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Monitoring unstable slopes in an open 
pit lignite mine using ARIMA
H. Özşen1

Synopsis
Slope stability is a widely studied area because of the significant consequences of slope failure. There 
are various factors affecting slope stability in open pit mines, and predicting the time of failure can be 
difficult due to the complex nature of the rock mass. Regression methods are often used in this prediction 
process, but they are limited in that they use a strict mathematical model. Therefore, possible future 
changes within the structure of a slope can be underestimated because once a mathematical model has 
been established to predict slope failure, it is then used indefinitely. For this reason, an autoregressive 
integrated moving average (ARIMA) model is used in this study as a time series analysis (TSA) method 
for the prediction of slope failure. Data obtained from the movements of tension cracks from six out of ten 
established stations in Ilgın open pit lignite mine of Turkish Coal Enterprises, West Lignite Enterprises 
(TKI-GLI) were used to predict future values. The prediction results from the ARIMA method were also 
compared with results from regression methods and were shown to be more successful.

Keywords
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Introduction
Slope stability is an important aspect in a broad range of areas, such as mining, geology, construction, 
and architecture. It is critical in open pit mines. Many factors such as geological structural properties, 
the geometry of the slope, the presence of underground water, the properties of materials used, and 
excavation methods affect slope stability. The consequences of a possible slope failure can be both 
fatal to personnel and damaging to the mine. Thus, the necessary calculations and analyses should be 
carried out within certain time intervals. However, this is a complex process which requires experienced 
professionals. For these reasons, many studies conducted to predict problems with slope stability have 
used methods other than the classical calculation methods. Regression-based methods are the most 
preferred because of their simple, explanatory structure and high suitability for measuring these kinds 
of problems. 

Occhiena, Pirulli, and Scavia (2014) developed an analysis procedure to interpret data from a 
microseismic monitoring system. Gama et al. (2017) investigated small baseline subsets for measuring 
ground deformation and found that SBAS processing allowed the identification of a large number of 
widely distributed persistent scatters. Another example of a monitoring application relating to this area 
is from Carlà et al. (2017a), who used monitoring data from open pit mines to detect instabilities. There 
are other applications in which researchers have pursued the monitoring of deformations in the slopes 
(Fuhrmann et al., 2013; Vanneschi et al. 2017). Some researchers have gone one step further in their 
follow-up studies and have tried to develop methods for estimating deformations that may arise from 
the available data using different methods (Carlà et al., 2017b; Jibson, 2011; Song, Huang, and Cen, 
2016; Khanlari, 2011). 

Regression-based methods are among the most preferred modelling strategies used to predict 
deformation. The rationale behind using regression in predicting slope failure is that a mathematical 
model is constructed and parameters of that model are estimated using regression methods. However, 
although regression is a straightforward method, it does have drawbacks: each slope embodies its own 
characteristics; a mathematical model used for one slope would not fit another. Thus, the appropriate 
model should be selected first, and then its parameters found. Experience in model selection is, 
therefore, essential. The other limitation of regression lies in its dependence on strict mathematical 
formulae. Once a mathematical model by regression is built up to model the structure of a slope, it 
is used for all future estimates of slope condition. However, several factors, which are expressed as 
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shock effects, can occur and change the structure of the slope. 
These include heavy rainfall and earth tremors. In that case, the 
modelled mathematical expressions lose their validity.      

For the abovementioned reasons, researchers have started 
to experiment with other methods of slope stability analysis. Wu 
et al. (2015) successfully used an improved fractal prediction 
model in forecasting mine slope deformation. Tan et al. (2011) 
utilized artificial neural networks (ANNs) and particle swarm 
optimization to predict deformation in a deep open pit mine. They 
showed the applicability of these methods by calculating RMSE 
(root mean square error) and MAVE (mean average value error). 
These values for two measurement points were found between 
3% and 6%. Lian et al. (2013) conducted a landslide prediction 
by using an ensemble extreme learning machine (ELM) based on 
TSA. They used 38 groups of data from June 2004 to July 2007 
and their relative errors in seven  test data were between 0.03 
and 3.17%. Liu et al. (2014) compared three state-of-the-art 
techniques for nonlinear displacement analysis – support vector 
machine (SVM), relevance vector machine (RVM), and Gaussian 
process (GP) – using 11 observations from September 2006 to 
July 2007. They recorded approximate average percentage errors 
in these methods of between 0.4% and 0.8%. Another ANN 
application in this area was conducted by Chen and Zeng (2013), 
who used an improved back-propagation ANN and obtained 
relative errors between 0.05% and 3.83%.

