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Evaluation of shaft locations in 
underground mines: Fuzzy multi-
objective optimization by ratio analysis 
with fuzzy cognitive map weights
E. Bakhtavar1, S. Yousefi2, and A. Jafarpour3

Synopsis
The determination of the location of production and ventilation shafts is one of the most important 
issues in underground mines from both a technical and an economic viewpoint. This study introduces 
an integrated approach using fuzzy cognitive map (FCM) and fuzzy multi-objective optimization by 
ratio analysis (FMOORA) to evaluate several candidate shaft locations and consequently increase ore 
production from underground mines. The FCM based on a hybrid learning algorithm was applied to 
analyse interactions and internal relationships between criteria and to find complex causal relationships 
between different factors. After importing the weights resulting from the FCM into the FMOORA, shaft 
alternatives were evaluated and prioritized. An iron ore case example was evaluated by the integrated 
approach. Results of the integrated approach were validated by the results obtained from fuzzy-TOPSIS 
and on-site evaluations by mining experts.

Keywords
production shaft, fuzzy cognitive map, fuzzy multi-objective optimization by ratio analysis, underground 
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Introduction
Underground mine openings are excavated from the surface to access an underground ore deposit and 
to transport and hoist extracted ore to the surface. The number and type of openings (developments) 
depend on the mining method and production capacity. Decisions on developments should be carefully 
made to address the complexity and high costs of underground mining. These decisions influence 
production operation in the next stages (Hartman and Mutmansky, 2002). The vertical shaft is among 
the most common openings used to access ore deposits located at deep levels. The vertical shaft is 
employed for ore transportation and service objectives. It is also suitable for relatively large, deep, and 
flat-lying ore deposits when a high production rate is desired.

There have been limited studies of vertical shaft issues in underground mining. Unrug (1984) 
examined important aspects such as shaft location selection, the design of shaft lining and collar, 
and sump design. The author emphasized that a shaft could be located on the footwall side of an ore 
deposit with a major axis in the strike direction. Locating the shaft in the central part of the mining 
area has major benefits because of the considerable decrease in transportation costs. However, in this 
case, mineable ore can be sterilized in the shaft pillars. Therefore, locating a shaft in the central part is 
appropriate only in the case of tabular deposits where mining at moderate depths is considered. Elevli, 
Demirci, and Dayi (2002) compared the vertical shaft and ramp systems to identify a suitable method 
for ore transportation in underground mines. They compared these two systems in terms of net present 
value of the whole project for various depths, total investment costs, and transportation unit cost. They 
concluded that the NPV and total investment cost of the ramp system make it suitable for depths less 
than 700 m. However, the shaft system has a lower transportation unit cost than the ramp system. 
Notably, the shaft system is preferable at depths greater than 700 m. Bruneau et al. (2003) investigated 
geological and geotechnical problems of underground copper mine shafts on site. They also carried out 
numerical modelling of the effects of the mining sequence and faults on the stability of the main shaft. 
Their study indicated that geological and geotechnical structures have a major effect on the stability of a 
shaft. Therefore, a production shaft should be located away from faults and other problematic structures 
in terms of geology and geotechnics.

Among the shaft-related studies, the investigations  by Gligoric, Beljic, and Simeunovic (2010) 
and Hudeja et al. (2013) focused on determining a suitable location for a shaft. Gligoric. Beljic, and 
Simeunovic (2010) used fuzzy TOPSIS to find the order of preference by similarity to ideal solution 
and network optimization to determine the appropriate location of a shaft in a deep underground 
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mine. Transportation costs, total operational and development 
costs of the shaft, and availability of the transportation system 
were considered as the main criteria. Hudeja et al. (2013) 
prioritized shaft locations for a coal mine by integrating the 
results of four techniques – preference ranking organization 
method for enrichment of evaluations (PROMETHEE), 
ELimination and Choice Expressing Reality (ELECTRE), analytical 
hierarchy process (AHP), and VIseKriterijumska Optimizacija 
I Kompromisno Resenje (VIKOR). They addressed the main 
criteria in terms of geotechnical conditions and gasometry, 
hydrogeological conditions, mine infrastructure arrangement, 
siting and construction investment, concentration and advance of 
mining operations, and interlinking with a thermal power plant.

The decision on the location of a production shaft is a critical 
component in the strategic planning of an underground mine 
(Gligoric, Beljic, and Simeunovic 2010). This decision affects 
the economics of an underground mining project. Therefore, 
the purpose of this research is to provide an approach to 
determine the most appropriate location of the production shaft 
in an underground mine. This decision is a multi-criteria task 
(Hudeja et al. 2013). The main part of this type of decision-
making process is to determine the weights of criteria and 
attributes. The majority of the weighting techniques cannot 
consider the causality relationships between the criteria and the 
system objective. Fuzzy cognitive map (FCM) is the best-known 
technique that has been applied in different cases to consider the 
causality relationships between the criteria and objective. Despite 
weighing the criteria, the remaining process of decision-making 
can be completed by a multi-criteria decision-making (MCDM) 
technique, such as AHP, TOPSIS, ELECTRE, PROMETHEE, 
VIKOR, multi-objective optimization by ratio analysis (MOORA), 
etc.

