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storage capacity and becomes available in year 10 (Figure 4). 
The increased tailings storage prolongs the mine life by three 
years and allows for 1 to 2 more years of gold production if 
the duration of this schedule is increased. This results in an 
additional $0.7 billion in discounted cash flows generated. It is 
important to optimize waste management considerations, such 
as tailings disposal, directly in the mine production scheduling 
process in order to generate feasible life-of-mine designs. 
Additionally, the processor upgrade that allows for additional 
acid consumption was purchased in year 3, allowing for a 20% 
increase in acid consumption in subsequent years Figure 5). This 
controls the blending requirements at the autoclave processing 
stream.

�(�K�H�W�[�P�U�N���[�V���Z�\�W�W�S�`���\�U�J�L�Y�[�H�P�U�[�`���P�U���H���N�V�S�K���T�P�U�P�U�N���J�V�T�W�S�L�_

The previously discussed results will be compared with the 
adaptive stochastic optimization that considers branching on 
feasible capital alternatives. During the adaptive simultaneous 
stochastic optimization, groups of scenarios are optimized to 
determine if there is a beneficial time to invest in any of the one-
time capital investments alternatives described previously. The 
scenarios that lead to a branching decision are separated based 
on those that invest and those that choose not to invest in the 
time window. The scenarios that choose not to invest maintain 
the ability to invest in the capital investment in future years, 
while the scenarios that invest lock in that decision for that 
year, activating the non-anticipativity constraints. The scenarios 
are grouped into separate branches and optimized to produce 
a feasible alternative for both investing and not investing in 
the solution. A representative number (over 30%) of scenarios 
must undertake the same decision for the solution to consider 

branching or investing in these alternatives, which reduces the 
number of branches and prevents overfitting the decision tree to 
each scenario. It is important to note that the scenarios in each 
branch all undertake the same decisions until a new branching 
decision is made.

Based on the available capital investments, it was first 
determined that the additional acid capacity was a suitable 
investment for more than 70% of the scenarios leading to 
a non-branching investment decision. The first investment 
helped improve the ability to meet the quality requirements 
of the autoclave. After considering all the simulated scenarios 
(geostatistical simulations of each open pit mine and an uncertain 
external source) and the branching mechanisms criterion, the 
first branching decision is undertaken, allowing for the expansion 
of the autoclave throughput by installing two additional positive-
displacement pumps. This separates the number of scenarios 
into a group of 115 scenarios in branch 1 (B1) that invest and 
205 scenarios in branch 2 (B2) that do not invest. After the 
branching occurs, the optimizer also decides to invest in the 
additional tailings capacity in more than 70% of the scenarios, 
for both branches, preventing further growth of the scenario 
tree. The resulting feasible alternatives both produce a higher 
NPV than the base case production schedule, achieving a value 
of $3.89 billion in B1 and $4.66 billion in B2 (Figure 6). This 
accounts for a 6.4% and 27.5% increase in NPV when comparing 
the P-50 of each alternative to the base case production schedule. 
Each of the branches or feasible alternatives performs better 
than the base case production schedule; however, this may not 
always be the case as there could be a group of scenarios that 
underperforms the base case production schedule. The method 
prevents overfitting by ensuring that the number of scenarios 

Figure 4—Tailings production over the long-term production schedule and the available capacity expanded in year 10

Figure 5—Annual acid consumption with additional capacity obtained in year 6
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does not become too few within each branch and that there is 
a significant difference in the number of scenarios that either 
invest or maintain the same operating conditions, hence the 
representativity parameter which ensures between 30% and 
70% of the scenarios will be split and not a small group of 
outliers. This substantially reduces the number of branches and 
ensures feasible, stable solutions. The changes in the investment 
decisions result in very different responses in the production 
scheduling process, as shown in Figure 7, when comparing 
the N-S cross-sections. The solution is exactly the same until 
branching occurs, and then the schedules change dramatically 
to take advantage of the new capital investments. There are a 
number of similarities between the base case and B2 in terms of 
the depth and extent of the mine. However, in B1 there is a large 
area in the north of the mine where extraction no longer occurs, 
compared to the other two mine plans. This implies that there is 

some high material variability and uncertainty in this section of 
the mine, which leads to large changes in the resulting mine plan.

B1 invests in the autoclave expansion (Figure 8), which can 
be fully utilized in year 6, and has the lowest mining rate over 
the long-term production schedule. A comparison of the mining 
rates is given in Figure 9, where the resulting production rates 
directly correlate to the number of trucks and shovels purchased. 
The autoclave expansion results in lower grade refractory 
ore material being processed and a higher throughput at the 
autoclave. Over the long-term production schedule, there is a 9% 
reduction in the number of gold ounces produced over the life of 
mine compared with the P-50 of the base case scenario. However, 
the reduction in mining costs due to the lower mining rate 
overcompensates the loss in revenue and results in a higher NPV. 
The lower mining rate is feasible as the throughput outweighs 
the grade of material through the autoclave, changing the 

Figure 6—Comparison of the NPVs from the adaptive branching and base case production schedule

Figure 7—N-S cross-section of production schedule Mine 1: (a) base case (top left), (b) branch 1 (top right), and (c) branch 2 (bottom left)

Figure 8—Autoclave throughput and targets (a) B1 and (b) B2 with investments
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selectivity between ore and waste material. Lower utilization of 
the oxide processing facilities also decreases the operating costs. 
In B1, the optimizer has a challenging time meeting the blending 
constraints and is unable to provide the appropriate material to 
attain the blending targets, making the acid investment a critical 
decision for ensuring there is a suitable SS/CO3 ratio.