As mentioned above, regression-based methods have some 
significant drawbacks. ANNs and other state-of-the-art methods 
also have their own disadvantages. For example, they require a 
greater amount of data than that collected in the cited studies for 
statistically meaningful results in training. Furthermore, as with 
the regression methods, they can be affected by shock effects. 
Thus, a time series method, ARIMA, is the preferred method of 
prediction in this study. ARIMA is based on the autoregressive 
moving average (AR-MA) process and predicts a new value by 
using ‘some’ previous values of a time series data group. It also 
relies on a mathematical model, but that model does not cover 
all of the data. It stands for ‘some’ previous data to predict a new 
future value. By this aspect, it can cope with shock effects. In 
addition to this, the only thing that should be found is the model 
order and not what kind of mathematical model fits the data. 
Therefore it is easier than regression in that less experience is 
needed. 

Data obtained from six stations in TKI-Ilgın open pit lignite 
mine was used in this study to predict future deformation values. 
The ARIMA model was created with 50 deformation data values 
and six data values were used to validate the prediction capability 

of the model. The correlation coefficient (R2) and root mean 
square error (RMSE) of fits were calculated to compare different 
ARIMA models. RMS and predicted MSE (PMSE) in validation 
were also recorded to gauge the effectiveness of the models. To 
compare ARIMA with regression, the regression models of all six 
stations were also established. In addition to this, a manually 
created shock effect was also analysed for station-1 to show the 
deficiency of regression in incorporating that phenomena. The 
results give comparatively fewer errors in ARIMA models.

Materials and methods

Problem definition
The tension cracks on the west slope of TKI-GLI Çavuşçugöl open 
pit mine were observed with a tracking system (Özşen, Özkan, 
and Mesutoğlu, 2019; Özşen and Özkan, 2013). Çavuşçugöl 
is located in central Anatolia, 13 km from Ilgın and 80 km 
from Konya. In the west slopes of the site, there were tension 
cracks approximately 10 m in length, 20 cm wide, and 50 cm in 
height as seen in Figure 1 (Özşen and Özkan, 2013). To track 
these cracks, 10 measurement stations were established. The 
measurement equipment and method are shown in Figure 2a. A 
plan view of the mine site and the measurement directions are 
shown in Figure 2b. Here, the horizontal deformations towards 
the pit are defined by the Y direction while deformations parallel 
to the pit are defined by the X direction. Vertical deformations are 
defined by Z direction. Readings were taken with a precision of 
0.01 mm in the Z direction and 0.1 mm in the X and Y directions.  

The readings were taken over a period of 56 days and the 
deformation values relative to the first reading were recorded 
in the X, Y, and Z directions. The model in this study was 
constructed for the Y-direction deformations. That is, the amounts 
of deformation towards and away from the mine were modelled 
and predictions of possible deformations in that direction were 
attempted. Also, data from six stations of the ten established 
stations was used in the study because of its suitability for the 
ARIMA model.

ARIMA as a TSA method
In TSA, the intention is to predict unobserved data by using 
observed data that changes with time. A time series data group 
can be defined as:

[1]

Here, predictions of T observed values of the data and 
unobserved data values in time T + k were attempted: zT+k. Let  
z^T (k) be a predictor of zT+k and be defined as:

Figure 1—Tension cracks formed in the field
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[2]

If eT (k) is defined as the error of this prediction, it can be 
defined as:

[3]

The aim is to minimize error functions which depend on eT (k). 
The most used error function is the mean square prediction error 
(MSPE), which is defined as:

[4]

There are many methods in TSA, such as moving average, 
random walk, exponential smoothers. and ARIMA models. 

