
The margins in underground mining are
constantly under pressure since costs increase
as the mine becomes deeper. One major
component influencing the operational
performance, and thus the profitability of an
underground mine, is how the mobile
machinery and staff are coordinated. Today,
the coordination of the underground fleet, i.e.
scheduling of the machines, is mostly done
manually, with methods that are stretched to
their limit and with no guarantees on
performance. According to a survey of more
than 200 high-level executives in mining
companies around the world (Mincom, 2011),
the top challenge for modern mines is to
maximize production effectiveness, rather than
improving the reliability of individual items of
equipment. This highlights the importance of
coordination on a system level.

The effectiveness of mine production can
be increased by introducing supportive
algorithms in the scheduling process. These
algorithms enable mines to construct
optimized schedules with respect to custom
metrics. Additionally, manual scheduling is a
tedious and error-prone task where the
performance is heavily dependent on the

scheduler. To reduce the staff dependency,
supportive algorithms can help to achieve
more uniform outcomes, resulting in a more
predictable process. In turn, this increases the
transparency of the mining process through
the entire production chain. It is worth noting
that automatic scheduling has proved
beneficial in many other industries, such as
chemicals and metals (Floudas and Lin, 2004;
Tang et al., 2001).

The operation of a mine is often planned
on different levels, each with its own time
horizon and task granularity (see Figure 1).
The life-of-mine plan, which contains a rough
plan of which year in which to extract what
parts of the orebody until depletion, has the
longest timespan. Based on the life-of-mine
plan, extraction plans of various granularities
are constructed that have a shorter time
horizon and include more details about what
amount of ore is planned to be produced
during a shorter period of time. These
extraction plans are then scheduled, i.e. the
exact time of each activity is determined and
the necessary resources (machines/personnel)
are allocated. After a schedule has been
constructed, typically spanning 1–2 weeks, it
is a matter of realizing the schedule by routing
the correct vehicle to the production area and
performing the actual activity. Commonly, a
supervisor underground acts as a real-time
controller reacting to unforeseen changes and
disturbances. Several authors (e.g. Song et al.,
2015) note that decisions taken by the
supervisors are often based on intuition, which
can result in suboptimal reactions to
disturbances and disruptions.
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Underground mine scheduling modelled as a flow shop

It is interesting to note that for the top two levels in the
pyramid in Figure 1, sophisticated tools and methods are
commonly used to ensure optimized (although perhaps not
optimal) plans, while the lower levels still rely on a lot of
manual and suboptimal work. With the advent of
autonomous vehicles affecting the bottom two levels in the
pyramid, it is obvious that the long-term plan and its
realization need to be connected by scheduling in an efficient
manner. Scheduling can thus be seen as the ‘glue’ that unites
high-level planning (how to maximize dividends) with low-
level control (excavating ore).

The incentives for theoretical research on scheduling
often come from different underlying industries. To formalize
the methods, general abstract formulations known as ‘flow
shops’ have been developed, which capture the key properties
of the scheduling problem without going into specific details.
For instance, when scheduling an assembly line, it is
important in which order parts should be assembled, but not
if the actual part is the tyre of a bicycle or the button on a
shirt. The flow shop thus provides a framework for
developing scheduling algorithms separated from irrelevant
process details. People working in a specific industry often
believe that their processes differ from other industries in
some key aspects, rendering results from other industries
inapplicable. However, we argue that at least those industries
which can be categorized as process industries have more
things in common than things that differ. By modelling the
mining process as a flow shop one can see in black-and-
white which scheduling methods developed for other
industries are applicable for mining.

Publications on underground mine scheduling sometimes
briefly mention the flow shop concept as a way to justify
methodological choices. However, there has been no
systematic approach to highlight the specifics of underground
mining and how it can be modelled as a flow shop in order to
reap the benefits of scheduling research from other
industries. The question that we address is thus how the
diverse activities in underground mining can be adequately
represented in a flow shop setting. To answer this, we review
literature from both the mining community and the flow shop
community, and study the methods used in both of these
fields. 

The goal for this paper is to be of value for both the
theoretical researcher by presenting the mining process as a
potential application area for the flow shop concept, and for
researchers from the mining community who want to
leverage their skill set or get an overview of available

methods. In order to address this broad audience a common
ground must be established. Therefore, the underground
mining process is introduced, followed by a review of
previous work on underground mining scheduling. The flow
shop concept is then introduced, together with some relevant
results from previous studies in this field. We conclude with a
discussion, together with an outlook on future challenges and
opportunities in underground mine scheduling.

Mining is the process of extracting minerals from the Earth,
by either open pit or underground methods. In general,
mining consists of a large number of discrete and continuous
activities. Activities can be related to rock excavation, such as
drilling and charging, or supporting activities such as
managing the steady inflow of water and ventilating blast
fumes. Underground mines typically have large uncertainties
in process parameters (for instance task durations), due
partly to the fact that the rock properties are not known until
the rock has been physically encountered. This brings
uncertainty, as one does not know if an activity will take 4,
6, or even 12 hours. Historically, underground mining has
also been a very non-transparent process, where the state of
the mine is evident only between shift breaks, if at all. With
the adaption of new communication technologies
underground, this has started to change. Still, profitable
mining requires a variety of uncertain and partially non-
transparent activities to be coordinated and steered towards a
common goal.

An underground mine is in operation for many years, and
decisions need to be taken on different timescales. It is
natural to categorize these decisions as strategic, tactical, and
operational. The most vital strategic decision is the choice of
mining method, which sets the stage for all downstream
decisions at the tactical and operational levels. An example of
a tactical decision is the sequence of extraction. Underground
mining essentially involves excavating blocks of ore under
complex precedence constraints. A common approach found
in the literature for finding a good sequence of extraction is
to solve a mathematical programming problem which
optimizes the net present value of the mine subject to
production targets from the strategic level. The operational
scale deals with the shortest time horizon: once the sequence
of extraction has been determined, how should equipment
and personnel be allocated to meet the production targets in
the extraction plan?

The life of a mine can be divided into five stages
(Newman, Kuchta, and Martinez, 2010). The first two stages,
prospecting and exploration, are concerned with determining
the profitability of exploiting an orebody. The third stage is
development, i.e. making the orebody accessible for
production, while the fourth stage, exploitation, deals with
the actual excavation of ore. Finally, the fifth stage
(reclamation) is restoring the affected environment as much
as possible to its original state. Out of the five stages in the
life of a mine the only profitable stage is exploitation. Hence,
how the exploitation is realized, i.e. choosing a mining
method, is vital for the profitability of a mine. The mining
method is selected based on the geometry, geology, and rock
mass characteristics of the orebody and the surrounding
rock. Since different mining methods have different process
dynamics they pose different scheduling problems.
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Excavating drifts (tunnels) is called development and is a key
component in most mining methods. The drifts are used not
only for transporting rock and equipment, but also for
supporting activities such as supplying air, water, and
electricity. Development is implemented in a cyclic process,
often called the production cycle (see Figure 2 and Table I). In
most mines, development takes place simultaneously in
many parallel drifts, and different types of machine are
needed at different steps in the production cycle. This makes
scheduling development a non-trivial activity.

