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Prediction of copper recovery from  
geometallurgical data using D-vine  
copulas
E. Addo Jr1, A.V. Metcalfe2, E.K. Chanda1, E. Sepulveda1,5,
W. Assibey-Bonsu3, and A. Adeli4

Synopsis
The accurate modelling of geometallurgical data can significantly improve decision-making and help 
optimize mining operations. This case study compares models for predicting copper recovery from three 
indirect test measurements that are typically available, to avoid the cost of direct measurement of recovery. 
Geometallurgical data from 930 drill core samples, with an average length of 19 m, from an orebody in South 
America have been analysed. The data includes copper recovery and the results of three other tests: Bond 
mill index test; resistance to abrasion and breakage index; and semi-autogenous grinding power index test. 
A genetic algorithm is used to impute missing data at some locations so as to make use of all 930 samples. 
The distribution of the variables is modelled with D-vine copula and predictions of copper recovery are 
compared with those from regressions fitted by ordinary least squares and generalized least squares. The 
D-vine copula model had the least mean absolute error.
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Introduction
In this paper we compare the use of D-vine copula, generalized least squares (GLS), and ordinary least 
squares (OLS) for modelling geometallurgical data from an orebody in South America. The first objective 
is to construct models for predicting copper recovery (Rec) from the Bond mill index test (BWi); resistance 
to abrasion and breakage index (A*b); and semi-autogenous grinding (SAG) power index test (Spi). This 
involves fitting a D-vine copula and regression models fitted by OLS and GLS. The second objective is to 
investigate the performance of the fitted models for predicting Rec (Willmott and Matsuura 2005).

Traditional resource model approaches either ignore the mineral processing characteristics of extracted 
tonnages or treat processing as an independent component of a mining operation. The net present value 
(or any other objective) can be truly optimized only by considering the mining operation as an integrated 
system in which net value is defined as the end-product that the company sells. This approach requires the 
resource model to be extended to include all relevant rock properties and processing responses. 

Comminution performances and mineral processing recovery factors have a substantial effect on 
production and the final value of the product. Hence their prediction in the early stages of a mining 
operation is crucial. The accurate and precise prediction of these variables is important for mine planning 
and project risk assessment. Commonly used tests for determining comminution performances are BWi, Spi, 
and A*b. Better understanding of the physical and chemical principles on which these performance indices 
are based has contributed to the acceptance and use of geometallurgy in resource modelling, referred to in a 
wider context as grade engineering.

Lishchuk et al. (2015) define geometallurgy as a multidisciplinary approach that integrates geology, 
mineralogy, mineral processing, and metallurgy to create spatially based models for production and 
operational decisions. The primary geological rock properties (e.g., grade, alteration, texture, and grain 
size) are proxies for predicting metallurgical responses (e.g., type of processing, throughput, recovery, 
energy consumption, reagent usage, and grindability) (Coward et al. 2009; Dowd, Xu, and Coward, 2016). 
Incorporating these variables into the resource model in a way that can be used effectively in mine planning 
poses a challenge to geostatisticians and resource modellers. In most projects, the lack of appropriate 
geometallurgical data collection and analysis leads to unreliable metallurgical response models. 

The relatively large difference between the number of samples recorded in the geological database 
(logging, assays etc.) and the relatively few metallurgical test work samples further hinders the integration 
of metallurgical responses into the resource model using existing geostatistical methods (Hunt, Kojovic, 
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and Berry, 2013). Also, there is often the problem of missing 
values of metallurgical variables, which may not be measured 
at all locations. Retaining only data where all variables are 
sampled could result in removing a large amount of data from the 
geometallurgical programme (Deutsch, 2013), which can lead to 
poor geostatistical modelling in areas where more data (of some 
variables) is actually sampled. 

In addition, most geological and geometallurgical variables 
have complex multivariate relationships that are the result of 
a succession of several chaotic, nonlinear natural processes 
which are often not well modelled by parametric multivariate 
probability distribution (Deutsch 2013). Moreover the non-
additive and compositional nature of geological/geometallurgical 
variables makes their modelling more difficult (Walters and 
Kojovic 2006; Williams and Richardson, 2004). An alternative 
modelling strategy that can capture all these complex 
multivariate relationships is crucial for successful modelling 
of geometallurgical variables.  Multivariate D-vine copulas are 
ideal for modelling complex multivariate relationships, skewed 
distributions, and tail-dependent distributions. Moreover, the 
D-vine copula models encompass all multivariate distribution,
including the multivariate Gaussian distribution (MVG).