Especially for stochastic modelling of time series data, ARIMA 
could be the best choice. Generally, moving average (MA) models 
can define trends in data while autoregressive (AR) models are 
well suited for periodicity such as seasonal variances. An AR 
model of a time series data group x can be defined as (Kaiser and 
Maravall, 2000):

[5]

Here, p is defined as the model order. In the MA model, the 
error is modelled as given in the following equation (Kaiser and 
Maravall, 2000):

[6]

If a time lag operator is defined as:

Figure 2a—Equipment and method of measurement system

Figure 2b—Plan view of the open pit and the horizontal directions defined in the measurement system for monitoring movements on the tension cracks
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then

[7]

AR and MA processes can be given as in the following 
equations (Kaiser and Maravall, 2000):

[8]

This equation is known as the autoregressive moving average 
(ARMA) process and is used in many areas such as TSA. ARIMA 
can be thought of as a kind of ARMA process. The only difference 
is the differencing operation, which is an indispensable part of 
TSA methods to eliminate trend components. The differencing 
operation can be represented as:

[9]

Now the main equation for the ARIMA (p, d, q) model can be 
given as (Kaiser and Maravall, 2000):

[10]

The only parameters to determine in this model are p, d 
and q, which represent the model degree of the AR process, the 
degree of differencing, and the model degree of the MA process, 
respectively.  

Analysis methodology and evaluation criteria
The data taken from the six stations over a period of 56 days was 
used for modelling by ARIMA. For each station, different ARIMA 
models were tested and the best-suited model was recorded. 
Also, for all stations, a regression process was conducted for 
comparison. Here again, the best-suited regression line was 
found. A total of 50 data values were used for model foundation 
while the remaining six  data values were used as validation 
data for the founded model. The comparison between ARIMA 
models and the best-suited regression model was done using 
the correlation coefficient (R2) and predictive mean square 
error (PMSE: same as MSPE). The correlation coefficient can be 
calculated by the following equation:

[11]

Results

Results with ARIMA models
For the first station’s data, which is termed data-1, five ARIMA 
models were tested using data from 50 days (deformation values 
in the Y directions). After testing the generated models with 
remaining six data groups, the correlation coefficient (R2) and 
PMSE were recorded, and are shown in Table I. As shown in 
Table I, the best fit model is ARIMA (3,1,1), which represents a 
combination of a third-order AR process, first-order MA process, 

and one-degree differentiation. The obtained parameters of the 
best fit ARIMA model are seen in Table II. 

To compare the success of ARIMA in modelling data-1, a 
regression procedure was also conducted for data-1. After some 
experimentation, the best fit equation for the 50 data values in 
data-1 was found to be:

[12]

Here, U is the deformation value in the Y-direction in 
millimetres and t is time in days. The regression line is shown in 
Figure 3 together with the original deformation data. 

When six validation data groups were predicted by the best 
fit ARIMA model and best fit regression model, the consequences 
shown in Figure 4 were found. Also, the real and predicted values 
of validation data are given in Table III. 

As shown in Figure 4 and Table III, there is an obvious 
difference between real data and predicted data for the regression 
model. However, when it comes to the ARIMA model, the 
consequences are less significant. The difference between the 
ARIMA and regression models with respect to the correlation 

   Table I

   The tested ARIMA models for station-1 data and the 
results obtained in validation data with these models

   ARIMA model R2 PMSE

   ARIMA(3,1,0) 0.99 0.1293
   ARIMA(3,0,0) 0.99 0.0988
   ARIMA(2,1,0) 0.99 0.0963
   ARIMA(2,0,0) 0.99 0.0392
   ARIMA(3,1,1) 0.99 0.0197

   Table II

  The obtained ARIMA parameters 
   Parameter Value Error

   Constant 0.0132 0.0049
   AR{1} 1.6872 0.2003
   AR{2} -0.8913 0.3558
   AR{3} 0.1652 0.2195
   MA{1} -0.9999 0.1020

Figure 3—The regression line of the best fit equation (given in Equation [11]) 
for the deformation data obtained from station-1
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   Table V

  Best fit ARIMA models for six stations
   Station-1    Station-2   Station-3 
   ARIMA(3,1,1):    ARIMA(3,1,1):   ARIMA(3,0,0): 
   Parameter Value Error Parameter Value Error Parameter Value Error

