
When reporting resource estimates,
practitioners are required to follow general
standards described in the NI43-101 (CIM
guidelines), JORC, or SAMREC codes. One can
generally recognize three main parts directly
related to the block model: 

� Pre-processing: exploratory data
analysis (EDA), domaining, capping,
compositing, declustering, variography

� Processing: block size, neighbourhood,
interpolation types (linear or nonlinear)

� Post-processing: classification, reporting.

Pre-processing aims to simplify and
strengthen the processing step. Ideally,
domaining, capping. and compositing is aimed
at defining a single homogenous population.
During the processing phase, a common
practice is to use a block size corresponding to
the planned selective mining unit (SMU). In
most precious metal deposits (gold, notably),

the SMU size is frequently smaller than the
recommended half data spacing (Journel and
Huijbregts 1978), resulting in high estimation
variance and either a high degree of
smoothing if the regression slope is managed
or a high degree of conditional bias if it is not.
Most actual resource estimates are made using
block sizes between one-quarter to one-sixth
of the average data spacing, sometimes even
smaller. In addition to the block size, the
interpolation choices for the neighbourhood
selection and interpolator (e.g. inverse
distance (ID) or ordinary kriging) are often
based on the Qualified Person’s (the QP)
experience and some basic validation plots
that often do not consider the conditional bias
(e.g. trends or SWATHs plots, which are
designed to compare two sets of population
using a one-dimensional graph).

Based on these findings, Rossi and Parker
(1994) proposed to ‘tune’ the kriging plan so
that the distribution of the interpolated
estimate has a coefficient of variation close to
the theoretical one obtained by a global change
of support method (hereafter simply referred
as the change of support or COS). Although
criticized for the possible introduction of
conditional bias (Krige, 1997; Journel and
Kyriakidis, 2004), this practice is becoming
more common in technical reports. It is mostly
applied as a visual check on the grade-tonnage
curve or as a Q-Q plot of the grades. This
simple technique ensures that the estimated
blocks respect the SMU’s theoretical global
grade-tonnage curves. In its simplest form,
practitioners select the interpolant type (OK or
ID2-ID3 most of the time), the minimum and
maximum number of points (composites) used
for the interpolation, and in some cases, the
number of points per octant or maximum
number of points per drill-hole. Isaaks (2005),
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Rossi and Deutsch (2013), and Nowak and Leuangthong
(2017) stated that during prefeasibility and feasibility
studies, resource estimates should seek to respect the global
recoverable resources (inferred from COS) rather than
providing precise local estimates. Doing so, the estimates are
necessarily conditionally biased (David, 1977, chapter 11).
Reliable local estimates (free of conditional bias) can be later
obtained during production from more abundant grade
control data. Journel and Kyriakidis (2004) support the same
idea but through the use of simulations.

In order to use the Rossi and Parker (1994) ’tuning
method’, the practitioner must first select an experimental
variogram model and then choose a volume-variance
correction algorithm (i.e. a COS model). Even though
variogram models and the main COS methods are well-
known and have been widely used in the industry for
decades, there are only a few publications that have
experimentally compared the most widely used methods.
Only some authors have compared the available methods
from an experimental or practical point of view. Demange et
al. (1987) assessed four COS models on skewed data-sets but
did not use the IndLog model. Srivastava and Parker (1989)
compared the robustness of different variogram types to a
lognormal heteroscedastic distribution and concluded that
pairwise relative variograms are easier to interpret than
traditional variograms; however, they did not measure the
impact of the resulting variogram model on estimation or
COS. Rossi and Parker (1994) tested global and local COS
models, and concluded that the DGM is superior, under the
hypothesis that the real (‘perfect’) variance correction factor
was known. Curriero et al. (2002) compared the impact of
two variogram types on kriging results; they found that the
traditional variogram outperformed the correlogram. Emery
(2004) demonstrated some of the limitations of the IndLog,
but without direct comparison to the DGM or the impact of
variogram estimator. Emery and Ortiz (2005) demonstrated
that DGM outperform other COS models for lognormal
distribution, but the IndLog model was not assessed. More
recently, Chiles (2014) compared two different DGMs and
their validity range, but the variogram types were not
considered. 