Different mining methods have different strengths and
weaknesses. The choice of mining method depends, among
other factors, on the depth and inclination of the orebody.
Orebodies close to the surface are naturally mined in open
pits, whereas if the orebody goes deep, underground mining
methods are used. A common underground mining method
for near-horizontal orebodies such as deposits of copper,
coal, or potash, is room-and-pillar mining (see Figure 3a). As
the name suggests, in this method the ore is excavated in
blocks, with some blocks being left as pillars to provide
support for the surrounding rock. Common mining methods
for steep orebodies include sublevel caving, block caving, and
cut-and-fill mining. Sublevel caving, depicted in Figure 3b, is
based on collapsing the ore and adjacent waste rock by
blasting at sublevels and progressing downwards. Regularly
spaced drifts are developed into the orebody to enable drilling
and blasting so as to initiate this caving. The ore is then
dumped into orepasses connecting production levels to
haulage levels. Another method for steep orebodies is block
caving (Figure 3c), which is used for large-scale production

where parts of the orebody are induced to cave by removing
the support from underneath. The ore is fractured naturally
by gravity and rock stress, and caves down to drawpoints.
Cut-and-fill mining (Figure 3d) differs from the
abovementioned methods in that it uses backfill. Proceeding
upwards, the excavated voids are backfilled with concrete,
waste rock, and sand. The backfill acts as support for the
surrounding rock and becomes the platform for subsequent
excavation on a higher level as production progresses.

Although some mining methods are similar, most of them
differ in key aspects such as the type and number of
machines required, where these machines are operating,
whether rock support is needed, and how fast the mine
evolves. This means that the choice of mining method does
not only affect the strategic and tactical levels, but also
propagates down to the operational level. Some
categorization is, however, evident since the process
dynamics of room-and-pillar and cut-and-fill are similar to
development as the process follows a production cycle at one
single location. This may not be the case for other methods
where different parts of the production cycle take place at
different locations. For more on underground mining
methods, and mining in general, see Hustrulid (1982) or
Darling (2011). 
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Table I

Drilling Drill rig Drilling holes in the rock face
Charging Wheel loader with platform Charging holes with explosives
Loading LHD Removing loose rock from a drift after blasting or scaling
Scaling Scale rig Mechanically removing loosely attached rock from the walls of a drift
Cleaning Wheel loader with bucket Removing small amounts of rock from the drift after scaling
Bolting Bolter Securing a drift by installing bolts in the rock 
Shotcreting Shotcreter Reinforcing by spraying the walls of a drift with concrete



This introduction contains the essence of underground
mine operations, as viewed from a scheduling perspective.
That being said, each mine site has its own peculiarities
which affect the operation and thus the scheduling problem.
Moreover, a schedule is not only dependent on production
goals. It must also adhere to legislation and safety standards,
and it needs to consider additional information from other
sources such as maintenance, localization, and
geomechanical systems. In summary, underground mining
requires the coordination of a multitude of heterogeneous
machines, under large process uncertainties, in a dynamic
environment, while obeying numerous process constraints.
This is a non-trivial task, and it is part of the reason why
even in modern mines the average utilization of some mobile
machines can be well below 50% (Gustafson et al., 2014).
Altogether, this indicates that scheduling is a crucial
component in the overall mining process.

There are some previous works on scheduling in
underground mining, although these are scarce. The
terminology in the mining community regarding planning,
scheduling, and dispatching varies between authors and is
unfortunately inconsistent at times. Outside the mining
community, planning is used to answer what and how, while
scheduling is answering who and when. Following this
convention, mine planning thus determines in what sequence
the orebody is exploited and how (by which method) this is
done. The scheduling process then determines exactly when
each activity is to be conducted, and by who (what resource).
Another common term is dispatching, which represents the
actual realization of the activities contained in a schedule.
For instance, several parallel schedules might exist but only
one schedule is actually dispatched. In the literature there is
also a categorization of scheduling and planning into long-
term, medium-term, and short-term, where there is no
consensus on where one time horizon ends and another
starts. The works introduced here will be focused on short-
term questions rather than long-term, i.e. on operational level
rather than strategic or tactical. For a review on research on
long-term issues, refer to Newman et al. (2010) or Kozan
and Liu (2011). 

With a few exceptions (e.g. Williams, Smith, and Wells,
1973), research on scheduling in underground mining is a
recent topic. Song et al. (2015) developed a decision-support
instrument to aid the scheduling process by constructing a
schedule of some of the activities in the production cycle. The
sequencing is done by calculating all possible permutations
of the activities and selecting the one with shortest total
duration. The total duration of a schedule, i.e. the difference
between the start time of the first activity and the end time of
the last activity, is called the makespan and is a common
quality metric in the scheduling literature. To cope with the
factorial growth of possible permutations the authors cluster
the faces based on geographical distance, and schedule one
machine set at each cluster. The method was tested on data
from the Kittilä mine in Finland, where the makespan
achieved by using the algorithm was far shorter than the
actual outcome from manual scheduling. However, the
authors recognize that this analysis is an open loop in the
sense that it does not incorporate the dynamic nature of
uncertain activity durations and disturbances.

Potash is commonly mined using the room-and-pillar
method. Schulze et al. (2016) studied how to schedule the
mobile production fleet in an underground potash mine, also
with the objective of minimizing the makespan. This was
done by formulating a mixed integer programming (MIP)
model and solving it to optimality using a commercial solver
for small problem instances. To handle the computational
burden when scaling up the problem to realistic sizes, the
authors introduced construction procedures embedded in a
multi-start environment. By observing that non-delay
schedules (all activities placed without buffers) need not
include the optimal schedule, the construction procedure is
enhanced by introducing conscious delays into the heuristic.
The authors additionally introduced a modified Giffler and
Thompson procedure (Giffler and Thompson, 1960) for
scheduling medium to large problem instances. The different
algorithms were tested on a variety of problem and fleet
sizes. The authors conclude that for small problem instances,
solving the MIP formulation using a commercial solver is
efficient. For medium sized problems, the Giffler and
Thompson procedure works best, and for large problems the
construction procedure, including conscious delays, yields the
lowest makespan. The fact that including conscious delays
may lower the makespan indicates that the common mine
practice that machines should never be idle is not necessarily
a good practice. The authors continued to develop the
heuristics in Schulze and Zimmermann (2017), where a
combined method for scheduling both staff and machines is
presented. The heuristic is constructed to minimize
deviations from a targeted amount of mined potash, and the
results show that the algorithm outperforms manual
scheduling of the same problem.

Nehring, Topal, and Knights (2010) studied an
application in a sublevel stoping mine. Here, the scheduling
problem addresses how to transport the ore from the
drawpoints, via intermediate storage, to the haulage shaft.
The MIP model allocates machines to different drawpoints on
a shift basis over a period of 2 months. The objective is to
minimize the deviation from targeted production. The MIP
model is solved using CPLEX and evaluated on a simulated
mine. This is one of the few papers that also includes
secondary ore movements such as transporting ore from an
orepass to the crusher. The authors continue to explore this
path in Nehring, Topal, and Little (2010) by simplifying the
model to decrease computation time. Additionally, in Nehring
et al. (2012) the medium-term goal of optimizing net present
value is included in the MIP formulation. The advantage of
using a holistic model spanning both tactical and operational
decisions is also evaluated by Little, Knights, and Topal
(2013). The authors integrate both stope layout and
production scheduling in one model and note that the
generated schedules are superior to those created
sequentially. However, using a holistic model instead of two
segregated models increases the computation time from
seconds to days.

Some mining methods require backfill, i.e. refilling
excavated voids with waste rock, sand, and concrete. This
adds complexity to the scheduling problem since the backfill
activities need to be synchronized with excavation.
O’Sullivan and Newman (2015) studied the Lisheen mine in
Ireland, which uses a mining method similar to cut-and-fill.
A MIP model is introduced to schedule when a certain area
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underground should be extracted in order to maximize the
production of mineral (i.e. maximizing the product of the ore
grade and the volume of ore extracted). Unfortunately, the
MIP model is unable to solve problems over an extended
period of time due to the high computational cost. The
authors alleviate this issue by introducing a heuristic
decomposition method based on fixing variables in a
predefined fashion. The idea is to first consider only high-
grade areas and solve the scheduling problem for activities in
those areas only. When a solution is found, lower-grade
areas are introduced into a new scheduling problem where
the solution considering only the high-grade areas is
enforced as a constraint. The authors argue that the
decomposition-based method provides a feasible way of
obtaining good (but not optimal) results.