Among the MCDM techniques, MOORA, which was 
introduced by Brauers and Zavadskas (2006), has been 
effectively applied in various decision-making problems due 
to its simplicity, stability and robustness, comprehensiveness, 
and minimal mathematical  calculations  and  computational  
time required (Brauers et al., 2008; Chakraborty, 2010; Kracka, 
Brauers, and Zavadskas, 2010; Brauers and Zavadskas, 2012). 
Other advantages of MOORA are the ability to simultaneously 
optimize several contradictory attributes subject to certain 
constraints and finally select the best (satisfactory) alternative. 
As a result, MOORA is an appropriate tool for selecting and 
prioritizing alternatives from a set of feasible options based on 
multiple conflicting attributes.

Locating a shaft for an underground mine is, like many 
other decision-making problems, an imprecise exercise. In this 
case, the fuzzy set theory presents a mathematical context to 
precisely address vague conceptual phenomena (Zadeh, 1965). 
The fuzzy theory is a beneficial tool to measure the ambiguity of 
concepts, including linguistic variables, satisfaction, and degrees 
of importance that are often vague during the decision-making 
process (Bakhtavar and Lotfian, 2017). 

Therefore, in this study, an FCM was integrated with fuzzy 
multi-objective optimization by ratio analysis (FMOORA) to 
take full advantages of their ability to deal with uncertainty 
when prioritizing shaft locations with imprecise and vague data. 
In the FCM part of the integrated approach, the weights of the 
most effective criteria were determined. Then, other steps of the 
decision-making process were performed using the FMOORA part 
of the approach.

The FCM method has been applied individually and together 
with decision-making techniques in different fields. Limited 
research has been reported on the applications of FCM in mining 
and rock engineering problems. Bakhtavar and Yousefi (2018) 
integrated FCM based on a multi-goal concept and a sensitivity 
analysis in the TOPSIS process to prioritize workplace accident 
risks in underground coal mines. Bakhtava, Shahmoradi, and 
Rahmati (2018) used an FCM to evaluate the effective factors 
that give rise to occupational risks in underground coal mines 
in Iran by analysing the cause and effect interactions among the 
identified factors. Bakhtavar and Shirvand (2019) designed an 
FCM to prioritize the problematic drilling and blasting factors that 
result in technical difficulties in tunnelling projects in Iran by 
extracting the weights of the problematic factors.

Background
‘Cognitive map’ and ‘multi-objective optimization by ratio 
analysis’ methods were integrated under a fuzzy environment 
to establish a hybrid approach that is applicable in all situations 
where a decision is made. The hybrid approach was developed 
to evaluate and prioritize a number of shaft location alternatives 
in the case of underground mining. The fuzzy system based on 
triangular numbers was studied along with FCM and FMOORA 
as the main methods and materials of the research, as outlined in 
the following sub-sections.

There are some uncertain factors in the form of linguistic 
variables and ambiguity in concepts while evaluating and 
prioritizing shaft location alternatives. To solve this problem 
in the decision-making process, fuzzy set theory provides a 
mathematical context in which vague concepts can be exactly 
considered (Zadeh, 1965).

General concept of fuzzy sets theory
The literature indicates that fuzzy set theory was introduced 
by Zadeh (1965). This theory was developed and exemplified 
in many fields to improve the decision-making process under 
uncertainty and to simply solve complex real-world problems. In 
decision-making processes, expert opinions are usually based on 
linguistic and descriptive evaluations, which impose uncertainty. 
The linguistic variables were quantified to make a decision 
easily. Therefore, MCDM techniques were developed by using 
fuzzy numbers instead of crisp numbers. The fuzzy numbers 
were ordinarily specified by triangular and trapezoidal types. 
Triangular fuzzy numbers (TFNs) have been commonly used 
together with MCDM techniques.

A crisp set can be converted to a fuzzy set if the range {0,1} 
is converted to the interval [0,1]. The fuzzy set A in the universal 
set U can be defined as in Equation [1]. Fuzzy set A can be 
represented through Equation [2]. The membership degree sets 
were replaced with crisp sets based on the fuzzy theory concept 
(Bellman and Zadeh, 1970).

[1]

[2]

where mA(x1) is the membership degree of x1 in set A, which 
varies in the interval [0,1].

FCM
In the real world, many factors have complex relationships with 
other factors under a cause-and-effect situation. The cognitive 
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map method has been extensively used in many applications 
of engineering sciences because it is capable of analysing and 
finding the complex cause-and-effect relationships between 
various factors (criteria). A cognitive map is designed to consist 
of nodes, arcs between nodes, and signs on the arcs. In a specific 
map, nodes represent special concepts that describe a system, and 
arcs denote cause-and-effect relationships between the concepts. 
The type of causality between concepts is signified by the arc 
signs (Papageorgiou, Stylios, and Groumpos. 2006).

