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Artificial intelligence and big data 
analytics in mining geomechanics
J. McGaughey1

Synopsis
Mining geomechanics presents specific challenges to application of the closely-related methods 
of artificial intelligence (AI), big data, predictive analytics, and machine learning. This is because 
successful use of these techniques in geotechnical engineering requires four-dimensional (x, y, z, t) 
data integration as a prerequisite, and 4D data integration is a fundamentally difficult problem. 

This paper describes a process and software framework that solves the prerequisite 4D data 
integration problem, setting the stage for routine application of AI or machine learning methods. The 
work flow and software system brings together structured and unstructured data and interpretation 
from drill-hole data to all types of geological, geophysical, rock property, geotechnical, mine production, 
fixed plant, mobile equipment, and mine geometry data, to provide a data fusion capability specifically 
aimed at applying machine learning to rock engineering problems. 
The system does this by maintaining 3D earth model and 4D mine model geometrical data structures, 
upon which multiple data-sets are projected, interpolated, upscaled, downscaled, or otherwise processed 
appropriately for each data type so that the variables of importance for each problem can be co-located 
in space and time, a requirement for the application of any analytics algorithm. Documents and files can 
be stored, managed, and linked to data and interpretation to provide relevant metadata and contextual 
links, providing the platform required for AI solutions. The system rationale and structure are described 
with reference to specific AI challenges in rock engineering. 

Keywords
rock engineering, geomechanics, artificial intelligence, AI.

Introduction
Most people are aware of the AI technology revolution. From self-driving cars to medical, financial, and 
marketing applications, we have been exposed to its predictive power. Why have these methods not yet 
had a significant impact on understanding or forecasting mining geomechanics outcomes? The rewards 
of AI should be immense as mines get deeper and forecasting of stress-related or other rock behaviour 
becomes a limiting factor on safety and production. The reason for lack of success is simple—there is a 
fundamental barrier that makes mining geomechanics different from traditional AI applications.

AI and its close relatives, predictive analytics, machine learning, and big data (all of which in 
practice are either broadly synonymous terms or subsets of each other), work well when you can 
measure many variables on a specific entity, such as a mining machine, a length of drill core, or even an 
industrial process, and simultaneously record a condition that you want to be able to forecast such as 
machine failure, the mineral and geometallurgical properties of rock, or the output of a process. AI can 
uncover complex, predictive relationships among measured variables and the condition to be predicted. 
That is why it is already being used with success in some corners of the mining industry, such as 
understanding the relationship between fleet vehicle data and maintenance requirements or predicting 
geometallurgical parameters from core scans.

However, in mining geomechanics, its application is far from simple. The reason for this is that the 
condition being predicted, such as the location and timing of a geotechnical hazard (including rockfall, 
rockburst, or slope failure, seismic event probability forecasting, ore dilution forecasting, or drawpoint 
hang-up prediction), may be related to known factors (e.g. geology, rock mass properties, fault 
structures, mine geometry, stress, extraction, production, stope sequencing, deformation, seismicity, 
blasting, and support). But those factors are in many cases not easily estimated quantifiable variables 
at the location where the prediction is required. The condition to be forecast (e.g. the rockburst or the 
slope failure) exists when and where it does because of the properties of the complex, four-dimensional, 
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spatial and temporal natural earth and engineered mine system. 
Not only are many of the factors affecting the prediction 
separated in space and time from the location and timing of the 
forecast event, but many can only be partially known, because 
they are inferred from models (geological models, geotechnical 
models, numerical stress models, etc.) that are themselves created 
from sparse measurement or drill-hole data.

Nevertheless, in spite of these particular challenges of 
applying modern AI or machine learning methods to mining 
geomechanics, success can be and has been, achieved. The 
solution is to take the focus off the mechanics of AI itself and put 
the focus on how these problems are set up for the application 
of AI methods, which is where deep domain knowledge and 
a mining-specific, supporting computational framework are 
required. 

How artificial intelligence works
There is much confusion in popular usage of the terms used 
to describe what amounts to a collection of pattern recognition 
algorithms. In formal usage, AI is a broad term encompassing 
the general field of computer simulation of human intelligence. 
Machine learning is a narrower term, conventionally a sub-
set of AI that uses computer algorithms to create a predictive 
mathematical model based on so-called historical training data 
that can be used to forecast the relative probability of future 
occurrences of given events. 