Another decomposition-based technique can be found in
Martinez and Newman (2011), who build on the results first
obtained by Kuchta, Newman, and Topal (2004) and later
refined by Newman, Kuchta, and Martinez (2007). Similar to
O’Sullivan and Newman (2015), Martinez and Newman
(2011) decompose a MIP model based on ore grades. The
goal is to determine monthly resource allocations over a
horizon spanning several years. The objective is to minimize
the deviation from monthly targeted quantities while
adhering to numerous mining considerations. Upon
evaluation on data-sets from the Kiruna mine in Sweden, the
authors note that the method often finds a solution within
5% of the targeted quantities, and does so in a reasonable
time for this application.

The solution of a scheduling problem contains at least a
schedule of the activities’ start and end times, together with
allocated machines for performing these activities. Executing
the activities in a mine often includes routing the correct
equipment to the correct location – a distinct problem in
production scheduling. For completeness, some recent work
in this field is briefly mentioned. Equi et al. (1997) note that
the characteristics of the open pit routing problem are  similar
to e.g. sugarcane and timber production, while for the
underground case, Saayman, Craig, and Camisani-Calzolari
(2006) state that routing research from other areas has
limited application. The authors proceed by studying the
effect of different routing strategies in dispatching LHDs to
drawpoints in a block cave diamond mine. Another study of
underground routing can be found in Gamache, Grimard, and
Cohen (2005), who used Dijkstra’s algorithm for routing
mobile machinery. Dijkstra’s algorithm considers one vehicle
at the time, which neglects the interaction between vehicles.
This research was extended by Beaulieu and Gamache
(2006), who present a method based on dynamic
programming which provides a global view on the routing
problem.

Although the emphasis in this work is on underground
mining, it is appropriate to mention some noteworthy open
pit scheduling studies. Beaulieu and Gamache (2006) note 
that scheduling for an underground mine operation does not
simply involve altering existing algorithms for open pit
mines; it is a related but distinct problem from scheduling
open pit mines. An aspect that differs between the two types
of mine is that the transparency of the process in open pits
has historically been higher than that of underground
operations, i.e. more relevant information is available in
order to make informed decisions. Another difference is the

overall process dynamics, which partially arises from the
need of a more diverse machine fleet underground. In the
open pit context there are mainly two types of equipment,
shovels and trucks. The shovel-truck problem simply
involves deciding where a truck should go for loading after it
has unloaded. Alarie and Gamache (2002) give a structured
overview of the different methods used for open pit
dispatching. These methods are categorized as single-stage
or multi-stage, where mathematical programming is often
used in the first stage in multi-stage programming but rarely
in later stages.

One feature that characterizes mining compared to other
process industries is the noisy (sometimes chaotic) nature of
operation. A common mining practice to deal with variable
duration of activities is to place buffers between subsequent
activities. Another way is to incorporate the uncertainty into
the scheduling model formulation. Based on a similar
approach to long-term planning, Matamoros and
Dimitrakopoulos (2016) use stochastic integer programming
with recourse to produce schedules on a monthly basis for
allocating shovels and trucks to different mining areas in an
open pit mine. The authors simultaneously optimize the fleet
and mining considerations together with the extraction
sequence. Uncertainty is accounted for by including fleet
parameters and ore quality as stochastic variables in the
model formulation. The problem is solved using a commercial
solver to produce monthly extraction sequences and machine
allocations for a planning horizon of 12 months. This
composite way of modelling the mining process has both
advantages and disadvantages. It is obvious that a decision
made on the  tactical level (e.g. extraction sequence) will
have an effect on the operational level (fleet allocation), and
vice versa. Optimization using a holistic model incorporates
the synergies of considering both timescales simultaneously.
The authors use an objective function formulated as a sum of
smaller optimization goals spanning both the tactical and the
operational level (minimize cost of extraction, minimize
shovel movement, maximize shovel utilization, minimize
deviation from targeted plan, among others). One drawback
is thus the need to determine weighting parameters such as
cost per shovel movement and cost per surplus of mining
tonnage. Determining these parameters accurately may be
very difficult in practice.

A stochastic approach to the shovel-truck problem for
open pits was also studied by Ta et al. (2005). The authors
decompose the problem by solving two sub-problems, where
the first step is solving a chance-constrained problem in
continuous decision variables, while the second step solves a
MIP model in discrete variables. The combinatorial challenge
facing questions regarding global optimality is noted by the
authors to be hard, which is why heuristic approaches to the
dispatching problem for open pit mines are common.

Finally, it is worth mentioning that in order to schedule
efficiently, access to accurate process information is crucial.
As mentioned earlier, a major difference between open pit
and underground operations is the availability of up-to-date
process information. However, the adoption of new
technology in underground mining has started to change
this, where mine-wide WiFi enables real-time monitoring of
machines, equipment, and staff. Song, Rinne, and van
Wageningen (2013) discuss the impact of information
technology underground, as well as summarizing systems
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and hardware suitable for providing informational
transparency. Burger (2006) describes a system of systems
for integrating the mining plan of the Finsch mine in South
Africa into the control system, showing that the integration
of different processes is crucial for future profitability. Howes
and Forrest (2012) describe an approach to a similar problem
at the Chelopech mine in Bulgaria. They provide the
operating context for a scheduling solution including
upstream and downstream integrations to e.g. long-term
production planning and to process control. The authors note
that interfacing between systems on different operational
levels is non-trivial, and that although no standards exist
specifically for the mining industry, there are tentative
standards such as ISA-95 that have been used successfully
in other industries. 

The scheduling of the mobile machinery is a key aspect of
successful underground mining operations. One way to
describe a scheduling problem is to use the concept of a flow
shop. The term flow shop is used to denote a typical
manufacturing set-up where the items that are being
produced need to be processed on several stationary
machines. For instance, to produce a loaf of bread in an
industrial bakery, the ingredients first need to pass through a
dough mixer, followed by a portioning machine, and lastly
the raw loaf needs to be baked in an oven. Several parallel
dough mixers may exist so a particular batch of ingredients
can be scheduled on one out of many mixers. In a flow shop,
each producible item is known as a job, and the
manufacturing steps are denoted stages. The equipment units
that process the items at each stage (e.g. mixer, oven) are
called machines.

More formally, a flow shop is a process description where
jobs are scheduled on a set of resources in a given processing
order. A k-stage hybrid flow shop (HFS) is a generalization
of the flow shop problem where n jobs are to be processed in
k > 2 stages. Each stage s = 1 …, k holds Ms  1 machines,
and all jobs are processed in the same relative sequence
(stage 1 … stage k) but are allowed to skip some stages
given that each is processed in at least one. An HFS is
sometimes referred to as a flexible flow shop, flexible flow
line, or multi-processor flow shop although the meaning of
these terms varies between authors.

In a mining context, the flow shop abstraction can be
used to model mining methods that follow a production cycle
at a single location (such as development or cut-and-fill
mining). The individual activities in the production cycle can
be thought of as stages (see Figure 4), where each stage
contains a set of machines that can perform the activity. In
contrast to the common manufacturing set-up (e.g. the
bakery analogy) it is not jobs that travel between stationary
machines, but rather mobile machinery that travel between
stationary jobs.