This paper is comprised of three main sections. The ‘Method’ 
section describes the theory of copulas, pair copulas, and vine 
copulas (D-vine) construction models. The ‘Application’ section 
describes data imputation, modelling of copper recovery in terms 
of A*b, BWi, and Spi, and finally the prediction of copper recovery 
from A*b, BWi and Spi. This is followed by the ‘Discussion and 
Conclusion’.

Method
This section gives an overview and summarizes the principles 
of copulas, pair copulas (D-vine) construction for four variables. 
Further details about the concept of copulas can be found in Joe 
(1996) and Nelsen (2006). In addition, more detailed explanation 
of the pair copula and vine copula models can be found in Aas et 
al. (2009), Bedford and Cooke (2002), and Kurowicka and Cooke 
(2006). Spatial applications of pair copulas can be found in Gräler 
and Pebesma (2011), Gräler (2014), Musafer et al. (2013), 
Musafer and Thompson (2016), and Addo, Chanda, and Metcalfe 
(2018). 

Theory of copulas
A copula is a multivariate uniform distribution. It follows 
that any multivariate distribution has a copula form because 
the marginal cumulative distribution functions (cdfs) can be 
transformed to uniform distributions. Conversely, the uniform 
margins of any copula can be transformed to any continuous 
probability distributions, which can differ for different margins. 
Therefore copulas provide a very flexible approach in modelling 
multivariate data. Consider a random variable Z= (z1,…,zd) and 
define ui=F(zi). We can define a copula by its cdf C(u1,u2,…,ud) 
and the corresponding probability density function (pdf) is

[1]

The copula pdf links the marginal pdfs to the multivariate pdf:

[2]

Generally, we often require multivariate distributions of 
more than two variables. The elliptical copulas (i.e. Gaussian 
and Student-t copula) can easily be extended to more than two 
variables, but this is not generally the case for the Archimedean 
copulas (i.e. Clayton, Frank, and Gumbel copula). A more flexible 
approach to modelling such multivariate distributions is the pair-
copula D-vines as described by Aas et al. (2009), Bedford and 
Cooke (2002), and Kurowicka and Cooke (2006).

Pair copula
Any multivariate distribution can be factorized in different ways 
using its conditional distributions. Specifically, a copula can be 
factorized as a product of the marginal distributions and the 
bivariate conditional copulas. We often term such factorization 
‘pair-copula models’. Joe (1996) presented a construction for 
a pair-copula model for a multivariate copula based on the 
distribution functions. After Joe’s construction of a copula based 
on the distribution functions, Bedford and Cooke (2002) also 
presented a construction in terms of the densities. In their work, 
they organized the constructions in a graphical way involving a 
sequence of nested trees, which they refer to as ‘regular vines’. 
They defined two popular classes of pair-copula construction 
(PCC) models, which they refer to as the D-vines and canonical 
(C) vines. Their work was further developed by Kurowicka and
Cooke (2006). The derivation of a D-vine model, which is used in
this application, is outlined below.

D-vines
Generally the pair copula can be seen as a multivariate copula 
that aims to approximate the target copula, since not all 
copulas can be expressed as a vine copula (Haff, Aas, and 
Frigessi, 2010). This decomposition is, however, not unique; 
for example, a five-dimensional density can have about 240 
different constructions. In the D-vines, the decomposition of 
the joint density consists of the pair-copula densities evaluated 
at conditional distributions functions and for specified indices 
and marginal densities (Bedford and Cooke 2002; Czado 2010 
and Gräler 2014). Figure 1, which is reproduced from Aas et 
al. (2009), shows the graphical model used to demonstrate the 
D-vines for four variables. This consists of three trees: Tj  j=1,2,3.
Tree Tj has n+1-j nodes, where n is the number of variables.
Using the decomposition shown in Figure 1 and Equation [3], the
joint density function of four random variables can be expressed
using the D-vines asw

As shown in Equation [3], the D-vine distribution requires 
the computation of several conditional distribution functions and 
conditional bivariate copulas. From Joe (1996) and Aas, Frigessi, 
and Bakken (2009), the conditional distribution functions F(z|v) 

