
The fundamental input for open pit mine
planning is a resource block model in three-
dimensional space, which represents geological
attributes i.e., grades of different minerals
comprising the orebody, mineralogy, density,
and tonnage. This model can then be
converted into an economic block model by
applying economic parameters such as
operational costs and commodity price. A
critical objective of mine planning is to
determine the mine’s production schedule,
which basically is a plan indicating when and
where to mine ore and waste blocks to
maximize total discounted cash flows subject
to various constraints, including blending
grades, mining and processing capacity
requirements, and slope safety. Optimizing the
production schedule is a complicated task that
involves processing a substantial amount of
data constrained by many conditions, which is

naturally the domain of mathematical
programming techniques (Pendharkar, 1997;
Topal and Ramazan, 2010, 2012).

The pioneering of the application of linear
programming (LP) mathematical models in
open pit mine production scheduling has been
credited to Johnson (1968). In this type of
model, linear variables represent mining
proportions of blocks which lead to slope
safety violations, as blocks at a lower level can
be mined without the overlying blocks being
completely removed. For this reason, integer
programming (IP) and its variants, such as
mixed integer programming (MIP), were
developed, which consider integer variables to
maintain the integrity of the mining blocks.
For a block model including n blocks to be
scheduled within p periods, each block will
have p binary variables which enable that
particular block to be scheduled (value of 1) in
a period p or not (value of 0). In real mining
projects, the total number of binary variables
n*p is usually enormous, with magnitudes into
the millions. Many studies have suggested
different ways to deal with the problem of
solving large-scale production scheduling
using IP (Bienstock and Zuckerberg, 2010;
Bley et al., 2010; Boland et al., 2009; Caccetta
and Hill, 2003; Gershon, 1983; Ramazan and
Dimitrakopoulos, 2004). However, the
problem still seems to present significant
challenges and it is generally impossible to
solve considering the computational
intensiveness. 

Given the difficulty of achieving an exact
solution from large-scale IP models,
researchers have resorted to heuristic and
metaheuristic techniques to obtain near-
optimal solutions within a reasonable
computation time. Several notable heuristic
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and metaheuristic algorithms developed recently can be
found in the works of Chicoisne et al. (2012), Jélvez et al.
(2015), Lamghari, Dimitrakopoulos, and Ferland (2015), and
Lamghari and Dimitrakopoulos (2012). A common drawback
of these models, apart from that of Lamghari,
Dimitrakopoulos, and Ferland (2015), is that they are not
able to incorporate a typical full set of operational constraints
in mining, being the lower and upper bounds of mining
capacity, processing capacity, and blending grade.

Block aggregation is another approximation approach, in
which blocks are clustered to form larger units to reduce the
scale of the data before formulating mathematical models.
Reducing block resolution, or reblocking, is by far the
simplest method but this also seriously compromises the
quality of scheduling results. One common trend is to
combine blocks on the same level based on their similarity of
distance, material, or attributes, such as in the work of
Tolwinski and Underwood (1996) and Tabesh and Askari-
Nasab (2011). As slope constraints between blocks are not
considered in the clustering stage but must be considered in
the production scheduling stage, this conflict may severely
compromise the possibility of obtaining an optimal solution.
The two most well-known block aggregation algorithms
where slope constraints are effectively introduced in the
aggregating process are fundamental tree algorithm (FTA)
(Ramazan, 2007) and Blasor (Froyland and Menabde, 2009).
FTA deploys a clever LP formulation to cluster blocks into
fundamental trees (FTs). However, in most instances, the
number of FTs is slightly less than the number of ore blocks
in the ultimate pit limit where FTA is applied. This is because
most FTs consist of only one ore block, the so-called ‘single
tree problem’. Consequently, the number of FTs is still very
large in real-life data-sets. Blasor uses a propagation
procedure from the bottom up to cluster blocks into clumps
with a cone shape, which considerably reduces the number of
variables for downstream scheduling models. However, to
our best knowledge, there is no evidence that Blasor can
dictate or effectively control the number of clumps generated.

The above mentioned challenges are the motivation for
our new algorithm, called the ‘TopCone algorithm’ or TCA.
This algorithm is a hybrid of the ultimate pit limit technique

and the clustering technique, where a near-optimal ultimate
pit can be obtained during the clustering process. TCA
aggregates blocks into ‘TopCones’ using LP in a manner such
that the number of aggregates generated can be controlled to
keep the size of the downstream IP-based scheduling model
tractable. A schematic of a traditional and the new proposed
mine planning framework is presented in Figure 1. 