Classes of machine-learning algorithms include decision trees, 
random forests, support vector machines, Bayesian inference, 
ensemble methods, and others. Deep learning is a subset of 
machine-learning algorithms that uses neural networks. The 
term ‘predictive analytics’ is roughly synonymous with machine 
learning, but more often used in a business application context. 
The term ‘big data’ is conventionally reserved for very large data-
sets, typically comprising both structured data (such as tables of 
numbers) and unstructured data (documents, photos). In popular 
use, however, and for the purposes of this paper, I consider 
AI, machine learning, predictive analytics, and big data to all 
be effectively synonymous, and will use the term AI. For rock 
engineering applications, the choice of AI algorithm matters much 
less than correctly setting up the inputs to whatever algorithm is 
chosen.

‘ Artificial Intelligence is colossally hyped these days, but 
the dirty little secret is that is still has a long, long way to 
go… AI systems tend to be passive vessels dredging through 
data in search of correlations; humans are active engines 
for discerning how things work… Unlike human cognition, 
AI systems lack a theory of the world and how it works.’ 
Marcus (2017).
The truth of the above quotation underlines what we can and 

what we cannot hope to achieve in applying these methods to 
mining geomechanics.

What we may achieve by applying AI in mining 
geomechanics:

1.   Find correlations among multiple data-sets and conditions or 
events we would like to forecast.

2.   Create useful statistical models that quantitatively combine 
multiple input data-sets into meaningful output forecasts of 
future geomechanical behaviour.

3.   establish the relative importance of individual data types in 
understanding future behaviour.

4.   Confirm or refute assumptions concerning relationships 

between data, models, and experience and generally put our 
assumptions of site behaviour to the test of measured facts.
However, we will not (at least any time soon) applying AI in 

rock engineering:
establish new conceptual or physical models that describe 

rock engineering behaviour
AI systems easily available to us today are indeed ‘passive 

vessels dredging through data in search of correlations.’ Yet that 
is of great value in itself in mining geomechanics. It provides us 
with a new, sophisticated capability to understand underlying 
patterns in very complex data and apply those patterns as a 
set of rules that can be used to predict future behaviour based 
on the patterns of past experience. AI works in any domain by 
measuring features of a great many examples of something 
and correlating those features with a condition to be predicted. 
For example, one could measure features (symptoms) of many 
individual patients in a medical application and label those 
patients according to the presence or absence of a specific medical 
condition. AI techniques could be deployed to comb through 
thousands of patient records, sort out the relative importance 
of multiple measured features (symptoms in the example), and 
create a mathematical model enabling the estimation of the 
probability of any new patient having the specific condition. AI 
does this by measuring the important features and combining 
them according to the learned relationship between the features 
and the probability of having the condition. The process of 
uncovering the relationship between measured features and the 
condition of interest is called training.

By analogy, the example above can be applied to many 
problems in rock engineering and, by further analogy, to the 
medical diagnostic case, it can be of tremendous practical 
value to understand the likely existence of a specific condition 
of importance (e.g., high probability of failure) that can be 
addressed with practical remediation measures. That remains 
true whether or not the underlying root causes of the conditions 
to remediated are fully understood. Nevertheless, in mining 
geomechanical applications of AI, unlike in many other domains, 
we prefer to use AI algorithms that are not black boxes, but 
rather reveal as much as possible about relationships among 
data, models, and outcomes.

Challenge in applying artificial intelligence to mining geo-
mechanics
The central challenge in applying AI to mining geomechanics 
problems stems from a simple fact: the condition (including rock 
fall and slope failure ) whose location and timing that we want 
to forecast results from a complex interplay of factors in a four-
dimensional, dynamic system that can only partially be known. 
Capturing the important factors from this complex system for AI 
training, and subsequent application to new data for providing 
probabilistic forecasts of where and when conditions of interest 
may occur, is the key challenge. Meeting this challenge requires 
deep domain knowledge. It is here where mining geomechanics 
knowledge enters the AI work flow, and it is where the 
application of that knowledge to capturing the most meaningful 
system factors will mark the difference between success and 
failure.

