural input describing
the spatial relationship. The maps of the results produced by
OK are given in Figure 11.
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Table IV 

OK 0.00047 1.02941
IRF-k 0.00153 0.97807
UK 0.00145 1.21735
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The performance of the kriging estimators was tested by
comparing the validation data with the kriged data. This was
done by comparing the mean squared error (MSE) and MAE
values. In order to compute these errors, kriged data, which
was collocated with the validation data, was copied from each
of the UK, IRF-k, and OK maps and used to calculate the error
associated with each estimation algorithm. The results of
MSE and MAE are shown in Table V.

The differences between the errors calculated from the
different kriging algorithms are similar and the errors are not
significant, considering the mean 15.01 m of the prediction
data-set. 

Scattergrams generated by plotting the kriged values
obtained from the three kriged algorithms against the
validation data yielded almost identical results. The
coefficients of correlations were 0.990, 0.990, and 0.991 for
UK, OK, and IRF-k, respectively. 

Although IRF-k slightly outperformed the other predictor
algorithms, the estimation errors were not significant enough
to conclude that the more sophisticated IRF-k algorithm
outperformed OK in this particular case study. The similarity
in the results yielded by these techniques is thought to be
due to factors such as the densely sampled GPR elevation
variable and the selected neighbourhood parameters. 

The elevation variables were densely sampled and a
maximum of 32 samples were used in the estimation of the

�
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Table V 

IRF-k OK UK

MAE 0.2445 0.2506 0.2535
MSE 0.1267 0.1322 0.1349



variable at an unknown grid node due to the neighbourhood
definition. Since 32 samples were almost always within a 80–
100 m radius, the trend was probably not apparent within
such a radius. Therefore, the effect of the trend was not
experienced to any significant degree, since all the samples
used in the estimation were from the immediate vicinity of
the estimation grid. 

The focus of this case study was to implement and compare
the performances of different geostatistical estimators in the
case of a trend apparent in a densely sampled GPR data-set.
The UK and IRF-k methods were implemented to account for
the trend seen in the data-set and OK was implemented by
considering the spatial trend to be constant. 

The performances were assessed by comparing the kriged
values with the preselected validation data for each kriging
algorithm. The results of the comparisons with the validation
data have shown that IRF-k outperformed the other
algorithms considering MAE and MSE criteria. However, the
differences between the results were not sufficiently
significant for one kriging algorithm to stand out among the
others. For example, the MSE values obtained from the
comparison with the validation data were 0.1267, 0.1322,
and 0.1349 for the IRF-k, OK, and UK algorithms,
respectively. Similarly, the plotted scattergrams demonstrated
a similar outcome; the coefficient of correlations obtained
from plotting the kriged values against the validation data
were 0.990, 0.990, and 0.991 for UK, OK, and IRF-k,
respectively. This similarity was mainly due to the large data-
set and neighbourhood parameters chosen.
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BACKGROUND
The minerals industry is a backbone for most of the economies in the African continent, thus, it is vital that the exploitation of the mineral

resources is conducted profitably. However, without any paradigm shift in the tactics we employ to mine these resources, the mineral

wealth we possess will not be of any benefit to the current and future generations. There need to be a shift in the way we exploit the 

resources in order to ensure longevity of current operations and enable mining of deep-level complex orebodies in a safe, healthy and

profitable manner. This can be achieved through integration of 1st, 2nd, 3rd and 4th revolutions to create a sustainable minerals industry
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