A large vocabulary exists in order to describe the
characteristics of an industrial process. For instance, if the
time for a machine to perform a job (the processing time) is
independent of which machine in the stage is used, and
independent of which particular job is being processed, the
machines are said to be identical. However, if the machines
are independent of which job is processed, but have different
processing times based on which machine is used, then the
HFS is said to have uniform parallel machines. An example
of uniform machines is when the processing time of machine
A is 10 minutes for all jobs, while that for machine B is 15
minutes for all jobs. In the scenario when the processing time
also explicitly depends on what job is being processed, then
the HFS is said to have unrelated parallel machines (e.g. on a
particular machine job A takes 10 minutes while job B takes
15 minutes). There is some sambiguity on the topic of
parallel machines, where some authors claim that unrelated
parallel machines are included in the formulation of an HFS,
while others claim that an HFS without specification holds
identical machines (Ruiz and Maroto, 2006).

Furthermore, if a certain job can only be processed on a
subset of the machines in a stage, then the problem is said to
have machine eligibility. If a job is to be treated at one stage
several times it is said to have revisits or recirculations. An
HFS with preemption allows a job to be interrupted and
finished later, while an HFS with non-preemption models a
situation where jobs which have started on a machine must
be completed on that machine without interruption. An HFS
naturally has precedence constraints between stages since
each job has to pass through the stages sequentially.

In a general setting, starting a job at a certain stage may
not be possible until another job is completed. The HFS is
then said to have precedence constraints between jobs. Often



a certain time is required to prepare a machine before it can
process a job at a certain stage. If the set-up time is constant
then it is most often included in the duration of the stage.
However, if the set-up time depends on the processing order,
the HFS is said to have sequence-dependent set-up times (for
instance, if switching between two different types of jobs
requires changing some tooling, but scheduling two
subsequent jobs of the same type eliminates the need for this
time buffer). If the process is constrained by the fact that a
sufficient amount of time must pass between certain stages
of a job, the problem is said to have time lags. For more on
classification of different flow shops see Pinedo (2015).

A scheduling problem is not particularly interesting
without an objective. As noted by Ruiz and Vázquez-
Rodríguez (2010), the most common objective of an HFS
problem is to minimize the makespan, defined as the time
difference between the start of the first activity and the end of
the last activity. It is commonly reasoned that a low
makespan indicates a high utilization of the machines. Let 
denote the feasible schedule, and let Cjk( ) be the completion
time of job j at the final k-th stage under the schedule . Min-
imizing the makespan of processing J jobs can thus be
formulated as

[1]

An example of another common objective in scheduling is
to minimize the inventory costs. In some settings, this can

be represented as a weighted sum of all completion times
which focuses on reducing the completion times of all jobs
simultaneously.

[2]

In order to leverage research from other industries it is
beneficial to model the mining process as a flow shop. HFS is
mentioned in a few previous studies from the mining
community. Most notably, Schulze et al. (2016) argue that
the production cycle in a room-and-pillar mine can be
described as an HFS where excavating one cubic block is
considered as one job. The authors model the process with
unrelated parallel machines, indicating not only machine-
dependent but also location-dependent processing times.
They complicate the HFS further by including revisits to
model the fact that this particular potash mine has time-
based rescaling, meaning that if a certain amount of time has
passed since scaling the work area it is unsafe. Hence,
rescaling is necessary before continuing operations. The
authors do not include any transportation time for the
machines to travel between faces. Another study that briefly
mentions HFS is that by Song et al. (2015). The authors note
that the mining operation under study is an HFS, but without
providing any details or motivations. They claim that the
transportation time between work areas in an underground
mine is a key characteristic that previous work on HFS
scheduling does not consider. However, as discussed above,
transportation times can be modelled as sequence-dependent
set-up times, for which there are numerous related studies.

By using the introduced vocabulary, we note that cut-
and-fill, room-and-pillar, and development can be modelled
as an HFS as follows.

� One job is identified as excavating one geographical
volume of rock in a specified location, i.e. one job
corresponds to one full production cycle.

� Each location is processed by the activities included in
a production cycle, hence the activities in the cycle are
seen as stages in a k-stage HFS.

� If the machine park is heterogeneous (different
specifications such as shovel volume or drilling speed),
but does not vary in different parts of the mine, then
the machines can be considered as uniform.

� The transportation time between different locations can
be modelled as sequence-dependent set-up times. This
does not exclude ‘ordinary’ set-up times, such as
connecting a machine to the electrical grid, since these
durations can be added on top of the transportation
time in a sequence-dependent manner.

� Multiple scaling, clearing, loading, and rock supporting
activities during one production cycle can be modelled
by revisits.

� Precedence constraints can be used to account for (i)
considering safety standards, (ii) the impact of
operating in a confined environment, and (iii) to model
the fact that access to a location needs to be granted
before excavation can start.

Summarizing, the mining methods that follow a
production cycle at a single location can be modelled as a k-
stage HFS with uniform parallel machines, sequence-
dependent set-up times, revisits, and precedence constraints
between jobs. A possible objective could be to minimize the
makespan (see Equation [1]), indicating that sought-after
schedules include efficient use of the mobile production fleet.

The methods used for solving the HFS scheduling problem
can be categorized as exact, heuristic, or metaheuristic. The
exact methods solve the HFS problem to optimality. A simple
example of an exact method is the scheduling of all different
combinations of activities and selecting the one that
optimizes some metric (given that it is feasible). It is worth
mentioning that even one of the simplest HFS (two stages,
where the first stage has only a single machine and the other
stage has two machines) is known to be NP-hard (Gupta,
1988). Thus, it may be very hard to solve certain scheduling
problems to optimality in a reasonable time using exact
methods. Therefore, heuristic methods are often introduced
as the size of the problem increases. A heuristic is an
algorithm that is typically fast, but lacks optimality
guarantees. Metaheuristics, in turn, are systematic
techniques for introducing randomness to improve on
heuristics in the search for optimal solutions.

To be categorized as exact, a scheduling algorithm needs to 
be guaranteed to find the globally optimal solution on every
problem instance. The most commonly used exact technique
for HFS scheduling is branch and bound (B&B), where the
problem is solved by searching over a binary decision tree. At
each node, the search space is branched (split) into two
disjoint sets. Two statistics are tracked, an upper bound and
a lower bound. For minimization, the upper bound is simply
the best solution so far, while the lower bound is calculated
by solving a relaxed problem. The relaxation could, for
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instance, be to consider all discrete variables as continuous
(known as linear relaxation). Obviously, a solution to the
relaxed problem will have at least as good an objective as the
original problem. In each node in the search tree the lower
bound is calculated and compared to the upper bound. If the
lower bound is higher than the upper bound (i.e. the best
solution found so far) then that part of the tree cannot
contain the solution with the minimal cost. Thus, the whole
subtree can be ignored, which results in a reduced search
space. Much of the previous work on B&B in HFS scheduling
considers two- or three-stage HFS with only a few parallel
machines at each stage. One representative example
(Haouari, Hidri, and Gharbi, 2006) use a B&B algorithm to
schedule a two-stage HFS under the objective of minimizing
the makespan. The authors derive several efficient lower
bounds by relaxing the HFS under study. Upper bounds are
calculated in each node by an algorithm that gives priority to
jobs with a lot of remaining processing time. The authors
note that the B&B algorithm with the proposed bounds and
dominance rules can handle larger problem than previous
work in the field.