Figure 1 – D-vines for four variables
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for an m-dimensional vector v=(v1,…,vm) can be obtained from 
the following recursive relationship:

where vj (j=1,…,m) is an arbitrary component of v, and v(-j)= 
(v1,…,v(j-1),v(j+1),…,vm) denotes the vector v excluding element 
vj. The bivariate copula function is also specified by C(zvj | vj). 
Given ui (i=1,…,n) to denote Fi (zi), we can derive the conditional 
distribution function F(u3 | u1,u2) that is needed as an argument 
for C14|23 in a four-dimensional D-vine copula density using 
Equation [4]. From Figure 1 Tree 3 (T3) the argument  
C14|23, namely F1|23 (x1| x2,x3), can be evaluated using the h 
function (Kraus and Czado 2016) associated with C13,2,C12,and C23 
from the first two trees T1 and T2 as

[5]

D-vine copula-based conditional forecasting model
With the defined conditional distributions function in Equation 
[5], the inverse forms can also be defined, and can be used in 
forecasting. Using the bivariate case, the conditional distribution 
function of two random variables z1 and z2 is h(u2|u1). The main 
goal is to be able to obtain u2 based on the information available 
at u1. Given some fixed probabilities , we can derive u2 from 
C(u2|u1)using an explicit function u2 = u2 = C –1

u2|u1 ( ;u1)= h-1 ( |u1),
where C –1

u2|u1 is the inverse of the copula function known as 
the  quantile curve of the copula (Xu and Childs, 2013). The th 
copula-based conditional quantile function of variable z2 is 

[6]

where F –1 is the inverse of u2. For the four-dimensional case, 
the th conditional quantile function of z4, Qx4 ( |z1,z2,z3) can be 
deduced by the recursive computation

[7]

Hence we can forecast z4 based on the variables z1,z2, and z3.  
Moreover, Qz4 ( |z1,z2,z3) is monotonically increasing in  so the 
crossing of quantile functions corresponding to different quantile 
levels is not possible. Bernard and Czado (2015) proved that 
linear regression quantile functions may cross if a non-Gaussian 
data is modelled. 

In general, the multivariate D-vine copula model for the four-
dimensional vine model can be implemented by following the 
steps below. Further details of the method can be found in Kraus 
and Czado (2016) and Liu et al. (2015).

1.  Fit an appropriate marginal distribution to each of the
variables, z1,z2,z3, and z4, where z4 is the predicted variable
and all the others are the explanatory variables.

2.  Model the joint dependence structure of all the four variables
using Equation [5] for the D-vine model.

3.  Estimate all the appropriate bivariate copula for each pair
copula using the R library VineCopula ( Schepsmeier et al.,
2015).

4.  Estimate the conditional distribution function of variable z4

conditioned on the given variables z1,z2,z3 using Equation [5].
5.  Finally, generate the predicted values of z4 based on the given

variable, z1,z2,z3 using the copula-based quantile function as
given in Equation [7].

Performance of models
The mean absolute error (MAE) and root mean square error 
(RMSE) have been used to assess the prediction performance of 
the models.

[8]

[9] 

where Ai is the observed recovery, and Âi is the predicted recovery 
obtained using a fitted model to all N =930. So, the performance 
measures are calculated within the entire sample.

Application
Nine hundred and thirty (with some missing values) drill core 
samples with an average length of 19 m from a mine in South 
America were sampled for geometallurgical attributes of copper 
recovery (Rec), Bond mill index test (BWi), resistance to abrasion 
and breakage index (A*b), and semi-autogenous grinding power 
index test (Spi). Typical of most geometallurgical data-sets, 
there are missing values that have not been sampled at some 
locations. There are 299 non-missing data-sets that are sampled 
at all locations. To be able to use all 930 georeferenced drill 
core samples for the analysis, we employed a data imputation 
algorithm to predict missing values at some locations.

Data imputation
The data-set has 930 georeferenced samples with four attributes 
of interest: Rec, BWi, Spi, and A*b. Table I shows the summary of 
descriptive statistics for all four attributes.

Data imputation was formulated as an optimization problem 
seeking to preserve two main properties: the reproduction of the 
individual histograms and the bivariate correlation among the 
variables. Histograms of each of the variables were calculated 

[3]

[4]
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using non-missing (informed) values, and correlations were 
calculated using samples where all variables have non-missing 
values. Table II indicates the bivariate correlations, and number 
of missing and non-missing values for the pair attributes. The 
diagonal shows the number of missing values, the upper triangle 
shows the Pearson correlation between two attributes, and the 
lower triangle shows the number of non-missing values for the 
pair attributes.

The data-sets were decomposed in two sets: non-missing 
(informed) values and missing values. Hence, the multivariate 
data-set was defined as: X= {X1,…,XD}, where D is the number of 
attributes. Each Xi is also defined as follows: Xi = Vi  Mi, where 
Vi and Mi represent the informed and missing values respectively, 
and Vi  Mi is used to indicate Vi if  available, or Mi otherwise.