To give some examples, consider rockbursts in underground 
mines or slope failures in open pit mines. Rockbursts may be 
correlated to a host of factors such as depth, stress, stiffness, 
ground deformation, extraction ratio, production rate and 
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sequencing, support, blasting, span and other mine geometry 
factors, rock type, rock quality, proximity to geological contacts, 
proximity to structures, proximity to structural intersections, 
and orientation of structures with respect to stress and mine 
geometry. Similarly, slope failures may be correlated to a host 
of factors such as slope angle, face angle, inter-ramp angle, face 
height, berm width, rock quality generally, joint characterization 
both generally and with respect to wall orientation, water, rock 
type, proximity to geological contacts, proximity to structures, 
proximity to structural intersections, orientation of structures 
with respect to pit geometry, and ground deformation. The factors 
in play are generally site-dependent; capturing the appropriate 
ones requires both general and site knowledge.

Co-location in space and time is the most important concept in 
properly capturing the rock engineering factors that may correlate 
to the conditions we want to forecast. The AI training algorithms 
require many examples of multiple measurements on the same 
thing. In the medical diagnostic analogy, that same thing is the 
patient, and the algorithms require many patients on whom 
multiple factors are measured in addition to noting whether 
individual patients are afflicted with the condition of interest. 
In mining geomechanics, it is individual locations in space and 
time on the rock face that stands in for the patient of the medical 
analogy. At those individual locations on the rock face (along a 
drift, in a stope, on a pit wall), many factors can be measured, 
some of which (e.g. stress, deformation, seismicity) change over 
time. The data to be assembled for the AI training is of the form:

 (x, y, z, t, observation 1, observation 2, … observation m, 
condition = true or false).
In AI, this collection of measurements is called a feature 

vector. It contains the coordinates of the place (x, y , z, t) that 
specifies a unique location in space and time on the mine, a 
series of m observations (e.g. RMR, stress) that are observed 
or estimated at that location, and a condition or target variable 
that is most commonly a simple binary true or false, indicating 
that the condition being investigated was present or absent at 
that place and time (for example a rockburst or slope failure). 
In practice, there are typically many thousands of individual 
feature vectors and a few tens of observations per feature vector. 
In fact, the number of feature vectors available to us in the 
rock engineering domain is virtually unlimited because we are 
sampling over the mine geometry and time, both of which we 
may discretize as finely or coarsely as we choose. The number 
m of observation variables per feature vector is also very much 
at our discretion, as it is not unusual in AI to include many 
secondary variables (such as mathematical derivatives to test 
for significance of both spatial and temporal rates of change) of 
the primary observed or inferred variables. This expansion of 
observations in the feature vector by mathematical manipulation 
such as taking derivatives can be carried out systematically. It is 
in establishment of the primary observations that the crux of the 
challenge lies.

Co-location demands that we establish potentially useful 
quantities relating to each of the primary factors (e.g. rock 
quality, stress) that we may think have a relationship to the 
condition being analysed (rockfall, slope failure) at thousands 
of points (x, y, z, t) in the mine. In practice, this means creating 
a 4D model of the mine—a 3D model at several or many time 
steps—that contains all the primary observations believed to 
possibly have a relationship with the condition of interest. 
Creating that 4D mine model upon which AI algorithms can be 

trained to understand the patterns and relationships among 
data, interpretations, and the history of occurrence of specific 
events is the central challenge in applying AI methods to mining 
geomechanics. It is also in constructing the 4D model that 
rock engineering problems may indeed become big data. The 
number of data contained in the 4D model that is input to the 
AI algorithm is (m x n), where m is the number of observations 
per feature vector, n is the number of feature vectors (which is 
the number of digitized points on the mine model multiplied by 
the number of time steps, a quantity that can easily be in the 
millions).

The practice and pitfalls associated with the application of 
AI algorithms to rock engineering problems have been described 
elsewhere, for example in McGaughey (2019). In the remainder 
of this paper I focus on the most pressing challenge in the overall 
work flow, which is construction of the 4D mine model from 
which the set of feature vectors used as input in AI are derived.