The FCM is an effective tool used to model complex systems 
for which there is limited data due to data inaccessibility or 
the high cost of data collection. It is based on a cognitive map 
that uses the relationship between components of a ‘mental 
perspective’ to compute the ‘power of influence’ of causal 
relationships by fuzzy numbers in the interval [0,1] or [−1,1]. In 
the FCM, time series data as input along with expert opinions are 
essential to draw and design a map (Rezaee, Yousefi, and Hayati, 
2016; Rezaee, Yousefi, and Babaei, 2017). The FCM employs the 
neural network logic to estimate factor weights and relationships 
between variables. Figure 1 illustrates a sample cognitive map.

As shown in Figure 1, Ci represents nodes or concepts that 
are associated with weighted arcs. Wij denotes relationships 
between concepts Ci and Cj in the form of type and causality 
degree of the relationship between the concepts. Wij>0, Wij=0, and 
Wij<0 represent a positive causal relationship, no relationship, 
and a negative causal relationship between the two concepts, 
respectively (Bakhtavar et al., 2019).

Learning algorithms have been developed to increase map 
convergence and the accuracy of weights and to reduce the 
dependency on expert opinions based on the cognitive map 
concept. The Hebbian algorithm, population-based learning 
algorithms, and hybrid algorithms are known as learning 
algorithms (Papageorgiou and Kannappan, 2012). The best 
alternative is a hybrid learning algorithm using Hebbian and 
metaheuristic algorithms based on the data of the current study 
deduced from expert opinions. This kind of hybrid algorithm is 
appropriate for adjusting map weights consisting of time series 
data and expert opinions. In this study, a hybrid nonlinear 
Hebbian and differential evolution (NLH-DE) algorithm was 
used. The NLH-DE algorithm can update non-dimensional 
weights in different repetitions and sustain the relationships 
between the concepts in the original map. Figure 2 explains the 
first stage of the NLH-DE algorithm in the form of pseudo-code of 
the NLH algorithm. The pseudo-code of the DE algorithm as the 
second stage of the NLH-DE is given in Figure 3.

In Figure 2, A0 is the initial state matrix of the system, W0 
is the initial weight matrix between variables, A(k) and A(k+1) are 
the new values of variables in repetitions k and k+1, η and γ are 
positive and very small numbers as learning rate, Wji

(k) and Wji
(k+1) 

are the updated values of weights between variables i and j in 
repetitions k and k+1, WNLH   is the final weight matrix between 
variables in the first stage, and sgn represents a sign function.

FMOORA
Multi-objective optimization by ratio analysis (MOORA) was 
introduced by Brauers and Zavadskas (2006) as an MCDM 
technique capable of a high level of comprehensive evaluation of 
projects facing a wide variety of factors. The MOORA method has 
many applications to the solving of various engineering problems 
in complex decision-making processes. FMOORA has been widely 
applied due to its reliability in uncertain conditions. The steps of 
FMOORA are explained below.

➤   Step 1: Identify alternatives and criteria and construct a fuzzy 
decision matrix
 Equation [3] represents a decision matrix using TFN that 
indicate scores of each alternative based on each criterion.

(k+1)

Figure 1—A sample cognitive map  

Figure 2—The pseudo-code of NLH learning algorithm

Figure 3—The pseudo-code of DE learning algorithm

[3]
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where, X
~

 is a fuzzy decision matrix; (xij
l, xij

m, xij
u) denotes a 

triangular fuzzy number, in which, xij
l, xij

m, and xij
u respectively 

indicate the lower,  middle, and upper values of the fuzzy number 
for ith alternative with respect to jth criterion; m and n are the 
number of alternatives and number of criteria, respectively.
➤   Step 2: Normalize the fuzzy decision matrix

 The fuzzy decision matrix of the first step is normalized 
by using Equations [4] to [7]. The normalization process 
provides a matrix with comparable elements (Baležentis, 
Baležentis, and Brauers, 2012).

[4]

[5]

[6]

[7]

where X
~

ij
* is a normalized fuzzy decision matrix, and xij

l*,  xij
m*, 

and  xij
u* respectively denote the lower, middle, and upper 

normalized values of the fuzzy number for ith alternative with 
respect to jth criterion

➤  Step 3: Create a weighted normalized matrix
 In this step, the fuzzy weighted normalized matrix is created 
through Equations [8] to [11] by multiplying fuzzy weights 
of each criterion (wj), deriving from the weight calculation 
methods, such as AHP, and the normalized matrix of the 
second step.

                                                      [8]

[9]

[10]

[11]

➤  Step 4: Calculate normalized performance values
 The normalized performance values are calculated through 
Equation [12] by subtracting the undesirable criteria and the 
total desirable criteria [18].

[12]

where, y~i is the overall normalized performance index for each 

alternative; S
g

j=1
v~ij is desired (beneficial) criteria for 1,…, g;  

n
S

j=g+1
v~ij is 

undesirable (non-beneficial or cost) criteria for g+1,…,n.
➤  Step 5: Defuzzify the values of the functions

 In this step, the normalized performance values, which are 
TFN, are converted to crisp values by using the centroid of 
gravity defuzzification method (Equation [13]).