The remainder of this paper is organized as follows. The
methodology of the TCA is presented, followed by a
demonstration of the algorithm in a simple 2D case study.
We then detail the methodology of a long-term production
scheduling model using IP specially developed for TCs. Large-
scale numerical experiments are discussed. Finally,
conclusions are drawn.

TCs are groups of blocks having four properties: 

(i) Can be mined without violating slope constraints
(ii) Total economic value of blocks as a TC must be positive
�iii) The TCs are subject to certain constraints
(iv) A TC cannot be split into smaller cones without

violating (i), (ii), and (iii). 

The constraints in property (iii) could be the minimum
cone size (MCS) in terms of the number of member blocks or
total ore or waste tonnage, average grade, material
proportion, or any constraints that could appear in the
downstream scheduling model. At the current stage of
development, we set only the minimum number of blocks per
cone as a condition for property (iii) to control the number of
TCs generated. However, it would be promising to consider
other attributes as they may have a beneficial impact on the
result of solving the IP model. 

The following notations are defined for explaining the steps
of the algorithm:

i N Set of underlying nodes i found at current
searching level

�
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j M Set of overlying nodes j established at current
network flow

J 0i M Subset of overlying nodes j that belong to cone of
underlying node i

i Uj N Subset of underlying nodes i which have their
cone cover overlying node j

t Sink node
s Source node

CVi Cone value of underlying node i
Ci Coefficient of underlying node i
Vi Economic value of block i. If Vi > 0, block i is

called a ‘positive node’, otherwise, a ‘negative
node’
A very small decimal value, for example, 0.01

fsi Continuous variables: Flow from source node to
underlying node i

fij Continuous variables: Flow from underlying node i
to overlying node j

fjt Continuous variables: Flow from overlying node j
to sink node t

Figure 2 gives a two-dimensional illustration of a
network consisting of the abovementioned nodes and flows.

The algorithm starts from the top level of the block model and
then progresses level by level until the bottom, aggregating
blocks into TCs at each iteration. Steps are schematically
illustrated in Figure 3 and discussed below.

Step 1. The level that the TCA is currently scanning is
termed the ‘current searching level’ and all positive nodes at
this level are termed ‘underlying nodes’. All nodes (both
positive and negative) that overlie the underlying nodes
based on slope constraints are termed ‘overlying nodes’. If no
positive node is found at the current searching level, the
algorithm goes to a lower level and repeats step 1.

Step 2. Generate a network flow consisting of source
node, sink node, underlying nodes, overlying nodes, and
flows, as illustrated in Figure 2. 

Step 3. Calculate the cone values of underlying nodes by

summing the economic values of all overlying nodes
connected to that underlying node and the underlying node
itself.

[1]
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Step 4. Assign coefficients to N underlying nodes
according to their cone values, starting from the highest and
proceeding to the smallest with coefficients from 1 to N
respectively. Specifically, the underlying node with the
highest cone value has a coefficient of 1, the second highest
has a coefficient of 2 and so on.

Step 5. Set up and solve the LP formulation. The aim of
the LP model is to group positive and negative nodes into
clusters (called TCs) so that in each cluster, positive nodes
are strong enough to support negative nodes. That is, TCs
always have a positive value. This is a minimization problem
to minimize connections between nodes so that the size of
the clusters is minimal. 

[2]

[3]

[4]

[5]

[6]

[7]

The objective function is a minimization of connections
between underlying nodes and their corresponding overlying
nodes. The role of the coefficients is to prioritize the creation
of connections to high-value nodes so that they are available
for mining before the lower value ones. This is critical to
facilitate downstream scheduling models to yield a better NPV
score. Constraint [3] ensures that an underlying node and its
positive overlying nodes are unable to provide support
greater than their value. Constraints [4] ensure that
overlying nodes receive sufficient support. Note that positive
overlying nodes can always be removed (i.e. just need a very
small value support) once the corresponding underlying
nodes are removed. The addition of is to prevent TCs from
having zero value as this will require additional support from
other underlying nodes. Constraints [5] and [6] enforce the
mass balance of flows in and out of the underlying and
overlying nodes. Constraint [7] defines all flows as non-
negative linear variables.

As this is a pure linear problem, it can be solved quickly
using a solver like CPLEX (CPLEX, 2009). 