We aim to assess the impact of the grade distribution and
the choices of the variogram estimator type on the
performances of both DGM and IndLog COS models (the latter
in two different versions). Three different grade distributions
(lognormal, unimodal negatively skewed, and bimodal) and
four different variogram estimators (traditional, pairwise
relative, correlogram, and normal scores) are compared,
using different sampling densities. The goals are to determine
for the different distributions considered: 

(i)    Which variogram estimator leads to estimated
models providing more accurate block distribution
predictions? 

(ii)   Which COS provides the best predictions when based
on the estimated variogram models from the various
variogram estimators? 

(iii)  How does sampling density affect the performance
of variogram estimators and COS models? 

We also examine the effect of SMU size on the
performance of COS models. We stress that, contrary to most
previous papers on the subject, we do not assume the true

variogram is known but rather we fit the models to the
different experimental variogram estimators. The same fitting
criterion and algorithm is used in all cases studied. Hence,
the impact of the choice of the fitting method is not
considered, and this certainly constitutes a limitation to the
study. Also, for simplicity, only 2D cases are considered.

The databases used for comparison are obtained by
simulation using the FFT-MA method (Ravalec, Noetinger,
and Hu 2000). The methodology section presents briefly the
FFT-MA method, the variogram estimators, and the change
of support models used. Then for various sampling spacings
of simulated data-sets, results of the change of support for
different variograms types are examined. Tests on the COS
model’s sensitivity to block size and variogram range ratios
are also studied. Discussions and conclusions follow.

We use a series of simulated data-sets to assess the
performance of different variogram estimators for DGM and
IndLog. These two COS models are the most widely used in
the mining industry. Simulated data-sets enable us to
compute the experimental block distributions of the different
realizations and allow comparison between the ‘true’ results
and the estimated results predicted by COS with limited
sample data. Four main estimators of variograms are
generally found within technical reports: traditional,
correlogram (non-ergodic), pairwise relative, and normal
score. Each of these variograms were computed on both
exhaustive and partial data-sets, with the latter used to
mimic different densities of exploration drill-holes. 

Simulations to generate the exhaustive data-sets were
performed by fast Fourier transformation with moving
average (FFT-MA) (Ravalec, Noetinger, and Hu 2000). The
mathematical concept behind FFT-MA simulations shows
that a random function can be written as a weighted average
of white noises where the weighting function used
guarantees the reproduction of the covariance model. In FFT-
MA, most of the calculations are done in spectral domain
(Liang, Marcotte, and Shamsipour 2016), which allows fast
generation of a large number of Gaussian simulations. To
simulate different distributions, post-simulation
transformations were applied: an exponential transformation
for lognormal distribution and Gaussian anamorphosis,
based on ranking, for bimodal and negatively skewed
distributions. Lognormal, bimodal, and negatively skewed
distributions cover typical distribution types found in mineral
deposits (especially in precious commodities). FFT-MA
simulations were performed in 2D using a unit node spacing
and a large square field of one thousand units a side. The 2D
results could be interpreted as a large bench in an open pit
operation, or as a tabular vein-type gold deposit.

To simulate production or definition drill-hole patterns,
realizations were virtually sampled over regular grids at 10
and 50 units spacing. The regular grid removes the need to
decluster data, although we stress that declustering is an
important step that should be performed prior to any mining
estimation. The most widely used declustering methods are
cell-declustering (Deutsch, 1989), polygonal or voronoi
(Chiles and Delfiner, 2012), and kriging weights (Olea,
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2007). Moreover, no measurement error was added to the
selected data. For interested readers, Journel and Kyriakidis
(2004) describe the impacts of sampling error on mining
geostatistical methods.  

There are four variogram estimators usually found in
technical reports (the term variogram is used here for
experimental semivariogram, and more generally for any tool
describing the correlation of the data as a function of the
distance): 

� The traditional variogram (Matheron, 1963): defined as
half the average squared difference between points
separated by a distance h.

� The correlogram or non-ergodic variogram (Isaaks and
Srivastava 1989) is a standardized variogram type. The
standardization is performed using the averages of
both the head and the tail and the standard deviations
of the pairs. It is considered to be more robust to
outliers and heteroscedastic data-sets (Srivastava and
Parker, 1989). It is one of the most commonly used
variogram estimators in mining applications.

� David (1977) described two forms of relative
variogram: the general relative and the pairwise
relative.  Both are standardized versions of the
traditional variogram. In this paper, the pairwise
version was used. In the pairwise relative variogram,
the standardization is done with the average of the two
values for each pair.