[13]

where, yi is an overall performance crisp value for each 
alternative.
➤  Step 6: Evaluate and rank alternatives

 Calculated yi crisp values are ranked in descending order to 
evaluate and prioritize alternatives. The best alternative has 
the maximum yi, whereas the worst has the minimum yi. 
Notably, yi may be positive or negative depending on the total 
maximum values (desirable criteria) and the total minimum 
values (undesirable criteria) in the decision matrix.

Methods and materials

Integrated approach of FCM and FMOORA
An approach was developed by integrating the cognitive map and 
MOORA methods under a fuzzy environment to be applicable in 
all cases of decision-making processes, especially for application 
to mining problem. TFNs were used in both parts of the 
integrated approach.

Figure 4 illustrates the general view of the integrated 
approach steps using FCM and FMOORA. First, the most 
important criteria based on a decision-making problem were 
identified. Then, the criteria were weighed using the FCM based 
on the hybrid learning algorithm and expert opinions. Expert 
opinions were used on the basis of a fuzzy ranking method. Next, 
a fuzzy decision matrix was formed and then normalized based 
on the FMOORA steps. After that, a fuzzy weighed normalized 
matrix was formed by multiplying the fuzzy weights of criteria 
resulting from the FCM and the normalized decision matrix of 
the FMOORA. Finally, normalized performance values (yi) were 
calculated and defuzzified to evaluate and prioritize alternatives.

Iron ore deposit data
The data for an iron ore deposit in central Iran was applied 
to evaluate the location alternatives of production shaft. 
Accordingly, the most appropriate location of the shaft was 
determined. Table I lists sthe geometric and geomechanical 
characteristics of the iron ore deposit.

Figure 4—Proposed approach based on the FCM and FMOORA methods  
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Investigations
Before any investigations on site and using maps, several 
parameters related to finding an optimal location of the shaft 
were listed on the basis of expert opinions obtained through 
questionnaires. Moreover, the important criteria and their 
interaction were highlighted by applying weights based on expert 
opinions. The following important criteria were determined based 
on the completed questionnaires:

 ➤   Possibility to protect shaft safety pillar (C1)
 ➤   Proximity to the centre of loading points (C2)
 ➤   Proximity to the ore stockpile (C3)
 ➤   Suitability of bedrock RMR (C4)
 ➤   Suitability of topography (C5)
 ➤   Distance from subsidence zone (C6).

The area of the iron ore deposit was investigated on site and 
by using maps to collect the required data for the area based on 
the criteria. To this end, topographical and geological maps, along 
with the technical reports of the mine, were initially studied. 
The locations of other iron ore deposits around the investigated 
deposit, the situations of the access roads, and the location of the 
ore stockpile were studied on the area maps. The geomechanical 
characteristics of the bedrock such as rock mass rating (RMR) 
and probable extent of the subsidence zone were extracted from 
the technical reports on the area under consideration.

After the preliminary investigation on the map of the 
iron ore deposit area, 14 shaft locations were considered as 
alternatives. The locations were checked and adjusted through 
on-site investigations. Topographical conditions were more 
focused during the on-site investigations. Notably, some of the 
alternatives were located inside the subsidence zone or in an 
unsuitable topography.  

Results and Discussion
In this study, expert opinions were considered using TFNs based 
on an 11-point scale as given in Table II (Rao and Patel, 2010).

The relationships between the criteria were obtained using 
the FCM by considering the questionnaires completed by experts. 
Accordingly, the cognitive map of the shaft location problem 
was drawn by the use of criteria nodes, fuzzy weights, and 
arrows that indicate interrelations between the criteria (Figure 
5). In addition to the six criteria (C1–C6), C7 plays a major role 
as the main goal of the shaft locating problem is to determine 
causal relationships between the six criteria and their weights. 
Therefore, C7 as the goal concept of the FCM system is affected 
by the six criteria.

Then, as summarized in Table III, the final weights of the 
criteria were determined using the hybrid learning algorithm 
(NLH-DE) of the FCM based on the causal relationships between 
the criteria and the weight of each criterion.

   Table II

   TFNs based on 11-point scale (based on Rao and Patel, 
2010)

   Linguistic proposition Fuzzy scale

   Exceptionally low significance (0,0,0.1)
   Extremely low importance (0,0.1,0.2)
   Very low importance (0.1,0.2,0.3)
   Low importance (0.2,0.3,0.4)
   Below moderate importance  (0.3,0.4,0.5)
   Moderate importance (0.4,0.5,0.6)
   Above moderate importance (0.5,0.6,0.7)
   High importance (0.6,0.7,0.8)
   Very high importance  (0.7,0.8,0.9)
   Extremely high importance (0.8,0.9,1)
   Exceptionally high importance (0.9,1,1)

   Table I

  Geometric and geomechanical parameters of the deposit
 Parameter Value

   Geometric parameters of ore deposit Average length (m) 400 
 Average width (m) 250  
 Average thickness (m) 95 
 Average slope (degree) 15 
 Average depth (m) 515 
 Primary static level of underground water (m) 1710 
 Maximum radius of subsidence (m) 300

   Geomechanical parameters of ore Average uniaxial compressive strength (MPa) 103 
 Rock Substance Strength (RSS) 7.3 
 Rock Mass Rating (RMR) 52.5 
 Ore density (t/m3) 4.3 
 Conditions of discontinuities (joints) Joints filled with less resistant material than ore