   Constant 0.0133 0.0049 Constant  0.0932 0.1226 Constant 0.4474 0.5630
   AR{1} 1.6873  0.2003 AR{1} 0.3967 0.7501 AR{1} 1.7472 0.2010
   AR{2} -0.8914 0.3558 AR{2} 0.0129 0.5346 AR{2} -0.9727 0.3975
   AR{3} 0.1653 0.2195 AR{3} -0.2693 0.1946 AR{3} 0.2137 0.2327
   MA{1} -0.9999  0.1021 MA{1} 0.2746 0.8249
   R2 = 0.99   R2 = 0.99   R2 = 0.99 
   PMSE = 0.0197   PMSE = 0.0576   PMSE = 3.7663

   Station-4    Station-5   Station-6 
   ARIMA(3,0,0):    ARIMA(3,1,0):   ARIMA(2,0,0): 
   Parameter Value Error Parameter Value Error Parameter Value Error

   Constant 0.1916 0.2199 Constant  0.0859 0.0631 Constant 0.0371 0.7901
   AR{1} 1.7559 0.2638 AR{1} 0.7695 0.2198 AR{1} 1.7648 0.5650
   AR{2} -0.9641 0.5241 AR{2} -0.3207 0.2360 AR{2} -0.7660 0.5025
   AR{3} 0.1956 0.2885 AR{3} 0.0197 0.1791
   R2 = 0.99   R2 = 0.99   R2 = 0.99 
   PMSE = 0.0007   PMSE = 0.7192   PMSE = 0.3222

coefficient and PMSE for data-1 is given in Table IV. As can be 
seen, ARIMA presented a remarkably better performance with 
respect to the PMSE, which is a much more important factor in 
predicting unobserved data. 

The same procedure was conducted for the remaining five 
stations. Again, several ARIMA models were tested for each 
station. The best fit ARIMA models are shown in Table V. 
Generally, except for one station, a third-order AR process was 
utilized in all models. This means that a new unobserved value 
will be predicted by using the last three data values in the current 
time series. When it comes to the MA process, which defines 
periodicity or ‘seasonality’ in a time series data, a first-order MA 
process was used in only two of the stations. This means that the 
deformation data in the stations has a generally non-repetitive 
trend component.

The regression models were also found for these stations. The 
regression lines and best fit regression equations for these five 
stations are shown in Figure 5. As shown, the best suited model 
was exponential regression equation.

Regression can be an appropriate choice for such problems, 
but it is a strict method because of its work strategy. Once a 
mathematical equation is determined from available data, all 
future values are predicted by that fixed equation. However, 
especially in mining, there can be sudden and unexpected 
changes and regression models cannot cope with that level of 
change. On the other hand, after determining model order in 
ARIMA, future values are predicted by previously observed data. 
Then, if there is a sudden change in data, subsequent future 
values are predicted such that they will also be affected by this 

Figure 4—Prediction for validation data in best fit ARIMA and regression 
models

   Table III

   Real and predicted validation data by ARIMA and 
regression

   Data Real Predicted Predicted value 
 value value by ARIMA by regression

   1 11.25   11.21 12.80   
   2 11.60    11.49          13.59   
   3 11.95    11.75         14.43   
   4 12.30      12.00        15.31   
   5 12.65    12.24        16.24   
   6 13.00 12.48 17.22  

   Table IV

   Correlation coefficient and PMSE of best fit regression 
and ARIMA models for validation data in station-1

   Model R2  PMSE

   Regression 0.99 8.7126
   ARIMA (3,1,1) 0.99 0.0197
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Figure 5—Generated regression models for the remaining five stations (continued)

   Station-2 Figure 5a Best-fit regression model: 
  U=0.8084 + e0.03487t 
  Performance in validation: 
  R2 = 0.99 
  PMSE = 1.9932

   Station-3 Figure 5b Best-fit regression model: 
  U=2.866e0.05311t 
  Performance in validation: 
  R2 = 0.99 
  PMSE = 323.69

   Station-4 Figure 5c Best-fit regression model: 
  U=1.248e0.05268t 
  Performance in validation: 
  R2 = 0.99 
  PMSE = 53.84

   Station-5 Figure 5d Best-fit regression model: 
  U=0.07191e0.09497t 
  Performance in validation: 
  R2 = 0.99 
  PMSE = 8.6363