A related method is constraint programming, which is a
modern graph-based method increasingly used for scheduling
(Baptiste, le Pape, and Nuijten, 2012). This approach
leverages the common B&B method by systematically
exploiting the structure of the problem. Constraint
programming has been used successfully in many diverse
areas including planning, scheduling, and vehicle routing
(Baptiste, le Pape, and Nuijten, 2012).

An alternative method is to formulate the scheduling
problem as a mixed integer program (MIP) and solve it using
a commercial solver. The solvers often use B&B internally to
calculate the upper and lower bounds using a linear
relaxation. Early methods for scheduling HFS are criticized by
Liu and Karimi (2008) due to their incapability of handling
more complex HFS problems. The authors use MIP to study a
k-stage HFS which produces multiple products in batches. It
is common in modelling HFS by MIP to use variables either
representing time-slots, or by variables representing the
particular sequence in which jobs are scheduled on stages.
Liu and Karimi (2008) continue to note that even though

sequence-based models often involve fewer binary variables
than the time-slot counterpart, the relaxation of sequence-
based models is often inferior. To tighten the relaxation the
authors propose to combine both models. However, the work
indicates that models with fewer binary variables, or tighter
relaxations, do not necessarily always perform better (a
remark which is noted by the authors to be frequent in
related literature) (Table II).

For concreteness, a basic MIP model is introduced for
scheduling jobs in a k-stage HFS with the objective of
minimizing makespan. The full model can be seen in Model
1. Here, Cjs denotes the completion time of job at stage s. The
makespan Cmax is introduced as the minimum value such that
Cmax  Cjs holds for all j and s. Further, each stage has Ms
uniform parallel machines, and pjs denotes the processing
time of job j at stage s. By introducing two binary decision
variables, Yjsm and Xjj s, we can adequately represent the k-
stage HFS. The variable Yjsm represents machine allocation,
while Xjj s keeps track of the order in which the jobs are
scheduled.

In the MIP model given in Model 1, constraint [4] ensures
that at each stage only one machine is scheduled to process a
certain job. Constraint [5] enforces that the completion time
of a stage is dependent on the processing time of the
allocated machine. The two constraints in [6] and [7] make
sure that one machine cannot process several jobs
simultaneously, where a large number Q is used to enforce
the disjunctive constraint (Griva, Nash, and Sofer, 2009). The
domains of the decision variables are specified in constraint
[8]. This MIP model can be seen as a baseline where
modifications further specify characteristics of the particular
process under study.

As noted by many authors (e.g. Ruiz and Vázquez-
Rodríguez, 2010), most exact methods are incapable of
handling medium and large problem sizes. Therefore,
research often turns to heuristic methods as the problem size
increases. Heuristic methods (including dispatching rules,
scheduling policies, and construction procedures) are com-
monly deployed to deal with the computational challenge of 
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Table II

Yjsm = {1 if job j is processed in stage s by machine m
Xjj′′s = {1 if job j precedes job j′ in stage s 

0 otherwise 0 otherwise
Cjs = completion time of job j at stage s Cmax = the makespan of the schedule

minimize Cmax s.t.

[3] [6]

[7]

[8]

[4]

[5]

–



complex HFS problems. Heuristics are computationally cheap
and often intuitive algorithms for constructing a feasible
schedule. Although heuristics may produce good solutions,
they come with no performance guarantees. Moreover,
intuitive heuristics might perform poorly on some problem
instances. One famous example was introduced by Graham
(1978), who describes a bicycle factory. Scheduling of
workers to assemble the bicycles is done according to the
scheduling policy that (i) no assembler can be idle if there is
some work task that can be done and (ii) an assembler must
continue working on a task until it is completed (it is not
permitted to pause and do another task). Although this pol-
icy seems reasonable, Graham showed that both reducing the
duration of each task and hiring more workers results in
fewer bicycles produced per day. Such unexpected and
unpredictable behaviours are common for many dispatching
rules.

A common heuristic found in the scheduling literature is
the Nawaz-Enscore-Ham algorithm (NEH algorithm)
introduced by Nawaz, Enscore, and Ham (1983). The basic
idea of the NEH algorithm is that jobs which require a lot of
processing time should be scheduled before jobs which
require less time (so as to fit the smaller jobs in-between
larger ones). The NEH algorithm is based on the average
processing time (APT) of a job at stage s. For unrelated
parallel machines the processing times depend on the job,
stage, and machine (p = pjsm) and can be calculated as

[9]

which in turn is used to the form the total average
processing time for all jobs TAPTj = s APTjs. In Algorithm 1
(Table III) the NEH algorithm for minimizing makespan is
given in pseudocode. In order to be specific, assume that in
step 2 we select job j1 and j2. The makespans of the two
schedules are then calculated, one for the job sequence (j1, j2)
and one for the job sequence (j2, j1). Assume that the
makespan of (j1, j2) is lower than that of (j2, j1), the sequence
(j2, j1) is then discarded. At step 3 we consider a new job j3;
we then evaluate all possible insertions of the job into the
current sequence of jobs. In this case we evaluate the
makespan of three schedules; (j3, j1, j2), (j1, j3, j2), and (j1, j2,
j3). Similarly, the schedule with the lowest makespan is kept,
while the others are discarded. This continues until the list of
unscheduled jobs is empty. Once a sequence has been
determined the criterion used for allocating machines at each
stage is often based on the earliest finishing time. The NEH
algorithm is very flexible since the assignment of jobs to
machines can be based on any criteria, not only makespan.
(Table III).

Brah and Loo (1999) compare five HFS scheduling al-
gorithms and conclude that the NEH algorithm produces
high-quality schedules. The NEH algorithm is also deemed
appropriate by Ruiz, Şerifoğlu, and Urlings (2008), who
studied a complex k-stage HFS including unrelated parallel
machines, release dates for machines, sequence-dependent
set-up times, time lags, precedence constraints between jobs,
and machine eligibility. They furthermore compare heuristic
algorithms with solving MIP models, and conclude that the
NEH algorithm scales best with increased complexity of the
scheduling problem.

Another interesting heuristic for the k-stage HFS is the
shifting bottleneck procedure (SBP) found in e.g. Cheng,
Karuno, and Kise (2001). A bottleneck is a term used for a
limiting resource in a process chain, and the idea behind SBP
is to give priority to a bottleneck resource. For instance,
consider a three-stage HFS with a large number of identical
machines at stages 1 and 3, but only a single machine at
stage 2. If all machines have the same processing time, the
single machine in stage 2, through which all jobs need to
pass, becomes the bottleneck in the process. The SBP for this
three-stage HFS can be thought of as decomposing the three
stages into three single-stage parallel machine problems, and
iteratively sequencing and re-optimizing a schedule based on
which machine is the bottleneck in the current iteration. The
idea behind this heuristic is similar to the theory of
constraints (Nave, 2002). 

The drawback of using heuristics is that there is no
guarantee that the solution will be optimal. In fact, heuristic
solutions are typically suboptimal. However, the quality of a
constructed schedule can often be improved by randomly
perturbing a schedule and selecting a solution which shows
the best improvement. These methods, called metaheuristics,
include a variety of optimization techniques such as
simulated annealing, tabu search, and genetic algorithms,
with the common concept of combining randomness and local
search (Pham and Karaboga, 2012). Metaheuristics are
initialized by a solution, and explore the neighbourhood of
that solution in hope of finding a solution with an improved
objective. An example is running a heuristic algorithm to
produce an initial schedule, and then studying all feasible
swaps of two activities in that schedule. The explored
neighbourhood would then correspond to all pairwise swaps
such that machines allocations Mi, Mj to jobs Ji, Jj are changed
from (Mi Ji, Mj Jj) to (Mi Ji , Mj Ji) as long as it is a
feasible change. For all schedules in this neighbourhood, the
schedule with the lowest makespan is then selected.