   Geomechanical parameters of hangingwall Average uniaxial compressive strength (MPa) 46 
 Rock Substance Strength (RSS) 4.2 
 Rock Mass Rating (RMR) 42 
 Hangingwall density (t/m3) 2.8 
 Conditions of discontinuities (joints) Clean joints with uneven surface

   Geomechanical parameters of footwall Average uniaxial compressive strength (MPa) 46 
 Rock Substance Strength (RSS) 2.6 
 Rock Mass Rating (RMR) 42 
 Footwall density (t/m3) 2.8 
 Conditions of discontinuities (joints) Clean joints with uneven surface
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After that, the quantitative and qualitative values of the 
criteria were extracted based on the geometric and geomechanical 
data for the iron ore deposit (Table I). Table IV summarizes 
the values determined for the distance of each shaft location 
alternative to the centre of loading points, ore stockpile, and 
subsidence zone boundaries based on Figure 6, which shows a 
plan view of the meshed map of the area.

Experts decided on the alternative with respect to some of the 
qualitative criteria, such as suitable topography, by the use of the 
topographical map of the area (Figures 7 and 8). The alternatives 
within the syncline structures showed the lowest score, whereas 
the alternatives located in an almost uniform topography 
obtained the highest scores considering the position of the ore 
deposit on the topographic map in Figure 8.

   Table III

   The output weights of criteria by the hybrid learning algorithm of the FCM
   Criterion  Symbol   Weight of learning algorithm 
    Lower limit Middle limit Upper limit

   Possibility to protect shaft safety pillar  C1 0.5025 0.5181 0.5221
   Proximity to the centre of loading points C2 0.5198 0.5228 0.532
   Proximity to ore stockpile C3 0.491 0.5178 0.5195
   Suitability of bedrock RMR C4 0.4875 0.4998 0.5154
   Suitability pf topography  C5 0.479 0.4912 0.5084
   Distant from subsidence zone C6 0.463 0.4852 0.4991

   Table IV

  Criteria values for each alternative
   Alternatives  Distance to the centre of Distance to ore Distance to subsidence zone Bedroc 
 loading points (m) stockpile (m) boundaries (m) RMR

   1  232 810 30 50
   2  147 890 18 50
   3  224 880 74 50
   4  217 640 27 48
   5  209 920 9 48
   6  197 1250 7 50
   7  36 1120 -81 49
   8  129 1310 -7 49
   9  148 1340 27 46
   10  105 1405 -41 47
   11  183 1490 26 47
   12  231 1470 19 47
   13  187 1420 42 46
   14  253 1435 98 46

Figure 5—The special FCM of the shaft location problem  
Figure 6—Meshed area of iron ore deposit for the probable alternatives of 
shaft locations
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To implement the FMOORA method based on the extracted 
data, the following steps were executed to evaluate and prioritize 
the alternatives.

 ➤   Step 1: According to expert opinions, the fuzzy decision 
matrix was created for the shaft location problem based 
on six criteria and 14 alternatives (Table V). Notably, 
in this step, six experts discussed their opinions on the 
alternatives with respect to the criteria during a meeting 

and provided a common opinion as given in Table V, based 
on the fuzzy scale in Table II.

 ➤   Step 2: As given in Table VI, the fuzzy decision matrix in 
Table VI was normalized through Equations [4] to [7].

 ➤   Step 3: To determine the weighted normalized decision 
matrix through Equations [8] to [11], the normalized fuzzy 
matrix must be multiplied to the normalized weights of 
the criteria. For this purpose, the criteria weights obtained 