   Station-6 Figure 5e Best-fit regression model: 
  U=0.8586e0.04417t 
  Performance in validation: 
  R2 = 0.99 
  PMSE = 0.7250

change. The is also known as the ‘shock effect’ in TSA, and the 
results of regression and ARIMA incorporating this situation are 
given in the next subsection. The other problem in using a strict 
mathematical model in regression is the determination of an 

appropriate model. For example, an exponential model can give 
similar results to a power model. The real relationships between 
independent and dependent variables are not known, but 
predictions are attempted via mathematical equations. Thus, error 
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margins for the regression can be large. In ARIMA, however, 
the only thing to select was the order of the model: p, d, and q. 
ARIMA uses the same equation for all data (Equation [10]). 

Shock effect simulation of ARIMA and regression for the 
station-1 data 
As briefly mentioned above, a shock effect in a time series data 
group is caused by a sudden or unexpected change in the data. 
In this case, because the recorded data did not include such a 
change, it was inserted manually for simulation. Station-1 data 
was used for this purpose and the value of the 51st data point, 
which was the first validation data, was changed manually. The 
prediction of regression and ARIMA for validation data including 
this shock effect is shown in Figure 6. 

The first 50 data values were not changed and were used to 
find the best fit model both in ARIMA and regression. The 51st 
data value simulates a shock effect and the remaining five in 
the validation set were predicted using both methods. When the 
predicted data values are compared in Figure 4 (without shock 
effect) and Figure 6 (with shock effect); it can be seen that there 
is no change in the predicted data values of regression. That is, 
the shock effect doesn’t have any influence on the regression 
method. However, ARIMA changed its new predicted values 
because it computed a new value by using previously recorded 
data. This situation is more suited to real cases because if an 
unexpected event happens, such as an earth tremor or a flood 
triggered by heavy rainfall, deformations could be more serious. 

Conclusions 
Prediction of slope failure is an important aspect in the 
prevention of possible accidents in open pit mines. Computational 
procedures have to be conducted for the safety of the area, but 
the prediction process is not easy and requires experienced 
personnel. Many methods have been used for this aim, and most 
of them depend on regression. Regression is the term given to 
methods used to find parameter values in a specific mathematical 
relationship between inputs and outputs. Thus, it supposes that 
there is a mathematical formula defining a process. However, 
in real life situations, this is affected by various factors such as 

floods, earth tremors, and landslides. Thus, there can be abrupt 
and unexpected changes in the likelihood of slope failure. This 
violates the strict mathematical definition of slope displacements. 
One alternative to regression-based methods is TSA. In TSA, 
an unobserved data event in the future is predicted by using a 
combination of available data. 

In this study, ARIMA was used as a TSA method to predict 
slope failure as an alternative to regression. Deformation data 
from six stations at an open pit mine was used for this purpose. 
When ARIMA was used for the data, it was seen that ARIMA 
models with three AR coefficients were generally successful. 
This means that a new value will be predicted by the last three 
data values. The prediction ability of tested ARIMA models was 
examined using correlation coefficients and PMSE in validation 
data. According to the results, satisfactory values were obtained. 
In addition to this, to emphasize the success of ARIMA models 
and compare them with a general prediction method for such 
problems, regression methods were also applied to all data 
from six stations. The best regression lines were found by 
experimental procedures and it was noted that exponential 
mathematical forms gave the best results. When the correlation 
coefficients and PMSE values of these models obtained for 
validation data were compared with those from ARIMA, 
noticeably better results were recorded in favour of ARIMA. 

The advantage of ARIMA over regression is that it has no 
strict mathematical formulation to define the data. In regression, 
a mathematical model is formulated to describe the behaviour 
of the data and it does not change with time, but unexpected 
changes may occur that violate the formed equations. In such 
cases, the formulation calculated with regression loses its 
validity. On the other hand, ARIMA uses its formulation only to 
predict a new value by using some previous observations. Thus, 
it is more suitable for the abovementioned changes. To simulate 
this, an artificial shock effect was applied to both the ARIMA and 
regression methods, and it was seen that ARIMA’s performance 
was better than regression in coping with this shock effect.            
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