Step 6. Analyse the LP solution by checking all positive
flows to find TCs. Once generated, TCs automatically respect
and accommodate slope constraints as a result of step 1.
Post-process all TCs by validating against properties (ii) and
(iii) to find valid TCs. Condition (iii), i.e. the condition on
minimum size of TCs, is relaxed for those positive values
with TCs having no possibility of increasing their size, such

as there is no positive nodes at the lower levels. This
relaxation is to increase the ultimate pit value.  
Step 7. Qualified TCs from step 6 are removed from the block
model while nodes of unqualified TCs remain. 
Step 8. If the current search level reaches the bottom, the
algorithm moves to step 9, otherwise all variables are reset
and the algorithm moves to a lower level and back to step 1. 
Step 9. Print the results and stop.

� The TCA generates TCs by scanning through all ore
blocks available in the orebody, from the top level to
the bottom level, and sequentially extracts as many ore
blocks, together with the overburden, as possible,
given that each time of extraction generates economic
profit. By definition, this process results in an 
ultimate pit. 

� By varying the properties applied on TCs, particularly a
minimum number of blocks per cone or MCS, the
number of aggregates is controlled. Theoretically, the
TCA can reduce the number of TCs to close to, or equal
to, unity when MCS is set large enough. The smallest
number can be unity only if the shape of the ultimate
pit limit allows all blocks to be connected to a root
block according to the slope constraints. That
theoretical ultimate pit limit has a cone shape with an
appropriate slope angle and an ore block located at the
bottom. This critical ability of the TCA ensures that
there is always an appropriate number of variables in
the IP scheduling model to make it tractable.

� The TCA is able to incorporate various constraints into
TCs via its post-processing step. At the current
development stage, only the minimum size of cones is
considered.

� TCA is a linear programming method, therefore the
computation time required for generating TCs is not a
major concern if sufficient memory is available.
Together with feature 2 above, dictating the number of
TCs being controlled, the proposed mine planning
framework using TCA and IP can be applied to any
large-scale data-sets and a solution obtained within a
relatively short computation time. 

The TCA is demonstrated in a 2D example using a
hypothetical cross-sectional view of a mineral deposit,
represented by nodes. The numbers inside circles (Figure 4)
represent node indexes, and those outside are economic
values. The MCS comprises two nodes. 

Step 1. Start from level 1, no positive node is found. Then,
the algorithm moves to level 2 where there are four positive
nodes, namely 9, 10, 11, and 12. They are now termed
underlying nodes.
Step 2. Generate the network flow as shown in Figure 4. 
Steps 3, 4. The cone values of the four underlying nodes 
are -7, -5, -11, and +3. Therefore, their coefficients are 3, 2,
4, and 1, respectively. 
Step 5. Formulate the LP model of level 2 (Figure 5)

The solution is presented in Table I and Figure 6,
showing positive flows only.  
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Table I

Flow fs9 fs10 fs12 f1t f2t f3t f4t f5t f6t f9.1 f9.3 f10.2 f10.3 f12.4 f12.5 f12.6

Value 3.03 8.00 10.03 1.01 5.01 5.01 3.01 4.01 3.01 1.01 2.02 5.01 2.99 3.01 4.01 3.01
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Step 6. Two TCs are found based on the LP solution, and
they are valid according to the predefined properties.
Considering precedence, TC 2 is removed after TC 1 to ensure
slope safety.

Steps 7, 8. Mine out two TCs found at step 6, go to level
3, and similarly repeat steps 1–8 to find more TCs. The
network flow corresponding LP formulation and result of
level 3 are presented in Figures 7, 8, and 9 and Table II,
respectively. Note that the value +1 of positive overlying node
11 is transferred to underlying node 18 because it has a
smaller coefficient than underlying node 19.

Step 9. As level 3 is the last level, the algorithm stops. All
TCs found are presented in Figure 10. 

Besides satisfying all four properties, other comments on
TCs are as follows.

� TC 3 only consists of two positive nodes.
� The combination of all four TCs forms an ultimate pit

limit. 
� In TC 2, two positive nodes 9 and 10 have jointly

supported three negative nodes 1, 2, and 3. 
� When mining TCs follow their order of appearance, the

slope constraints are always secured. This feature
significantly reduces the number of sequencing
constraints at IP formulation. 

� At level 3, the combination of node 11 with node 18
instead of node 19 to form cones provides the most
beneficial scenario for scheduling in terms of NPV.
This demonstrates the important role of coefficients in
the LP formulation as discussed in step 5 of the TCA
(setting up and solving the LP formulation).

After generating TCs, the long-term production
scheduling using the IP model is implemented using the
formulation presented in the next section. 