Figure 7—Topographical map of the iron ore deposit area  

Figure 8—Deposit block model and topographical features of the area

   Table V

  Fuzzy decision matrix of shaft location problem
 C1 C2 C3 C4 C5 C6

   A1  (0.6,0.7,0.8) (0.3,0.4,0.5) (0.4,0.5,0.6) (0.4,0.5,0.6) (0.5,0.6,0.7) (0.7,0.8,0.9)
   A2  (0.5,0.6,0.7) (0.5,0.6,0.7) (0.3,0.4,0.5) (0.4,0.5,0.6) (0.5,0.6,0.7) (0.6,0.7,0.8)
   A3  (0.7,0.8,0.9) (0.1,0.2,0.3) (0.3,0.4,0.5) (0.4,0.5,0.6) (0.4,0.5,0.6) (0.7,0.8,0.9)
   A4  (0.5,0.6,0.7) (0,0,0.1) (0.6,0.7,0.8) (0.3,0.4,0.5) (0.5,0.6,0.7) (0.7,0.8,0.9)
   A5  (0.3,0.4,0.5) (0,0.1,0.2) (0.5,0.6,0.7) (0.3,0.4,0.5) (0.4,0.5,0.6) (0.5,0.6,0.7)
   A6  (0.3,0.4,0.5) (0.3,0.4,0.5) (0.1,0.2,0.3) (0.4,0.5,0.6) (0.5,0.6,0.7) (0.5,0.6,0.7)
   A7  (0,0,0.1) (0.7,0.8,0.9) (0.2,0.3,0.4) (0.4,0.5,0.6) (0.5,0.6,0.7) (0,0,0.1)
   A8  (0,0,0.1) (0.6,0.7,0.8) (0.3,0.4,0.5) (0.4,0.5,0.6) (0.5,0.6,0.7) (0,0.1,0.2)
   A9  (0.7,0.8,0.9) (0.4,0.5,0.6) (0.3,0.4,0.5) (0.3,0.4,0.5) (0.3,0.4,0.5) (0.7,0.8,0.9)
   A10 (0,0,0.1) (0.2,0.3,0.4) (0,0.1,0.2) (0.3,0.4,0.5) (0.5,0.6,0.7) (0,0,0.1)
   A11 (0.7,0.8,0.9) (0,0,0.1) (0,0,0.1) (0.3,0.4,0.5) (0.5,0.6,0.7) (0.7,0.8,0.9)
   A12 (0.5,0.6,0.7) (0.1,0.2,0.3) (0,0.1,0.2) (0.3,0.4,0.5) (0,0.1,0.2) (0.6,0.7,0.8)
   A13 (0.7,0.8,0.9) (0.2,0.3,0.4) (0.1,0.2,0.3) (0.3,0.4,0.5) (0.4,0.5,0.6) (0.7,0.8,0.9)
   A14 (0.7,0.8,0.9) (0,0.1,0.2) (0.1,0.2,0.3) (0.3,0.4,0.5) (0.4,0.5,0.6) (0.7,0.8,0.9)
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from the FCM method (Table III) were normalized as given 
in Table VII. The weighted normalized decision matrix 
is represented in Table VIII. The results obtained from 
the FCM method (Tables III and VII) indicate that the 
criterion of ‘proximity to the centre of loading points’ by a 
normalized fuzzy weight of (0.1678, 0.1722, 0.1807) has 
the highest importance among the other criteria. Among 
them, the criteria of ‘possibility to protect shaft safety 
pillar’ and ‘proximity to ore stockpile’ indicate second and 
third importance, respectively. The criterion of ’distant 
from subsidence zone’ has the lowest importance of all the 
criteria.

 ➤   Step 4: Normalized performance values were calculated 

by subtracting the total undesirable criteria from the total 
desirable criteria through Equation [12]. Table IX reveals 
that all criteria used in this study have positive concepts. 
Therefore, the value of the function was equal to the sum 
of the fuzzy values of the criteria.

Now, by defuzzifying fuzzy performance values through 
Equation [13], the crisp values (yi) were obtained for evaluating 
and ranking all 14 alternatives, as represented in Table X. 
The maximum and minimum crisp performance values (yi) 
represented the first and last ranks of the shaft location 
alternatives, respectively. Consequently, as given in Table X, the 
five highest ranked of the shaft alternatives are A2, A1, A9, A3, 
and A4 with performance values of 0.1744, 0.1738, 0.1654, 

   Table VI

  Normalized fuzzy matrix of decision
 C1 C2 C3 C4 C5 C6

   A1  (0.15,0.17,0.20) (0.11,0.14,0.18) (0.16,0.20,0.24) (0.13,0.17,0.20) (0.14,0.17,0.19) (0.16,0.18,0.20)
   A2  (0.12,0.15,0.17) (0.18,0.22,0.25) (0.12,0.16,0.20) (0.13,0.17,0.20) (0.14,0.17,0.19) (0.13,0.16,0.18)
   A3  (0.17,0.20,0.22) 0.03,0.07,0.11) (0.12,0.16,0.20) (0.13,0.17,0.20) (0.11,0.14,0.17) (0.16,0.18,0.20)
   A4  (0.12,0.15,0.17) (0,0,0.03) (0.24,0.28,0.32) (0.10,0.13,0.17) (0.14,0.17,0.19) (0.16,0.18,0.20)
   A5  (0.07,0.10,0.12) (0,0.03,0.07) (0.20,0.24,0.28) (0.10,0.13,0.17) (0.11,0.14,0.17) (0.11,0.13,0.16)
   A6  (0.07,0.10,0.12) (0.11,0.14,0.18) (0.04,0.08,0.12) (0.13,0.17,0.20) (0.14,0.17,0.19) (0.11,0.13,0.16)
   A7  (0,0,0.02) (0.25,0.29,0.33) (0.08,0.12,0.16) (0.13,0.17,0.20) (0.14,0.17,0.19) (0,0,0.02)
   A8  (0,0,0.2) (0.22,0.25,0.29) (0.12,0.16,0.20) (0.13,0.17,0.20) (0.14,0.17,0.19) (0,0.02,0.04)
   A9  (0.17,0.20,0.22) (0.14,0.18,0.22) (0.12,0.16,0.20) (0.10,0.13,0.17) (0.08,0.11,0.14) (0.16,0.18,0.20)
   A10 (0,0,0.02) (0.07,0.11,0.14) (0,0.04,0.08) (0.10,0.13,0.17) (0.14,0.17,0.19) (0,0,0.02)
   A11 (0.17,0.20,0.22) (0,0,0.03) (0,0,0.04) (0.10,0.13,0.17) (0.14,0.17,0.19) (0.16,0.18,0.20)
   A12 (0.12,0.15,0.17) (0.03,0.07,0.11) (0,0.04,0.08) (0.10,0.13,0.17) (0,0.02,0.05) (0.13,0.16,0.20)
   A13 (0.17,0.20,0.22) (0.07,0.11,0.14) (0.04,0.08,0.12) (0.10,0.13,0.17) (0.11,0.13,0.17) (0.16,0.18,0.20)
   A14 (0.17,0.20,0.22) (0,0.03,0.07) (0.04,0.08,0.12) (0.10,0.13,0.17) (0.11,0.13,0.17) (0.16,0.18,0.20)