The histogram function used for the imputation was denoted 
by H(X), and used 21 regular bins or class intervals. The 
correlation is given by 

[10]

where x—,y—,Sx, and Sy are the mean and standard deviation of x 
and y, and n is the sample size. 

The optimization problem for the data imputation was 
formulated as follows.

Decision variables
As the main objective is to impute values to all missing values, 
the decision variables correspond to the set {M1,…,MD}. 
According to Table I, there are 1481 missing values to impute.

Objective function
Minimization of the mean quadratic error between the histogram 
of each variable with and without imputed data and the mean 
quadratic error between the correlations of each pair of variables 
with and without the imputed data.

[11]

Constraints
The only imposed constraint is the lower and upper bounds for 
each attribute, for which the minimum and maximum values are 
observed from the samples. 

[12] 

This formulation is nonlinear and may have no unique 
solution. Metaheuristics are optimization methods that can 
deal with these kinds of problems successfully. We therefore 
solved the optimization formulation by genetic algorithm (GA) 
metaheuristics due to its flexibility and good performance 
(Whitley, 1994). The GA is a stochastic method, hence different 
seeds of random number generator may generate different 
solutions. In this application, our experiments show that the 
imputed values change slightly in response to varying the seed, 
but the histograms and correlations are very stable. We use 
one representative set of imputed data found by one execution 
of GA. Table III shows the parameters used in the GA for data 
imputation.

   Table I

   Summary statistics of all four attributes
   Variable Number of non-missing values Number of missing values Minimum Maximum

   Rec 560 370 36.20 99.30
   BWi 840 90 9.12 15.58
   Spi 539 391 10.69 98.60
   A*b 300 630 32.38 175.66

   Table II

   Description of all four attributes and simple statistics
Rec Bwi Spi A*b

   Rec 370 0.08 0.11 -0.02
   BWi 470 90 0.31 -0.28
   Spi 469 539 391 -0.74
   A*b 300 300 299 630

   Table III

   Parameters used by GA for data imputation
   Parameter Value Description

   npop 1000 Number of individuals in the population
   ngen 500 Number of generations (iterations)
   Crossover operator Uniform crossover 50% probability of getting the gene from parent 1 (and 50% from parent 2)
   Mutation operator Gaussian mutation 10% of genes at random, new value = current value + N(0,1)
  Selection operator Tournament selection  Tournament size of 10 individuals
   cxpb 0.9 Probability of applying crossover 
   mutpb 0.4 Probability of applying mutation
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The Pearson’s correlation computed for imputed and non-
missing samples shows that the correlations were perfectly 
reproduced. Figure 2 (upper and lower panel) shows the 
histogram of the imputed data and with non-missing values 
respectively. Figure 3 also shows all four non-missing variables 
(i.e., Rec, BWi, Spi, and A*b) in space. We discuss Figure 3 under 
the ‘Discussion and Conclusion’ section.

Analysis
The imputed data, consisting of 930 drill core samples for four 
variables (Rec, BWi, Spi, and A*b), was used for the analysis, the 
explanatory variables being Spi, BWi, and A*b. The hypothesis 
of stationarity was tested by fitting a regression of recovery on 
the mean corrected eastings (x), mean corrected northings (y), 
mean corrected elevations (z), x2, y2, and the cross-product xy in 
Equation [13]. This model, referred to as Model1, is  

[13] 

where  is the random error, which is expected to be spatially 
correlated, with mean of zero and standard deviation o. Model1 
was initially fitted by OLS. Then, a spherical variogram was fitted 
to the residuals and the variogram parameters were used for 
fitting with a GLS function gls( ) in the R library nlme (Pinheiro 
and DebRoy, 2016). The fitted spherical variogram and model 
parameters are shown in Figure 4. The estimated coefficients for 
the GLS fit to Model1 are shown in Table IV.

The standard deviation of the residuals is 14.26 on 923 
degrees of freedom, which is smaller than the standard deviation 
of the recovery data (15.02). While this reduction in standard 
deviation is small, the sample size is relatively large and two 
of the coefficients in the fitted quadratic surface are highly 
significant statistically. We then assume the residuals from the 
GLS regression are a realization of a stationary spatial process.  