� The normal score variogram (Chiles and Delfiner, 2012;
Wilde and Deutsch 2005) is identical to traditional
variograms except that the data is first transformed to a
Gaussian distribution. The Gaussian transformation
reduces the impact of outliers on the variogram and
facilitates the modelling. The variogram model must
then be back-transformed to the original space. 

In addition to the nugget effect, it is a common practice in
the mining industry to fit one or two variogram structures.
Some practitioners may use more, but most resource
geologists use two structures, one for short range and the
other one for long range, but both oriented in the same
direction. The spherical model is a common model used in
public reports. Hence, we choose to fit a sum of two spherical
variogram models to the experimental variogram of the raw
Z-variable, i.e. obtained after transformation of simulated
Gaussian values to grade. The fitting was done automatically
using a weighted least-squares method, similar to Cressie
(1985). Each spherical component was considered
anisotropic with known directions of anisotropy. The
automatic fitting procedure was applied with no manual
control to limit the bias and subjectivity. Although some
automatically fitted models ended up far from the true Z-
exhaustive variograms, they were kept in all computations to
avoid favouring any of the estimators.

Methods of change of support (COS), also known as volume-
variance correction or global estimates, seek to derive the
global histogram and grade-tonnage curves at SMU size from
point distribution (composites). Regrettably, COS are not
systematically included in resource estimates in technical

reports, although they are required to obtain SMU grade-
tonnage curves necessary to guide block
simulation/interpolation. There are numerous COS
approaches, including affine correction (Journel and
Huijbregts, 1978), Gaussian approach (Matheron, 1978), bi-
Gaussian approach (Marcotte and David, 1985), mosaic
correction (Demange et al., 1987), indirect lognormal (Isaaks
and Srivastava, 1989; Emery 2004), lognormal with three
parameters (Krige, 1981), discrete Gaussian (Matheron,
1976; Rivoirard, 1994; Emery, 2007) and LU simulation
(Davis, 1987). However, the indirect lognormal correction
(IndLog) and the discrete Gaussian model (DGM) methods
are commonly used by Canadian resource QPs.

The indirect lognormal method is suited for positively
skewed distributions (not necessarily lognormal) observed
for most precious metal deposits. It assumes the permanence
of the lognormal distribution between data at the point
support (Z) and SMUs histograms (ZSMU). The distribution at
the SMU size is inferred from the point data by correcting the
variance of the population. We have in this model: 

[1]

where the equality stands in distribution. Two different
approaches can be used to determine the coefficients a and b.
The first approach is described in Isaaks and Srivastava
(1989), hereafter referred to as ’traditional IndLog’. One
determines first b:

[2]

with f the variance correction factor given by:

[3]

where D2 is the dispersion variance and CV is the coefficient
of variation of the point data (Z); f can be inferred from the
variogram model as the ratio of the SMU block variance to
the quasi-point variance within the domain. As it is a ratio, it
is insensitive to the true sill value (i.e. normalized
variograms can be used without re-scaling to population
variance).  

Parameter a is then chosen to ensure equality of the
mean for SMU and point distributions. However, as remarked
by Isaaks and Srivastava (1989), multiplication by a 1 does
modify the variance of the SMU, thus the correction is not
completely consistent. 

A better and entirely consistent approach was proposed
by Emery (2004), referred in this article as ‘Emery IndLog’.
First determine b:

[4]

where m = E[Z]. Then, solve the following equation for a:

[5]

It is easy to verify that these choices ensure the point’s
mean is preserved and the right SMU variance is recovered.
Despite the theoretical superiority of the Emery (2004)
approach, most software uses the Isaaks and Srivastava
(1989) approach. In our research we assess both methods.

A comparison of indirect lognormal and discrete Gaussian change of support methods
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The DGM is slightly more evolved mathematically and
interested readers will find more details in Armstrong and
Matheron (1986), Rivoirard (1994), Emery (2007), Chiles
and Delfiner (2012), or Rossi and Deutsch (2013). The
method makes no assumption on the point marginal
distribution (Gaussian, lognormal, multimodal, or any other
distribution type). Although it is usually presented in
textbooks in conjunction with Hermite polynomial
expansions to express the transformation from Gaussian to
grade variable, this is not a requirement for the method and
it can be equally applied using only a graphical
transformation.  The DGM starts from the Cartier relation:

[6]

where Z(x) is the grade of a point randomly selected within
block v. Then, assuming that the Gaussian variables Y and
Yv associated to the grades Z and Zv follow jointly a zero
mean unit variance bi-Gaussian distribution with correlation
r, one can compute (Rivoirard 1994):

[7]

where u is an integration variable, g(u) is the Gaussian
density function evaluated at u, and (.) is the
transformation function from Gaussian Y to grade Z at the
point scale.  Equation [7] enables a block grade value Zv to
be associated with every value of a N(0,1) distribution (Yv)
using simple numerical integration. Note that (.) was
defined by a simple graphical relation in the present
document. In all cases, the only unknown in Equation [7] is
the correlation coefficient r. The coefficient r is selected such
as to ensure that the transformed Zv variables have the
desired SMU variance.

A total of 100 Gaussian simulation realizations are obtained
on a grid of 1000 × 1000 points. The large size of the field
(>15 times the correlation range) allows more stable
variograms to be obtained; the purpose of this study is not to
assess variogram stability as in Srivastava and Parker
(1989), but rather the impact of variogram estimators on COS
performances. The same variogram is used for all realizations
of the Gaussian variable. The variogram is anisotropic with
parameters shown in Table I.

Using Gaussian anamorphosis, three different target
distributions for point grade are used: lognormal, bimodal
(considered as a single homogeneous bimodal distribution),
and negatively skewed. Target distribution statistics are
presented in Table II. 

Using all simulated points, the four variogram estimators
(traditional, correlogram, pairwise, Nscore) were
automatically fitted by assuming a spatial structure
composed of a nugget effect and two anisotropic spherical
models, both oriented in the same direction. We stress that
the fitted model has two structures instead of a single one in
the theoretical model as indicated in Table I. This adds
flexibility in modelling to account for the effect of the
Gaussian anamorphosis on the variogram model. Although a
spherical model is used to simulate the Gaussian variable,
the variogram of the transformed variable is no more
spherical. For each of the four variogram types, DGM and
both versions of IndLog change of support were tested using
a SMU of the size of 10 × 10 units. In addition to exhaustive
data-sets, each realization was subsampled to imitate regular
drill-hole patterns at respectively 1, 10, and 50 units. Then,
for each pattern, experimental variograms and COS models
were recalculated. This resulted in three patterns × 4
estimators × 3 distributions × 3 COS = 108 possibilities for
each cut-off.   

COS models rely upon an estimate of the dispersion variance
to derive distribution at different support size. Using the
exhaustive database, Table III compares the mean dispersion
variances calculated experimentally from the simulated nodes
(real) to the dispersion variances estimated from the different
variogram types 10 × 10 units SMU size. Generally, all
variogram types provide close estimates of the true block
dispersion variance; although the pairwise variogram
systematically underestimates the dispersion variance. 

A comparison of indirect lognormal and discrete Gaussian change of support methods
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Table I

Nugget effect 0.1 – –
1 0.9 60–30 45

Table II

Lognormal 1.65 4.64 5.84
Bimodal 1.32 1.44 0.50
Negatively skewed 3.00 0.94 -4.17

Table III

Lognormal 2.79 2.85 2.83 2.69 2.84
Bimodal 0.93 0.91 0.91 0.77 0.91
Negatively skewed 0.66 0.62 0.62 0.54 0.64
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The difference between real (simulated) grades and COS
results was then calculated for cut-off grades varying from 0
to 3.3 with a 0.3 increment. Realistic mining cut-offs of 0.3
and 1.5 were selected for plotting (e.g. cut-offs of 0.3 and 
1.5 g/t would be reasonable for a gold open pit and a large
underground mine respectively). Box plots in Figure 1
present the grade, volume, and conventional profit errors (the
conventional profit is defined as P(c) = V(c)(m(c) – c) where

c is the considered cut-off and P(c), V(c), and m(c) are
respectively the conventional profit, the volume, and the ore
grade at that cut-off; it corresponds to the amount of metal
left after paying for the costs represented by the cut-off for
the three distributions with exhaustive sampling).  DGM
(blue), traditional IndLog (red), and Emery IndLog (green)
are shown. The errors are calculated by subtracting the
estimated value from the true value for each realization, so

A comparison of indirect lognormal and discrete Gaussian change of support methods
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(a) Lognormal distribution

(b) Bimodal distribution

(c) Negativey skewed distribution
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that a positive error corresponds to an underestimation of the
parameter. On each box plot, the central mark indicates the
median, the box limits correspond to the 25th and 75th
percentile, and the whiskers extend to two standard
deviations (± 2 ). 