   Table VII

   The weights obtained from the normalized FCM  
method for each of the criteria

   Criteria  Symbol Weight of learning algorithm

   Possibility to protect shaft safety pillar C1 (0.1622,0.1707,0.1774)
   Proximity to the centre of loading points C2 (0.1678,0.1722,0.1807)
   Proximity to ore stockpile C3 (0.1585,0.1706,0.1765)
   Suitability of bedrock RMR C4 (0.1574,0.1646,0.1751)
   Suitability of topography desirability C5 (0.1546,0.1618,0.1727)
   Distant from subsidence zone C6 (0.1495,0.1598,0.1696)

   Table VIII

  Weighted normalized decision matrix
 C1 C2 C3 C4 C5 C6

   A1 (0.024,0.028,0.033)  (0.018,0.024,0.031)  (0.025,0.034,0.042)  (0.021,0.028,0.035)  (0.021,0.027,0.034) (0.024,0.029,0.035)
   A2 (0.020,0.026,0.031) (0.031,0.038,0.046) 0.019,0.027,0.035) (0.021,0.028,0.035) (0.021,0.027,0.034) (0.020,0.025,0.031)
   A3 (0.028,0.034,0.040) (0.006,0.012,0.020) (0.019,0.027,0.035) (0.021,0.028,0.035) 0.017,0.023,0.029) (0.024,0.029,0.035)
   A4 (0.020,0.026,0.031) (0,0,0.006) (0.038,0.048,0.056) (0.016,0.022,0.029) 0.021,0.025,0.034) (0.024,0.029,0.035)
   A5 (0.012,0.017,0.022) (0,0,0.013) (0.031,0.041,0.049) (0.016,0.024,0.029) (0.017,0.023,0.029) (0.017,0.022,0.027)
   A6 (0.012,0.017,0.022) (0.018,0.025,0.033) (0.006,0.013,0.021) (0.021,0.028,0.035) (0.021,0.027,0.034) (0.017,0.022,0.027)
   A7 (0,0,0.004) (0.043,0.051,0.060) (0.012,0.020,0.028) (0.021,0.028,0.035) (0.021,0.027,0.034) (0,0,0.003)
   A8 (0,0,0.004) (0.037,0.044,0.053) (0.019,0.027,0.034) (0.021,0.028,0.035) (0.021,0.027,0.034) (0,0.003,0.007)
   A9 (0.028,0.034,0.040) (0.024,0.031,0.040) (0.019,0.027,0.035) (0.016,0.022,0.029) (0.013,0.018,0.024) (0.024,0.029,0.035)
   A10 (0,0,0.004) (0.012,0.019,0.026) (0,0.006,0.014) (0.016,0.022,0.029) (0.021,0.027,0.034) (0,0,0.003)
   A11 (0.028,0.034,0.040) (0,0,0.006) 0,0,0.007) (0.016,0.022,0.029) (0.021,0.027,0.034) (0.024,0.029,0.035)
   V12 (0.020,0.026,0.031) (0.006,0.012,0.020) (0,0.006,0.014) (0.016,0.022,0.029) (0,0.004,0.009) (0.020,0.025,0.031)
   A13 (0.028,0.034,0.040) (0.012,0.019,0.026) (0.006,0.013,0.021) (0.016,0.022,0.029) (0.017,0.023,0.029) (0.024,0.029,0.035)
   A14 0.028,0.034,0.040) (0,0.006,0.013) (0.006,0.013,0.021) (0.016,0.022,0.029) (0.017,0.023,0.029) (0.024,0.029,0.035)

   Table IX

  Types of criteria used in the study
   Criteria Symbol Criteria type

   Possibility to protect shaft safety pillar C1 Positive criterion
   Proximity to the centre of loading points C2 Positive criterion
   Proximity to ore stockpile C3 Positive criterion
   Suitability of bedrock RMR C4 Positive criterion
   Suitability of topography  C5 Positive criterion
   Distant from subsidence zone C6 Positive criterion
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0.1563, and 0.1562, respectively. Notably, by subtracting the 
performance values of the two highest ranked alternatives, 
alternatives A2 and A1 had a very negligible difference of 
0.0006.

As shown in Figure 6 and Table IV, A2 (147 m) is closer to 
the centre of the ore deposit and loading points than A1  
(232 m). However, A1 (810 m) is closer to the ore stockpile 
than A2 (890 m). Based on the other criteriam A1 and A2 are 
very similarly ranked. As discussed before, the criterion of an 
proximity to the centre of loading points’ has the highest weight 
among the other criteria and ‘proximity to ore stockpile’ has the 
third highest weight. These explanations can justify location A2 
as the best alternative.