The residuals from the model res (Rec) were taken as the 
response variable for recovery (Rec) and were used together with 
the BWi, Spi, and A*b (referred to as B,C, and D respectively) to 
fit the D-vine copula. Variables B,C, and D were mean-corrected 
to avoid the excessively large values of quadratic terms and ill-
conditioned matrices that would result if the original data was 
used. Quadratic terms and interactions between the explanatory 
variables included were BD, CD, B2, C2, D2. So a 10-dimensional 
D-vine based model was constructed, which is made up
ofres(Rec), B, C, D, BC, BD, CD, B2, C2,and D2. In the following,
the res(Rec) will be referred to as A.

   Table IV

o 133.05554 25.54233 0.00
1 0.00247 0.00413 0.55
2 -0.00062 0.00158 0.69
3 -0.02129 0.00578 0.00
4 0.00002 0.9e-5 0.03
5 0.3e-5 0.1e-5 0.02
6 0.6e-5 0.4e-5 0.19

Figure 3—The 3D spatial position of the samples showing non-missing val-
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We fitted an appropriate kernel marginal distribution to 
each of the mean-corrected variables. After obtaining well-fitted 
marginal distributions, a 10-dimensional D-vine copula was used 
to join the margins and model the joint dependence structure. To 
be able to establish the 10-dimensional D-vine copula, we fitted 
the best fitting bivariate copula for each pair copula using the R 
library CDVine developed by Schepsmeier and Brechman (2015). 
The fitting was done by equating the Kendall’s tau to the value 
of Kendall’s tau implied by the dependence parameter ( 1, 2, and 
), which is referred to as the ‘method of moments’. A limitation 

of the method of moments is that it does not lead easily to a 
criterion for choosing between the copula forms. Therefore, the 
method of maximum likelihood was used for choosing between 
the copula forms, the form with the highest likelihood being 
chosen. The rotated version of the bivariate copulas (i.e., BB6, 
BB7, and BB8) with angles 90°, 180°, and 270° was selected 
by maximum likelihood. In addition, Student-t, normal, and 
Frank copulas were also selected using maximum likelihood 
for some trees. Figure 5 illustrates the fitted bivariate copulas 
and their fitted dependence parameters ( 1, 2, and df) for the 
10-dimensional D-vine model. The final forecasting performance
of the 10-dimensional D-vine copula model was calculated
using a 10D version of Equation [7]. The predicted values were
back-transformed to the original unit (recovery per cent, Rec) by
adding the predicted values from the 10D model to the predicted
values from Model1.

We compared the predicted recovery from the 10-dimensional 
D-vine copula with an OLS regression and a GLS regression
model. The residual from model, referred to in this application
as A, which is the response variable, was regressed on the
explanatory variables B, C, D, BC, BD, CD, B2, C2,and D2. Equation
[14] shows the OLS regression model fitted, and Table V shows
the estimated coefficients for the OLS regression.

[14]

The linear regression model was used to predict recovery and 
the predicted values were back-transformed to the original units 

(recovery per cent, Rec) by adding the predicted values from 
Model1.

The residual from the model referred asA was regressed 
on the explanatory variables B, C, D, BC, BD, CD, B2,C2,and D2 
using the GLS model with spherical variogram parameters of 
range: 230, nugget: 0.5, and sill: 15.7. The GLS model is given in 
Equation [14], and the estimated model coefficients are shown in 
Table VI.

2 2 2 respectively

   Table V

o 1.11996 0.81077 0.17
1 -0.22724 0.58045 0.69
2 0.22607 0.04255 1.35e-07
3 0.10797 0.02407 8.19e-06
4 -0.02021 0.04535 0.66
5 -0.03634 0.02158 0.09
6 0.00116 0.00162 0.47
7 0.63571 0.43801 0.15
8 -0.00179 0.00233 0.44
9 -0.00089 0.00049 0.07

   Table VI

o 0.78122 0.86786 0.37
1 -0.22520 0.58289 0.69
2 0.22476 0.00430 0.00
3 0.10409 0.02456 0.00
4 -0.01938 0.04549 0.67
5 -0.03494 0.02161 0.11
6 0.00122 0.001673 0.46
7 0.65855 0.43858 0.13
8 -0.00157 0.00236 0.51
9 -0.00078 0.00050 0.12
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The GLS model was used to make predictions of recovery 
at each point, and the predicted value was back-transformed to 
the original unit (recovery per cent Rec) by adding the predicted 
values from Model1. A summary of the cross-validation results 
using all three models is presented in Table VII. There is little 
difference between the GLS and OLS fits. The D-vine performs 
better according to the MAE but not according to RMSE. We 
discuss this in the next section. Figure 6 illustrates a scatter 
plot of the observed versus predicted recoveries from the GLS, 
D-vine, and OLS models. Further comparisons were made by
making out-of-sample predictions. Proportions of 10% and
30% were removed at random locations from the 930 complete
geometallurgical data. The models (OLS, GLS and D-vine) were
fitted to the remaining 90% and 70% of the data.