In this section we discuss an open pit mine long-term
production scheduling model using integer programming and
TopCones. In the model, each TC can be taken at any
scheduling period over the life of mine to maintain a global
optimization. A TC’s ore tonnage, waste tonnage, and
economic value are calculated by summing from the
constituting blocks, while the TC’s grade is assumed to be
homogeneous within the ore tonnage and calculated by
averaging the grade of the TC’s ore material. As the whole TC
will be extracted at once when it is scheduled in a period, the
assumption of homogeneity has no impact on the scheduling
result.

�
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Table II

Flow fs18 fs19 f7t f11t f13t f18.11 f19.7 f19.13

Value 0.01 7.02 2.01 0.01 5.01 0.01 2.01 5.01



i N Set of TCs i
j M, N Subset of TCs j that are predecessor TCs for TC
i
t,t’ P Set of time periods t, t’ in the horizon

d Economic discount rate
Vi Economic value of TC i
Ci

t Expected value of TC i when being extracted in
period t

[8]

Gi Grade of TC i
Oi Ore tonnage of TC i
Wi Waste tonnage of TC i
Gmin/Gmax Minimum/maximum blending grade
PCmin/PCmax Minimum/maximum processing plant capacity
MCmin/MCmax Minimum/maximum capacity of the mine’s

equipment.

Xi
t equal to 1 if TC i is scheduled in period t; 0

otherwise.

[9]

Subject to

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Objective function [9] maximizes the discounted cash
flow. Constraints [10] and [11] ensure that the average grade
of material sent to the mill is within the upper and lower

bounds. Constraints [12] ensure that a TC is removed in one
period only. Constraints [13], [14], [15], and [16] limit the
production targets of processing and mining capacity in each
period. Constraints [17] ensure the precedence between TCs,
where a TC i is mineable at period t only if all of its Mi
overlying TCs are scheduled at previous periods or the same
period. A TC is considered to be overlying the other if it has
at least one block overlying any block of that underlying TC
according to slope constraints. Constraints [18] ensure
integrality of binary variables, as appropriate.  

The two-phase mine planning method using TCA and IP
proposed in this paper was applied to a hypothetical copper
deposit. The block model characterizing the deposit consists
of 1 568 250 blocks of size 20×20×20 m, 20 571 of which
are ore blocks. The experiments were implemented using a
normal office computer with an Intel(R) Core(TM) i7 with 3.4
GHz CPU processor and 8 GB of RAM. The hypothetical set of
scheduling targets is presented in Table III.

In this study, the proposed mine planning method was
implemented multiple times using seven MCS options of 1,
10, 75, 100, 200, and 300 blocks per TopCone. The MCS of 1
implies that there is no restriction on the minimum size of
the TCs. The ultimate pit limit and production scheduling
solutions yielded by the proposed method were validated
against the Whittle Milawa NPV algorithm (Whittle, 2016).
Those blocks inside the optimal Whittle ultimate pit limit are
regarded as the original, non-aggregated problem. Table IV
shows the results of the numerical experiments. For each run,
the following parameters are reported: 

� Number of TCs generated by TCA or blocks in the
original problem

� Number of binary variables: Equal to number of TCs or
blocks multiplied by number of time periods

� Number of precedences: Number of precedence arcs
between TCs.

� Number of constraints: Include resource constraints,
maximum processing capacity constraints, and slope
constraints, as formulated by constraints [12], [13],
and [17] respectively

� Gap to optimum ultimate pit (%): The ultimate pit
values encapsulated by TCs are compared with the
optimum solution

� NPV gap (%): The NPV obtained from solving TCs-
based IP models is compared with the block-based
Whittle Milawa NPV algorithm

� Solution time of TCA (minutes): The computing time of
TCA in aggregating blocks into TCs

� Solution time of IP (minutes): The computing time of
solving IP models built on TCs. CPLEX was used as the
solver using standard parameters and an optimality
tolerance gap of 5%.
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Table III

Number of scheduling periods (years) 8
Mining capacity (Mt/a) 150 ÷ 310
Processing capacity (Mt/a) 45 ÷ 90
Copper blending grade (%) 0.4 ÷ 0.7
Discount rate (%) 10
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As demonstrated in Table IV, the solution time for solving
IP models increases exponentially with the number of TCs,
and this emphazises the significance of controlling the
number of aggregates while clustering blocks. Specifically,
the aggregated problems are orders of magnitude (in the
thousands) smaller than the original block-based problem.
For instance, at a MCS of 300, only 239 TCs are generated
together with 1912 binary variables, 483 precedences, and
2159 constraints for the corresponding IP model, a staggering
reduction from the 562 800 binary variables of the original
problem. Consequently, the whole two-stage mine planning
process with a MCS of 300 was completed in just seven
minutes. Considering the experiments were conducted with
limited computing power, that time-frame is very practical. In
the scenarios of MCS of 1 and 10, CPLEX did not obtain a
solution within five days, so the experiments were terminated
as this is no longer a practical time-frame. 