A representative metaheuristic commonly deployed to
complex HFS is the genetic algorithm (GA). This algorithm
takes inspiration from biology by mimicking the evolutionary
process of natural selection. Based on a set of tunable
parameters (such as probability of mutation) the algorithm
’cross-breeds’ schedules to produce new schedules. In each
iteration the newly produced schedules are evaluated and a
subset of these is kept to breed the next generation of
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Table III

1 . Sort all jobs in non-decreasing TAPT
2.  Select the two jobs j, j′′ which have highest TAPT and remove them

from the list
3.  Construct two schedules, one where j is scheduled first and one

where j′ is scheduled first. Discard the schedule with highest
makespan

4.  for all jobs left in the list do
5.  Select the job with highest TAPT and remove it from list
6.  Calculate all possible insertions of the job into the current job

sequence
7.  Select the insertion which yields the lowest makespan
8.  end for
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schedules based on their fitness, i.e. objective function. One
example of GA can be found in Ruiz and Maroto (2006).
Unlike previous approaches with GA, which decompose the
problem into first sequencing the jobs and then finding a
feasible allocation of machines, in this paper the authors
embed the makespan directly into the fitness function of the
GA. Inspired by an industrial setting, the authors study a
complex k-stage HFS with unrelated parallel machines,
sequence-dependent set up times, and machine eligibility.
Furthermore, they benchmark their implementation to other
metaheuristic methods and show that their method
outperforms the next best metaheuristic by at least 50%. It is
noted that the GA outperformed manual scheduling done by
experts at the industry by almost 10%, indicating the
industrial relevance of these methods when it comes to
scheduling complex problems. In general, a drawback of GA
is the presence of numerous optimization parameters which
are typically case-dependent. In the example by Ruiz and
Maroto (2006) they determine these parameters by
performing a full factorial experiment on simulated test data.

Another study of sequence-dependent set-up times, but
with another metaheuristic method, can be found in Naderi et
al. (2009), where simulated annealing (SA) is used instead
of GA. SA is an optimization technique that resembles the
physical process that molecules undergo when a heated metal
is cooled. At first the mobility of the molecules is high
(corresponding to evaluating a lot of diverse schedules),
whereas when the metal cools the mobility becomes
increasingly impaired (corresponding to focusing in on
further optimizing a subset of these schedules) and the
molecules finally freeze in place (resulting in one final
schedule). The problem under study in this paper is a k-stage
HFS with transportation times and sequence-dependent set-
up times with the objective of minimizing, among other
things, the sum of completion times (see Equation [2]). The
method is compared to other metaheuristics, and the analysis
indicates that the proposed SA method works well for this
class of problem.

We have argued that scheduling, the ‘glue’ that unites high-
level planning and low-level control, is increasingly important
for profitable mining. After establishing a common ground by
giving an overview of underground mining and the flow shop
concept, representative previous research from both the
mining and flow shop communities has been reviewed. A
simple HFS model for underground mining was then
introduced, and a number of existing state-of-the art
scheduling techniques for HFS were described.

We have shown that cut-and-fill, room-and-pillar, and
development can all be modelled as a k-stage HFS with
uniform parallel machines, sequence-dependent set-up times,
revisits, and precedence constraints between jobs.

This HFS serves as a baseline that can be extended and
adapted to a specific mining process. For instance, the
processing time of a machine might depend on rock mass
properties, which could vary within the mine. This can be
modelled as unrelated parallel machines. Furthermore, in
some activities preemption is commonly allowed while in
others (for instance, activities involving concrete) preemption

is not possible. Some activities might also have an after-lag,
such as shotcreting, where the concrete needs to cure. The
machine is then free to do other jobs, while the location
remains unavailable for a certain duration. Mining practice
might also impose additional constraints on the HFS
scheduling problem. An example could be the safety hazard
of simultaneously drilling in adjacent drifts. This differs from
precedence constraints between jobs in the aspect that it is
dependent on both stage and job.

The HFS model presented in this paper covers only some
mining methods. When the scope is expanded to other
mining techniques, or to holistic modelling of the entire
underground mining process, the activities in the production
cycle might take place at different locations. Consider, for
instance, an activity that does not take place solely at the face
of a drift but at several locations, such as loading in a block
caving mine. Due to the confined environment, only one
machine can work at one location at a time. This means that
different locations in the mine need to be allocated at
different times during different stages of a job. Two ways of
dealing with this come to mind. One is to explicitly model
locations as necessary resources for different parts of the
production cycle, and the other is to use a segregated
approach where the HFS scheduling problem represents
production on a higher level and routing of vehicles is left to
tailored algorithms on a lower level. The routing algorithms
then handle the allocation of locations in order to ensure
coordinated routing. The segregated approach will naturally
be suboptimal, but in the context in which the algorithm is
situated it might be more suitable since machine routing may
be provided by e.g. machine manufacturers.

When examining the previous work on scheduling in
underground mining, a synthesized picture emerges. Almost
all studies reported by the mining industry use optimal
methods. Heuristics are sometimes introduced, but often only
naïve versions are in place, only to benchmark the optimal
methods. This could stem from the fact that to obtain some
results with enough theoretical height, researchers are more
likely to rely on rigorous mathematical programming than
heuristics or metaheuristics, with which it is difficult to
ensure that an optimal result has been found. However, most
authors admit that the optimal methods struggle when
scaling to industrial-size problems.

When considering the recent work from the flow shop
community, another picture emerges. In published papers on
HFS research the methods are distributed roughly as 50%
heuristics, 25% optimal methods, and the rest metaheuristics
and unclassified methods (Ruiz and Vázquez-Rodríguez,
2010). Historically, the development of efficient heuristics
has been the focus, while lately many authors use
metaheuristics. The metaheuristic approach (e.g. genetic
algorithms) is considered by many to be the state-of-the-art
for complex industrial scheduling problems.

We introduced an HFS model for underground mining in
order to reap the benefit of research from other industries. A
selection of relevant literature on isomorphic HFS scheduling
problems includes (i) the metaheuristic implementation by
Alfieri (2009) to schedule cardboard production, (ii) the
benchmark of heuristics (and MIP) by Ruiz, Şerifoğlu, and
Urlings (2008) which has applications in the ceramic tile
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industry, and (iii) the heuristics introduced by Botta-
Genoulaz (2000) solving similar HFS problems with
applications in e.g. the textile and paper industries.

In order to increase safety and maintain profitability in
underground mining, there has been a shift from hand-held
to mechanized equipment, followed by an increasing use of
continuous automation (e.g. conveyor belts, mine hoists,
crushers). Today, as noted in the survey of 200 mining
executives mentioned in the Introduction, modern mines are
primarily struggling with maximizing the total production
effectiveness. This means that the big picture must be
considered. More and more elaborate methods are being used
for long-term planning, and the advent of autonomous
vehicles makes the implementation of this plan more
predictable. Unfortunately, the interface between these two
timescales, the scheduling process, has not yet received the
same amount of interest. In order to achieve a lean,
transparent, and predictable mining process, high-
performance scheduling will be a crucial part of the
planning/production chain. The amount of published results
from the flow shop community is large. However, Ruiz and
Vázquez-Rodríguez (2010) note that in a selection of 200
papers on HFS scheduling the most general case with k > 2
stages and unrelated parallel machines is only considered in
7% of all papers. Unfortunately for the industry, it is in this
category where most real-world applications are found. This
lack of works calls for research not only on mine scheduling
in particular, but also on complex flow shop scheduling in
general.