The results of the integrated FCM and FMOORA were 
compared with the results obtained from fuzzy TOPSIS as the 
most conventional MCDM method (Table X). In this version of the 
fuzzy TOPSIS method, the criteria weights obtained from the FCM 
version of this study (Table III) were used. Therefore, a fuzzy 
TOPSIS with criteria weights based on the FCM was developed to 
compare the results. For the simple comparison of results given 
in Table X, the performance values (yi) in FCM–FMOORA and the 
relative closeness values to ideal solution (Cli*) in fuzzy TOPSIS 
were normalized as shown in Figure 9. According to Figure 9, the 
normalized ranking value curves are approximately in agreement. 

As shown in the FCM–FMOORA curve in Figure 9, alternatives 
A1 and A2 are close and can be considered the first priority.

Figure 10 represents the ranking results by FCM–FMOORA 
and fuzzy TOPSIS for simple evaluation of the considered 
alternatives. Thus, alternatives A1, A2, A3, A4, and A9 were 
considered the five highest ranked based on both methods. As 
shown in Table X and Figure 9, alternatives A1 and A2 are 
assigned joint first priority because of a very small difference 
between their values and the ideal solution (Cli*). Alternatives 
A2, A1, and A9 were the most appropriate shaft site alternatives, 
which are closely in agreement to the ranking results of the 
FCM–FMOORA method presented in this study, based on the 
on-site investigations and the prefeasibility study of the iron ore 
area. Alternatives A7, A8, and A10 could not satisfy the sixth 
criterion (distant from subsidence zone), because they are located 
within the subsidence zone (Figure 6). Alternatives A7, A8, and 
A10, ranked as 10, 8, and 14, respectively, were validated by the 
FCM–MOORA. A8 ranked eighth because this shaft site is located 
within the subsidence zone, although close to the subsidence 
zone boundaries. Moreover, this alternative satisfies some other 
important criteria from C2, C3, C4, and C5.

Conclusion
The FCM and FMOORA were integrated to solve decision-making 

   Table X

  Alternatives ranking by FCM–FMOORA and fuzzy TOPSIS
   Alternative   Performance value  yi Rank in FCM-FMOORA Cli* Rank in fuzzy TOPSIS 
 yi

l yi
m yi

u

   A1 0.1364 0.1731 0.2119 0.1738 2 0.6597 1
   A2 0.1349 0.1731 0.2153 0.1744 1 0.6437 2
   A3 0.1173 0.1554 0.1965 0.1563 4 0.5993 4
   A4 0.1210 0.1535 0.1943 0.1562 5 0.5898 5
   A5 0.0951 0.1324 0.1722 0.1332 9 0.4953 9
   A6 0.0980 0.1343 0.1748 0.1356 7 0.5141 8
   A7 0.997 0.1273 0.1672 0.1313 10 0.4444 12
   A8 0.0999 0.1314 0.1715 0.1342 8 0.4575 11
   A9 0.1262 0.1643 0.2057 0.1654 3 0.6099 3
   A10 0.0505 0.0760 0.1135 0.0800 14 0.2909 14
   A11 0.0910 0.1141 0.1536 0.1195 12 0.4947 10
   A12 0.0636 0.09884 0.1367 0.0995 13 0.3795 13
   A13 0.1054 0.1424 0.1830 0.1436 6 0.5546 6
   A14 0.0930 0.1296 0.1696 0.1307 11 0.5187 7

Figure 9—Normalized ranking values of FCM–FMOORA and fuzzy TOPSIS for comparison of results
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problems, in particular to evaluate and prioritize shaft location 
alternatives in the case of underground mines. The integrated 
approach was exemplified using the data for an underground iron 
ore mine, consisting of six criteria and fourteen shaft location 
alternatives. The FCM part of the integrated approach determined 
the weights of the criteria by using an NLH-DE learning 
algorithm and expert opinions. As a result, higher weights were 
assigned to the criteria of proximity to the centre of loading 
points, possibility to protect the shaft safety pillar, and proximity 
to the ore stockpile with fuzzy weights (0.5198, 0.5228, 0.532), 
(0.5025, 0.5181, 0.5221), and (0.491, 0.5178, 0.5195), 
respectively. The criterion of distance from the subsidence zone 
attained the minimum weight (0.463, 0.4852, 0.4991). By 
applying the fuzzy weights of the criteria in the FMOORA steps, 
alternatives A2, A1, A9, A3, and A4, with performance values 
of 0.1744, 0.1738, 0.1654, 0.1563, and 0.1562, respectively, 
were identified as the five first choices for shaft sites. Alternatives 
A2 and A1 had a very negligible difference in their performance 
values. The evaluation and ranking results of the integrated 
FCM–FMOORA were validated by the fuzzy TOPSIS method. 
Moreover, investigations on the map and on-site confirmed 
that the resulting alternatives are in better locations and satisfy 
technical limitations better than the other alternatives.
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