The increase of 7 to 8% in NPV value with TCA-IP model
compared to the popular Whittle Milawa NPV algorithm is
also considerable. Although this is not a fair comparison, as
IP is an exact method while Whittle Milawa NPV algorithm is
a heuristic approach, the proposed methodology and the
results of these experiments contribute to the application of
mathematical programming-based optimization models in
producing high-quality, large-scale scheduling solutions in a
practical time-frame with the support of an appropriate block
aggregation algorithm. 

Selecting an appropriate MCS is a case-by-case exercise
and likely involves a trial-and-error process. A small MCS
would return a large number of TCs to provide a greater
flexibility to the downstream IP model in favour of optimizing
NPV value. This, however, comes with a cost of an
exponential increase in computing time. The rule of thumb is
to start with a reasonably small MCS, then if no solution is
obtained in a desired time-frame, that implementation should
be terminated and the process attempted again with a larger
MCS option. Factors like computing power, size of the block
model, and allowed time all contribute to the selection 
of a MCS. 

The ability to obtain the ultimate pit limit using TCA was
also validated in Table IV. Although a loss of 0.2 to 0.3% of
pit value is relatively small, TCA can be implemented within a
predefined optimal pit limit to completely eliminate this issue.
Hence the experiments presented in this study are aimed at
demonstrating the ability of TCA to find near-optimal pit
limits only. 

Figures 11 and 12 present detailed comparisons of the
TCA-IP model with MCS of 300 and Whittle Milawa NPV’s
scheduling scenarios regarding tonnage production, NPV, and
blending grade. To maximize NPV as defined in the objective
function of the IP model, the proposed scheduling model
maximizes the ore tonnage and copper grade while
minimizing waste production in early periods. This explains
the considerable improvement in NPV over the Whittle
Milawa NPV’s solution. 

To illustrate the practicality of the solutions of the
proposed model, the plan view and typical cross-sections of
the production schedule generated by TCA-based IP model
with MCS of 300 are presented in Figure 13.  

A new optimization method for open pit mine planning has
been introduced, expounding the idea of aggregating mining
blocks using a TopCone algorithm and then deploying integer
programming to find production scheduling solutions based
on aggregated blocks. By clustering blocks in a controlled
manner regarding both quantity and shape of aggregates,
TCA provides a novel platform for the application of
mathematical programming techniques to solve mine
planning problems. The numerical experiments demonstrated
that the proposed method could solve large-scale problems
quickly, even with limited computing power. In addition, it is
suggested that determining pushbacks is not necessary while
a near-optimal ultimate pit can be obtained during block
aggregation. These features make the proposed mine
planning framework simpler and easier to implement than
conventional approaches.

�
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Table IV

No. of TCs or blocks 70 350 9 515 3 076 821 591 468 302 239
No. of integer variables 562 800 76 120 24 608 6 568 4 728 3 744 2 416 1 912
No. of precedences n/a 25 731 8 054 1 974 1 364 1 066 630 483
No. of constraints n/a 85 395 27 564 7 357 5 303 4 204 2 734 2 159
Gap to optimal ult. pit (%) n/a –0.18 –0.20 –0.24 –0.27 –0.24 –0.28 –0.29
NPV gap (%) n/a n/a n/a 8.47 8.30 7.95 7.60 7.84
Solution time of TCA (min) n/a 5 5 5 5 5 5 5
Solution time of IP (min) n/a n/a n/a 159 19 10 4 2



A new open-pit mine planning optimization method using block aggregation and integer programming

VOLUME 118                                       713 �

One limit of TCA is that some TCs become too large when
the MCS is set too high, particularly those TCs generated near
the pit bottom. These oversize TCs may reduce the flexibility of
the IP scheduling model or even make it infeasible to solve,
depending on the narrowness of the lower and upper bound

constraints. In future work, we plan to mitigate the effect of
oversize TCs via a post-processing step, such as by introducing
a maximum cone size parameter or developing a MIP model for
partial mining of TCs. Furthermore, incorporating a minimum
width for mining benches would also be an interesting exercise. 
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