A framework for successful application of AI in rock engi-
neering
A system, Geoscience INTEGRATOR (McGaughey et al., 
(2017), has been created that provides simple computation 
of the variables required to address the application of AI to 
mining geomechanics problems, and provides a real, working 
data-structure definition to the notion of a 4D mine model. It 
accomplishes this by maintaining 3D earth model and 4D mine 
model geometrical data structures, upon which multiple data-sets 
are projected, interpolated, upscaled, downscaled, or otherwise 
processed appropriately for each data type so that the variables of 
importance for each problem can be co-located in space and time. 
Documents and files can be stored, managed, and linked to data 
and models to provide relevant interpretational metadata and 
contextual links, providing the platform required for AI solutions.

The general system configuration is shown in Figure 1. A 4D 
data management system sits at the core of the system. The data 
management system manages all relevant data types, including 
geological models, mine infrastructure models, drill-hole and 
sample data, production and blasting data, and instrument 
monitoring data of all types (e.g. convergence and extensometer 
station time series data, prism and radar data, seismic data). 

Figure 1—The Geoscience INTEGRATOR system configuration. A 4D data 
management system resides on a server, connected to a model server for 
automated computation of variables (feature vector observations described 
in the text) and an analytics server for applying AI rules and computing 
event probabilities
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It is able to automatically ingest new data from instruments or 
external databases. Hazard occurrence or other relevant event 
conditions are input automatically or manually. Most importantly, 
the data management system maintains an explicit model of 
the mine, digitized in time and space, and provides the required 
mappings between input data streams, the 4D mine model, and 
output forecasts of rock engineering conditions or events.

The data management system is directly connected to a model 
server, in this implementation a run-time version of the SKUA-
GOCAD® modelling engine, and an analytics server which can 
apply AI rules to new data to deliver updated reports (typically 
hazard assessment reports). The model server is set up to 
compute required variables automatically, on user demand or on 
a set schedule (e.g. daily). It operates under the control of the 
data management system, which queues required computations, 
supplies the input data, triggers the model server to run one of 
many pre-defined scripts, and receives output as newly computed 
observations on its internal representation of the mine model at 
all relevant locations (x, y, z, t).

Examples of computations that can currently be automatically 
run by the model server to update properties on the mine model 
(feature vector observations) include:

 ➤   Interpolate rock quality variables in a block model based 
on a variety of simple interpolation and geostatistical 
estimation techniques

 ➤   Interpolate time-windowed seismic source properties
 ➤   Compute time-windowed seismic event density
 ➤   Compute maximum seismic PPV over given time windows
 ➤   Compute proximity to contacts and structures
 ➤   Compute proximity to intersections of any groups of faults, 

dykes, geological contacts
 ➤   Interpolate ground deformation

 ➤   Compute deviatoric stress
 ➤   Compute fault-slip tendency
 ➤   Compute extraction ratio based on mine infrastructure 

wireframes
 ➤   Compute wedge and planar joint failure parameters using 

kinematic bench analysis.

An example of the web browser user interface illustrating a 
sample list of computations set up on an automatic schedule for 
an actual case study is illustrated in Figure 2.

The computations illustrated in Figure 2 serve to populate 
the 4D mine model data structure with calculated values for each 
observation type. The calculations are customized per site to 
account for the many specific parameters that typically must be 
set per computation (e.g. length of time windows), as well as the 
frequency of update per data type.

Figure 3 also shows a screenshot from the system’s web 
browser interface. It is showing a view of its internal data 
fusion table, which is a tabular display of the values of system-
computed observations on individual mine model points (x, 
y, z) for a given user-selected time t. The rows of this table 
correspond to individual feature vectors. The complete table is 
the input to the AI algorithms. The output of the AI algorithms 
is a probabilistic estimation of the given condition being 
analysed (e.g., rockfall or slope failure). The output estimation 
is in an additional, time-varying quantity on each mine model 
point (x, y, z, t), describing how the probability of manifesting 
the condition is varying across space and time. Figure 4 is a 
screenshot from the web browser interface showing a subset 
of rules, output from the AI algorithm, which are applied to the 
mine model points to determine, in the particular case study 
example shown, relative probability of rockburst occurrence 
across a mine. For the example shown in Figure 4, the rockburst 