For the lognormal distribution, all COS models perform
relatively well, while the traditional IndLog shows errors
more centred on zero and with a slightly smaller spread.
Minimum errors (mean and spread) are obtained with Nscore
variograms, whereas the worst results are associated with the
pairwise variograms. For distributions that are not strictly
lognormal, the DGM appear unbiased; conversely, both
IndLog COS models appear biased for most of the statistics

considered. Emery IndLog achieves better results than the
traditional lognormal correction. Variogram types performed
equivalently, except for the pairwise, which returned slightly
biased results.

Figure 2 presents, as box plots, the results of the simulated
COS model for various cut-offs for each distribution at 10 and
50 node spacing using the traditional variogram. These
spacings were selected because they could correspond to the
drilling spacing for grade control and long-term models in
gold projects. As expected, there is a decrease in confidence
(larger box plot spread) with the increase of data spacing, for

�

6

(a) Lognormal distribution

(b) Bimodal distribution

(c) Negatively skewed distribution
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both grade and volume. With increasing cut-off, confidence
decreases for grade, while confidence in tonnage is more
constant. The error distribution is relatively symmetrical for
all COS models. As previously noted, the DGM presents
results more robust to the different distributions. For bimodal
and negatively skewed distributions, Emery IndLog errors are
more centred on the ‘real’ grade-tonnage curves (no
systematic bias) than the traditional IndLog model. This
systematic bias of the traditional IndLog is particularly critical
in mining applications.

To define an overall measure of performance, the mean
relative unsigned errors (MRUE) were calculated over all
realizations and all cut-off grades as follows:

[8]

where n is the number of simulations and nc the number of
different cut-offs considered.

Table IV presents the MRUE calculated using Equation
[8] on the 50-node spacing data-sets and using traditional
variogram estimator. DGM outperforms the other models for
bimodal distribution and shows a slight advantage for
negatively skewed distribution. For the lognormal
distribution, all models performed similarly, as expected.

For resource estimates, practitioners must consider the SMU
size. This parameter is usually defined as a function of the
geological setting, selected mining equipment (shovel-truck
size), and other practical resource constraints such as
reasonable minimum mining width or software limitations
(sub-blocks or partial/percentage blocks). The sensitivity of
COS models to block size and variogram range was evaluated
for several block size/variogram range ratios. Data-sets were
simulated using FFT-MA with a fixed variogram model
(isotropic spherical model with a range of 100 units). The
exhaustive traditional variograms were computed and
automatically fitted. COS models were then compared to
simulated SMUs. The exercise was repeated for block sizes
ranging from 10 to 200 units, corresponding to ratios 0.1 
to 2.

Figure 3 presents the grade and volume mean absolute
error (at all cut-offs) for each COS model as a function of the
ratio. For lognormal distribution, COS models present
relatively similar results, with an error that comprehensively
increases with the block size. For bimodal and negatively
skewed distribution, the DGM perform the best, followed by
Emery IndLog models and then the traditional IndLog. The
increase of error with size of support is expected as the true

block distribution departs more and more from the point
distribution. Also, differences between COS models are
stronger for the bimodal and negatively skewed distribution,
where DGM outperforms the other COS models for most
ratios.  

We compared experimentally the performances of two widely
used COS models with respect to choice of variogram
estimator, type of grade distribution, sampling density, and
SMU size. Three different representative distributions were
considered, and four different variogram estimators were
automatically fitted for a series of sampling patterns. For
computational reasons, the tests were run in 2D rather than
3D and a single variogram model was used for the simulated
Gaussian variable. Only regular sampling patterns were
considered in order to avoid introducing the declustering
method as an additional factor to consider.  

Keeping in mind the limitations of this experimental
study, our results (Figure 1) indicate that the traditional
variogram estimator, the correlogram proposed by Isaaks and
Srivastava (1989), and normal score variogram provide the
best, or close to best, COS results for all the tested
distributions. Our results indicate no clear advantage for the
correlogram compared to the traditional estimator, which are
the two most widely used variograms estimators in technical
reports. Pairwise variograms provide biased results when
used for COS purposes, a consequence of the underestimation
of block dispersion variance (Table III) for this variogram
estimator. For lognormal distribution, the normal score
estimator returns COS results with the smallest spread. This
is probably due to its robustness to outliers. 