A benefit of using automatic scheduling compared to
manual scheduling is that it is easier to take into account a
large amount of facts when constructing a schedule. It is, for
instance, possible to integrate maintenance information
directly in production scheduling. Today, production
scheduling and maintenance planning are often separate
activities. However, it is clear that these two topics are
connected, since they both operate on the same resources: the
machines. In a mine, the maintenance is often supported by
some software system keeping track of e.g. machine health
and spare parts. It would be beneficial if information from
this maintenance system could be integrated in the
scheduling algorithm. This would enable the construction of a
coordinated schedule where maintenance is planned to
minimize the adverse impact on production. This is especially
interesting if one considers predictive maintenance, since it
would allow an operator to make informed decisions that
account for the trade-off between machine health and
production goals. Here we considered maintenance
integration; however, this is only an example of many similar
benefits that can be gained from integrating other supporting
activities into the scheduling process, such as integrating the
management of infrastructure or rock mechanics inspections.
When the number of integrated systems increases, the overall
mining process becomes more coordinated and predictable.

Another important topic is the study of what metric is a
suitable quantifier of schedule quality in underground
mining. Most process industries have internal organizations
which are evaluated by different KPIs. However, on an
aggregated level, the goal is a safe and profitable mining

process. In order to reach that goal, a holistic metric may be
appropriate. For instance, an objective function that reflects
both scheduling and routing might produce high-quality
schedules. Another way would be to consider the entire value
chain (from mine to port) in the objective function to tightly
couple long-term and short-term goals. Most previous
research in both mine scheduling and flow shop scheduling
evaluates schedules based solely on the makespan. However,
due to the noisy nature of mining the probable use for
automatic scheduling is in an online ’rolling horizon’
approach. With that in mind, is makespan a good quality
indicator even though the schedule might be revised several
times a day? A metric representing smart utilization of the
parallel drifts might be more suitable in this case. A valuable
contribution to the field would be a study of which objective
functions are appropriate to use in a rolling horizon
approach, and how these can be constructed to reflect
common KPIs found in mining.

Many authors note that implementing automatic scheduling
in the industry is non-trivial (e.g. McKay, Pinedo, and
Webster, 2002; Ruiz, Şerifoğlu, and Urlings, 2008;
Harjunkoski, 2016). The first test of any scheduling
algorithm is a comparison with previous manual methods.
Therefore, to prove its value in an industrial setting,
automatic scheduling must be designed such that it will be
used by the manual scheduler on site. Continuing this train
of thought, this means that the algorithm needs to be flexible
enough to deal with most of the corner cases that the manual
scheduler can handle. If it is not in the same ballpark to
enable comparison, it will simply not be used. This
conclusion is supported by Harjunkoski et al. (2014), who
note that successful scheduling implementations in other
industries emphasize empowering the current manual
scheduler, and do not aim at replacing the scheduler. This
requires an intuitive and flexible way to interface the
scheduling algorithm, thus encouraging mine schedulers to
actually use it. This part of automation is often overlooked by
researchers, who are inclined to view design topics as second
in importance to algorithm development, although from an
industrial acceptance point of view the design might even be
more important than the actual algorithm being used.

From published works, it is easy to recognize recent
trends and the state-of-the-art at the moment. However,
when targeting an industry with a lot of competition there is
always an incentive to keep results secret. Compared to
academia, where success is measured by published works, it
is harder to estimate the state-of-the-art in mine scheduling
practice, since many mines do not disclose any information
about their scheduling process. Some secrecy concerns can,
however, be alleviated by using flow shops. The flow shop
abstraction can be used to separate algorithmic scheduling
issues from sensitive process or business details, enabling
the discussion to be held at an appropriate level. We believe
that an open research community that supports development
and collaboration would benefit the entire industry.

Summarizing, there are several opportunities to increase
production effectiveness in underground mining by
optimizing the scheduling process. As methods for long-term
planning becomes better, and excavation is to a larger extent
handled by autonomous vehicles, research on scheduling
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methods will become increasingly important. By addressing
these challenges, the mining industry will, hopefully, stay
profitable for many years to come.

This work was partially supported by the Wallenberg
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ALARIE, S. and GAMACHE, M. 2002. Overview of solution strategies used in truck
dispatching systems for open pit mines. International Journal of Surface
Mining, Reclamation and Environment, vol. 16. pp. 59–76. 

ALFIERI, A. 2009. Workload simulation and optimisation in multi-criteria hybrid
flowshop scheduling: a case study. International Journal of Production
Research, vol. 47. pp. 5129–5145.

BAPTISTE, P., LE PAPE, C., and NUIJTEN, W. 2012. Constraint-Based Scheduling.
Applying Constraint Programming to Scheduling Problems. International
Series in Operations Research & Management Science. Springer.

BEAULIEU, M. and GAMACHE, M. 2006. An enumeration algorithm for solving the
fleet management problem in underground mines. Computers and
Operations Research, vol. 33. pp. 1606–1624.

BOTTA-GENOULAZ, V. 2000. Hybrid flow shop scheduling with precedence
constraints and time lags to minimize maximum lateness. International
Journal of Production Economics, vol. 64. pp. 101–111.

BRAH, S. A. and LOO, L.L. 1999. Heuristics for scheduling in a flow shop with
multiple processors. European Journal of Operational Research, vol. 113.
pp. 113–122.

BURGER, D. 2006. Integration of the mining plan in a mining automation system
using state-of-the-art technology at De Beers Finsch mine. Journal of the
South African Institute of Mining and Metallurgy, vol. 106. 
pp. 553–560.

CHENG, J., KARUNO, Y., and KISE, H. 2001. A shifting bottleneck approach for a
parallel-machine flowshop scheduling problem. Journal of the Operations
Research Society of Japan, vol. 44. pp. 140–156.

DARLING, P. 2011. SME Mining Engineering Handbook. Society for Mining,
Metallurgy & Exploration, Littleton, CO. 

EQUI, L., GALLO, G., MARZIALE, S., and WEINTRAUB, A. 1997. A combined
transportation and scheduling problem. European Journal of Operational
Research, vol. 97. pp. 94–104.

FLOUDAS, C.A. and LIN, X. 2004. Continuous-time versus discrete-time
approaches for scheduling of chemical processes: a review. Computers and
Chemical Engineering, vol. 28. pp. 2109–2129.

GAMACHE, M., GRIMARD, R., and COHEN, P. 2005. A shortest-path algorithm for
solving the fleet management problem in underground mines. European
Journal of Operational Research, vol. 166. pp. 497–506.

Giffler, B.,and Thompson, G.L. 1960. Algorithms for solving production-
scheduling problems. Operations Research, vol. 8. pp. 487–503.

GRAHAM, R.L. 1978. Combinatorial scheduling theory. Mathematics Today:
Twelve Informal Essays. Springer. pp. 183–211. 

GRIVA, I., NASH, S.G., and SOFER, A. 2009. Linear and Nonlinear Optimization.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Gupta, J N. 1988. Two-stage, hybrid flowshop scheduling problem. Journal of
the Operational Research Society, vol. 39. pp. 359–364.

GUSTAFSON, A., LIPSETT, M., SCHUNNESSON, H., GALAR, D., and KUMAR, U. 2014.
Development of a Markov model for production performance optimisation.
application for semi-automatic and manual LHD machines in underground
mines. International Journal of Mining, Reclamation and Environment,
vol. 28. pp. 342–355.

HAMRIN, H. 2001. Underground mining methods and applications. W.A.
Hustrulid & R.L.Bullock (eds.), Underground mining methods:
Engineering fundamentals and international case studies, Littleton. SME.
pp. 3–14. 