Out-of-sample predictions were generated and compared with 
the known values of the data removed. Figure 7 shows box plots 
of the removed CuRec (A) and the out-of-sample predictions 
using OLS (B), GLS (C) and D-vine (D), for 90% and 70% data 
used for predictions. Summary statistics are given in Table VIII. 

The D-vine performs best in terms of MAE, and GLS 
regression is an improvement on OLS regression, in terms 
of MAE for both 10% and 30% data removed. However, OLS 
regression is slightly better than both the D-vine copula and GLS 
regressions in terms of RMSE.

Discussion and conclusion
Data on four variables (Rec, BWi, Spi, and A*b) from 930 drill 

core samples at know locations was available. Two hundred and 
ninety-nine drill cores had a complete record, but there were 
some missing items from the other 631 cores. In order to use 
all 930 drill core samples, a genetic algorithm (GA) was used to 
impute missing items at these locations. The objective function 
formulated in this case study was designed to reproduce precisely 
the individual histograms and the linear correlations between 
pairs of variables. This criterion is, however, subjective and in 
cases when missing data comes from preferential sampling, 
the histogram of the imputed data may differ from the actual 
underlying distribution. For example, it is common to perform 
metallurgical test work only in ore zones with a high grade 
profile, hence recovery for low-grade zones will not be well 
represented in the distribution. The objective function in the 
data imputation method should be adjusted according to the 
knowledge of the data-sets. The recovery (Rec), the response 
in this application, shows a slight, but statistically significant, 
nonstationarity. The nonstationarity of Rec has been accounted 
for by fitting a quadratic trend regression surface by the GLS 
model, with a spherical variogram to approximate the spatial 
correlation. The residuals from the GLS model were considered as 
a realization of a stationary process. 

   Table VIII

   Summary of the out-of- sample predictions

D-vine copula regression 7.86 13.96 9.33 16.25
GLS regression 8.46 14.29 10.07 16.47
OLS regression 9.49 13.11 11.07 15.20

   Table VII

   Summary of the cross-validation
   Model MAE RMSE

D-vine copula regression 9.12 14.92
GLS regression 10.09 13.91
OLS regression 10.04 13.91

vs
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The residuals from the model and the mean corrected values 
for BWi, Spi, and A*b, together with two variable interactions and 
squares for the three variables, were used to fit a 10-dimensional 
D-vine copula model. The fitted 10-dimensional D-vine copula
model was used to predict recovery, and MAE and RMSE were
calculated. These predictions were compared with predictions
from regressions fitted by OLS and GLS. The D-vine copula model
had the smallest MAE. However, the regression models had lower
RMSE. A comparison of the scatter plots suggests that the D-vine
gives more accurate and precise predictions for high levels of
copper recovery. However, the D-vine appears to overestimate
the copper recovery at low levels rather more than the regression
models. Out-of-sample predictions using the three models were
compared as a further check on the D-vine copula regression
model. A proportion of the data (i.e. 10% and 30%) was removed
at random locations from the complete geometallurgical data-
sets. The models were fitted to the remaining 90% and 70%
of the data, and out-of-sample predictions were estimated and
compared with the known values of 10% and 30% data removed.
Results from the analysis shows that the D-vine model had the
least MAE for both 90% and 70% data, although OLS regression
was slightly better on RMSE. An explanation for the finding
that the D-vine copula is better on MAE yet slightly worse on
RMSE is that the D-vine copula is less affected by outliers.
The outliers will make a major contribution to the RMSE, and
regression fits the coefficients by minimizing the RMSE. This
has the effect that outlying observations are highly influential in
the fitting process, drawing the fitted surface towards them and
so reducing the RMSE. For this reason the MAE is considered
more useful in the mining industry, where outlying values are
common and the implicit assumption of a Gaussian distribution,
under which GLS would be optimum, is not realistic. The D-vine
copula is preferable to capping, which introduces a downward
bias. Moreover, the D-vine will generally produce more accurate
prediction intervals than a regression model, because it allows
for a general form of the distribution of the errors. Generally,
geometallurgical tests are expensive and a modelling approach
that can provide accurate and precise predictions of some
variables from others will save money.
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