A comparison of indirect lognormal and discrete Gaussian change of support methods
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Table IV

Lognormal 5.0 / 5.2 / 11.6 * 5.2 / 4.8 / 10.9 5.3 / 4.9 /11.1
Bimodal 5.1 / 1.5 / 9.1 20.4 / 6.8 / 19.8 23.3 / 10.9 / 23.7
Negatively skewed 1.0 / 0.8 / 2.4 1.6 / 1.1 / 2.6 1.4 / 0.9 / 2.4

* Errors on: volumes / grades / conventional profit

(a) Lognormal distribution

(b) Bimodal distribution

(c) Negatively skewed distribution
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Figure 2 clearly indicate that the DGM returns more
precise and less biased results than IndLog, particularly in its
traditional version and when the grade distribution are not
lognormal (Figures 2b and 2c). These findings concur with
Emery and Ortiz’s (2005) conclusions. As demonstrated in
Figures 2a and 3a, in the case of a strictly lognormal
distribution, all COS models perform equivalently. DGM and
Emery IndLog proved more robust than traditional IndLog to
the SMU size/variogram range ratio for other distributions
(Figures 2, 3a, and 3b). 

COS models seek to estimate the in situ grade distribution
at the SMU scale, but the precision of the results depends on
the data availability. When less data is available, both the
histogram and the variogram estimations are less precise,
which in turn adversely affects the COS performance.
However, DGM proved to be unbiased for all sampling
patterns (Figure 2) and all SMU sizes (Figure 3). In our tests,
DGM provides grade-tonnage mean relative unsigned errors
(MRUE) varying from 1% to 5% for all distribution types,
while errors with indirect lognormal methods can be up to
20% for bimodal distribution (Table IV). In the lognormal
case for all COS models, MRUE can stretch up to more than
10% at a higher cut-off. These errors represent a best-case
scenario, without any domaining, sampling, analytical, or
declustering errors. In a real case, practitioners will probably
have higher errors during COS associated with an
interpolation process. Therefore, it is recommended to use
COS curves as guidelines rather than strict constraints for
recoverable resource estimates.

During mining operations, the decision to classify a block
as ‘ore’ or ’waste’ is based on the estimated grade at the time
of mining, not the true unknown block grade. The more
information available, the better the classification. This
(usually small) information effect can be incorporated within
the COS (Roth and Deraisme, 2001) by simply increasing the
variance correction factor (or decreasing the degree of
selectivity). 

Although DGM proved to be more efficient in our tests, it
should not be applied blindly. The quality of the results also
depends on important and difficult decisions about
domaining (Emery and Ortiz, 2005; Romary et al., 2012) and
declustering (Deutsch 1989, Rossi and Deutsch 2013).
Moreover, the quality of raw data sampling obviously has an
impact (Francois-Bongarcon and Gy 2002). Any bias in the
point histogram or variogram will adversely affect the
performance of the DGM or other COS method (Journel and
Kyriakidis. 2004; Pyrcz et al., 2006; Carrasco, 2010). Despite
these reservations, DGM should be recommended in
preference to IndLog because of its lack of bias and greater
robustness to the sampling density, the type of distribution,
and the SMU size.

We did not consider the use of conditional simulations in
this study. Despite its possible merits, this method is rarely
used in technical reports. One reason is that it is much more
computationally intensive than DGM or IndLog. Moreover,
the variogram model in simulations is for the Gaussian
transformed variable rather than the grade variable as in
DGM and IndLog. This choice is therefore expected to have
more influence with simulations than with DGM and IndLog.
It is also complicated by other sensitive decisions regarding
the neighbourhood to use for the conditioning. 

Our study indicates a clear superiority of the discrete
Gaussian model compared to the traditional indirect
lognormal approach. The improvement proposed by Emery
(2004) increases the quality of the indirect lognormal model,
but remains less robust than the DGM with respect to
distribution types. DGM is unbiased, and robust to sampling
density, SMU size, and distribution types. Our study also
reveals that traditional, normal score variogram, and
correlogram estimators provide comparable estimates of the
dispersion variance used for change of support correction. On
the contrary, pairwise estimator should be used with caution
as it is more sensitive to the grade distribution.
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