HAOUARI, M., HIDRI, L., and GHARBI, A. 2006. Optimal scheduling of a two-stage
hybrid flow shop. Mathematical Methods of Operations Research, vol. 64.
pp. 107–124.

HARJUNKOSKI, I. 2016. Deploying scheduling solutions in an industrial
environment. Computers and Chemical Engineering, vol. 91. pp. 127–135.

HARJUNKOSKI, I., MARAVELIAS, C. T., BONGERS, P., CASTRO, P.M., ENGELL, S.,
GROSSMANN, I.E., HOOKER, J., MÉNDEZ, C., SAND, G., and WASSICK, J. 2014.
Scope for industrial applications of production scheduling models and
solution methods. Computers and Chemical Engineering, vol. 62. 
pp. 161–193.

HOWES, R. and FORREST, C. 2012. Short interval control in today’s underground
mine: A case study. Proceedings of MINExpo International, Las Vegas, 
24–26 September.  https://edstechnologies.com/Mailer/Sep15/
Newsletter_September/images/ShortIntervalControl.pdf

HUSTRULID, W.A. 1982. Underground Mining Methods Handbook. Society of
Mining Engineers of AIME, New York.

KOZAN, E. and LIU, S.Q. 2011. Operations research for mining: a classification
and literature review. ASOR Bulletin, vol. 30. pp. 2–23.

KUCHTA, M., NEWMAN, A., and TOPAL, E. 2004. Implementing a production
schedule at LKAB’s Kiruna mine. Interfaces, vol. 34, no. 2. pp. 124–134.

LITTLE, J., KNIGHTS, P., and TOPAL, E. 2013. Integrated optimization of
underground mine design and scheduling. Journal of the Southern African

Institute of Mining and Metallurgy, vol. 113. pp. 775–785.
LIU, Y. and KARIMI, I. 2008. Scheduling multistage batch plants with parallel

units and no interstage storage. Computers and Chemical Engineering, 
vol. 32. pp. 671–693.

MARTINEZ, M.A. AND NEWMAN, A.M. 2011. A solution approach for optimizing
long- and short-term production scheduling at LKAB’s Kiruna mine.
European Journal of Operational Research, vol. 211, no. 1.pp. 184–197.

MATAMOROS, M.E.V. and DIMITRAKOPOULOS, R. 2016.  Stochastic short-term mine
production schedule accounting for fleet allocation, operational
considerations and blending restrictions. European Journal of Operational
Research, vol. 255. pp. 911–921.

MCKAY, K., PINEDO, M., and WEBSTER, S. 2002. Practice-focused research issues
for scheduling systems. Production and Operations Management, vol. 11,
no.2. pp. 249–258..

MINCOM. 2011. Annual Study: Mining Executive Insights 2011. Denver, CO.
NADERI, B., ZANDIEH, M., BALAGH, A.K.G., and ROSHANAEI, V. 2009. An improved

simulated annealing for hybrid flowshops with sequence-dependent setup
and transportation times to minimize total completion time and total
tardiness. Expert Systems with Applications, vol. 36. pp. 9625–9633.

NAVE, D. 2002. How to compare six sigma, lean and the theory of constraints.
Quality Progress, vol. 35, no. 3. pp. 73-78.

NAWAZ, M., ENSCORE, E.E., and HAM, I. 1983. A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem. Omega, vol. 11, no. 1. 
pp. 91–95.

NEHRING, M., TOPAL, E., KIZIL, M., and KNIGHTS, P. 2012. Integrated short-and
medium-term underground mine production schedul-ing. Journal of the
Southern African Institute of Mining and Metallurgy, vol. 112. 
pp. 365–378.

NEHRING, M., TOPAL, E., and KNIGHTS, P. 2010. Dynamic short term production
scheduling and machine allocation in underground mining using
mathematical programming. Mining Technology, vol. 119. pp. 212–220.

NEHRING, M., TOPAL, E., and LITTLE, J. 2010. A new mathematical programming
model for production schedule optimization in underground mining
operations. Journal of the Southern African Institute of Mining and
Metallurgy, vol. 110. 437–446.

NEWMAN, A. M., KUCHTA, M., and MARTINEZ, M. 2007. Long- and short-term
production scheduling at LKAB’s Kiruna mine. Handbook Of Operations
Research In Natural Resources. International Series in Operations
Research and Management Science, vol. 99.  pp. 579–593. 
pp. 579. 

NEWMAN, A.M., RUBIO, E., CARO, R., WEINTRAUB, A., and EUREK, K. 2010. A
review of operations research in mine planning. Interfaces, vol. 40. 
pp. 222–245.

O’SULLIVAN, D. and NEWMAN, A. 2015. Optimization-based heuristics for
underground mine scheduling. European Journal of Operational Research,
vol. 241. pp. 248–259.

PHAM, D. and KARABOGA, D. 2012. Intelligent Optimisation Techniques: Genetic
Algorithms, Tabu Search, Simulated Annealing and Neural Networks.
Springer.

PINEDO, M. 2015. Scheduling. Springer.
RUIZ, R. and MAROTO, C. 2006. A genetic algorithm for hybrid flow-shops with

sequence dependent setup times and machine eligibility. European Journal
of Operational Research, vol. 169. pp. 781–800.

RUIZ, R., ŞERIFOĞLU, F.S., and URLINGS, T. 2008. Modeling realistic hybrid flexible
flowshop scheduling problems. Computers and Operations Research, 
vol. 35. pp. 1151–1175.

RUIZ, R. and VÁZQUEZ-RODRÍGUEZ, J.A. 2010. The hybrid flow shop scheduling
problem. European Journal of Operational Research, vol. 205. pp. 1–18.

SAAYMAN, P., CRAIG, I., and CAMISANI-CALZOLARI, F. 2006. Optimization of an
autonomous vehicle dispatch system in an underground mine. Journal of
the Southern African Institute of Mining and Metallurgy, vol. 106, no. 2.
pp. 77–86.

SCHULZE, M., RIECK, J., SEIFI, C., and ZIMMERMANN, J. 2016. Machine scheduling in
underground mining: an application in the potash industry. OR Spectrum,
vol. 38. pp. 365–403.

SCHULZE, M, and ZIMMERMANN, J. 2017. Staff and machine shift scheduling in a
German potash mine. Journal of Scheduling, vol.  20, no. 6. pp. 635–656.

SONG, Z., RINNE, M., and VAN WAGENINGEN, A. 2013.  A review of real-time
optimization in underground mining production. Journal of the Southern
African Institute of Mining and Metallurgy, vol. 113, no. 12.
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-
62532013001200004

SONG, Z., SCHUNNESSON, H., RINNE, M., and STURGUL, J. 2015. Intelligent
scheduling for underground mobile mining equipment. PloS One.
https://doi.org/10.1371/journal.pone.0131003

TA, C.H., KRESTA, J.V., FORBES, J.F., and MARQUEZ, H.J. 2005. A stochastic
optimization approach to mine truck allocation. Journal of Surface Mining,
Reclamation and Environment, vol. 19. pp. 162–175.

TANG, L., LIU, J., RONG, A., and YANG, Z. 2001. A review of planning and
scheduling systems and methods for integrated steel production. European
Journal of Operational Research, vol. 133. pp. 1–20.

WILLIAMS, J., SMITH, L., and WELLS, P. 1972. Planning of underground copper
mining. Proceedings of the 10th International Symposium on the
Application of Computer Methods in the Mineral Industry, Johannesburg,
South Africa, 10–14 April 1972. Southern African Institute of Mining and
Metallurgy, Johannesburg. pp. 251–254. http://www.saimm.co.za/
Conferences/Apcom72/251-Williams.pdf     �

�

1276