Figure 2—Geoscience INTEGRATOR web interface screenshot illustrating the automated scheduling of several computations used in the application of AI-based 
geohazard assessment
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probability forecast is automatically updated weekly, but the 
schedule can be arbitrarily set to whatever is appropriate for the 
mine site. It is important to note that, without such an automated 
system, updating these computations is extremely laborious. Our 
experience over the years as consultants, initially carrying out 
these computations manually, was that the computations were 
sufficiently burdensome that mines would carry out updates 
typically annually, and at most quarterly, essential rendering the 

system a tool for mid to long-term planning rather than a tactical 
operational guide to current areas in the mine that warrant 
concern.

Figure 5 shows a final, reportable operational output from the 
system. Once the AI rules (illustrated in Figure 4) are applied, 
the relative rock-burst probability can be displayed as a property 
on the individual mine model points. The case study example 
shown is for one mine level only, with relative probabilities 

Figure 3—Geoscience INTEGRATOR web interface screenshot illustrating the table of feature vectors (also known as the data fusion table) for a case study. Each 
row of the table corresponds to one feature vector, with only four observations (columns in the table) selected for display. The table is shown for a selected time 
and area of the mine. The AI algorithms act on the complete table

Figure 4—Screenshot from the Geoscience INTEGRATOR web browser interface showing a subset of rules output from an AI algorithm at a case study mine site 
where the objective was dynamically updating a model of rockburst hazard (in this case weekly), based on an automated update of several input data streams
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above a set threshold shown as large symbols as well as warmer 
colours for emphasis. The mine-level display can be captured 
in a PDF report and automatically dispatched on a schedule to 
a defined email group, or a trigger-alert can be set up if a given 
threshold is exceeded. All of the underlying variables, as well as 

the final output hazard assessment result, at each mine model 
point can be visualized for inspection and validation. All model 
components, variables, and hazard assessment results can also 
be easily visualized in 3D using the data management system’s 
3D visualizer client application (See Figure 6).

Figure 5—The mine model shown (by level) as the series of digitized points with computed observation values as well as the probabilistic AI-formulated hazard 
assessment. The display shows rockburst hazard index, as of a certain date and time, with values exceeding a given threshold shown with larger symbols

Figure 6—A 3D visualizer client called Geoscience ANALYST connects directly to the Geoscience INTEGRATOR server, enabling 4D query of the data management 
system to display hazard assessment results (as shown here with warmer colours indicating greater rockburst hazard probability) or any of the underlying data, 
model components, linked files, documents, and images
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In practice, this system can be easily set up at mine site on 
conventional hardware or as a cloud-hosted deployment (both 
have been done). Data sizes are manageable with large, but not 
extraordinary, demands required on storage capacity. Whether 
deployed on site or cloud-hosted, Geoscience INTEGRATOR can 
be connected to multiple data sources at the mine site in several 
ways. Users can manually update slowly changing data such as 
mine infrastructure geometry or block models through a manual 
drag-and-drop into specified folders on the file network system 
for automated import. These monitoring folders can also be 
used for machine-to-machine communication, typically as csv 
files automatically output from monitoring systems (such as 
microseismic or ground deformation). The system can also be 
customized to pull directly from third-party databases (such as 
production databases). Because all data relevant to the hazard 
assessment is contained within this single data warehouse, 
it provides a single point from which to query and access any 
relevant data. In fact, some mine sites use the system for this 
data warehouse purpose alone. Figure 7 provides a schematic 
representation of the data flow.

Conclusion
AI can be successfully applied to complex mining geomechanics 
problems. Doing so requires focusing on the primary challenge 
of setting up the problem rather than on the AI algorithms 
themselves, most of which will provide value if the problem 
is properly set up. Developing the proper inputs for AI in rock 
engineering requires mapping the complex, 4D mine and earth 
model system to a proper data structure in which the many multi-

disciplinary factors in play can be co-located in space and time. 
Doing so in a practical, operational sense requires implementation 
of a 4D data management system coupled with a powerful spatial 
modelling engine (the model server) and the AI algorithms (the 
analytics server). Inputs and outputs must be automated to 
support systematic update at a frequency that is operationally 
useful for tactical decision-making by operators.
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