B2 performs quite differently and instead increases the size 
of the truck and shovel fleet, which results in a higher extraction 
rate and ensures that higher-grade refractory ore is sent to the 
processor. The oxide processing streams are utilized far more in 
B2 than in B1 and their target production is maintained during 
most years. A higher stripping ratio is required to move the 
additional waste between years 5 and 9 (Figure 10), which is 
the reason for the additional truck and shovel requirements. 
Increasing the selectivity between ore and waste results in a 

substantially higher NPV, which B1 was unable to achieve even 
with the autoclave capacity expansion. The larger contribution 
in NPV is primarily due to the accessibility of oxide materials 
in the different groups of simulations and the uncertainty and 
variability in the gold, SS, CO3, and OC grades. Here the adaptive 
approach is able to take advantage of understanding the inherent 
variability of the mineral deposits and indicates that there is 
an important investigation to be conducted. This includes more 
information with regards to the mineralization of oxide materials 
and stricter guidelines in terms of the quality of material 
received from external sources before deciding on the autoclave 
expansion. B2 produces 10% more gold by fully utilizing all the 
processing stream capacities and better satisfying the blending 
constraints. The increased utilization of the oxide leach and mill 
contribute significantly more gold ounces.

Figure 9—A comparison of the mining rates required to satisfy each production schedule

Figure 10—Total waste production over the long-term production schedule

Figure 11—Total tailings production with investment decisions
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The feasible alternatives B1 and B2 invest in the additional 
tailings containment area in year 7 and receive the capacity in 
year 10, similar to the base case. Had the tailings expansion not 
been considered during the optimization process, processing 
would have been required to stop in year 10 and a loss of $1 
billion and $1.3 billion in additional cash flow would be incurred 
in B1 and B2, respectively. This would be a larger loss than 
the resulting $0.7 billion in the base case production schedule. 
The potential loss highlights the importance of simultaneously 
optimizing the entire mining complex to further understand the 
intrinsic value of each investment decision. 

Conclusions
The simultaneous stochastic optimization of a gold mining 
complex was studied using an adaptive method that integrates 
feasible capital investment alternatives. The framework 
capitalizes on synergies and adapts to uncertainty, resulting in 
a 6.4% and 27.5% increase in NPV in branch 1 (B1) and branch 
2 (B2) respectively, while satisfying a wide array of production 
targets and managing supply uncertainty. Investments in trucks 
and shovels define a new mining rate that minimizes capital 
expenditure and satisfies each processor’s capacity. Additionally, 
an investment in a tailings facility expansion and additional acid 
consumption increase the life of the mining complex and manage 
variable material quality at the autoclave processor. Integrating 
tailings management into the optimization process increases the 
NPV by $0.7 billion in the base case production schedule and 
leads to an additional $1 billion in B1 and $1.3 billion in B2. 
This emphasizes the importance of considering waste and tailings 
management in the optimization process in order to capitalize 
on the available synergies. The optimizer chooses to branch the 
production schedule when the autoclave expansion is considered 
and identifies uncertainty and local variability associated with 
the supply of oxide and refractory ores sent to each processor. 
This leads to different mine plans and operating requirements 
for the processing streams and mining equipment, depending on 
whether the investment alternative is purchased. The feasible 
investment alternatives provide a high level of insight into the 
appropriate attributes to investigate, including highly variable 
areas of the deposit and large differences in the quantity of oxide 
materials mined. The optimized production schedule does not 
branch for the first three years and provides the appropriate lead 
time to evaluate each alternative decision and gather the required 
information to construct an informed final production schedule.

If either of the feasible alternatives are executed, the 
expected NPV increases substantially. The base case and 
adaptive approaches capitalize on the synergies that exist 
between the different components of the mining complex, 
helping to manage the challenging blending constraints and 
determine the appropriate size of the mining fleet directly in the 
optimization. The results from this case study emphasise the 
importance of modelling the entire mining complex in a single 
optimization process. In addition, the branching mechanism 
and adaptive ability of the optimizer provides a method to easily 
evaluate several feasible alternatives and further understand the 
variability and uncertainty associated with the mining complex. 
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Appendix A 
Adaptive simultaneous stochastic optimization sets, parameters, 
and decision variables

Sets and Parameters

M	 Set of open-pit and underground mines
P	 Set of processors
W	 Set of waste facilities
S	 Set of stockpiles
G	� Set of groups or bins for different cut-off  

grades g ∈ G
T	 Set of scheduled time periods t ∈ T

S	� Set of simulated orebody scenarios s ∈ S where 
there are Sn ⊆ S scenarios that belong to the root, 
these scenarios are partitioned into Sn1 and Sn2 when 
branching occurs therefore Sn1 ∪ Sn2 = Sn and  
Sn1 ∩ Sn2 = ∅

P	 Set of primary attributes p ∈ P
H	 Set of hereditary attributes h ∈ H
K	� Set of available capital investments k ∈ K. There are 

two different subsets used to describe the different 
types of investments branching (K*) and non-
branching (K= ), where K* ∪ K= = K

O(g)	� Set of locations where the groups of materials g can 
be delivered

Bm	� Set of mining blocks b ∈ Bm from mine m ∈ M
bp,b,s	� Parameter that defines the set of simulated primary 

attribute p for block b in scenario s
rp,i,t,s	� Parameter that describes the recovery of each 

attribute p at location i ∈ P in each scenario s
R	� Representativity measure that describes the 

confidence interval for branching R ∈ (0 ,0.5)
tω	� Time window used to stabilize solutions where ω 

represents the number of periods to search
N	� Defines the minimum number of scenarios in a branch 

required for further branching periods  
(t+1) ∈ T

τk	� Lead time to assemble or construct a capital 
investment k ∈ K

λk	� Life expectancy of each capital investment k ∈ K
κk,h	� Unitary increase in capacity that each investment k ∈ 

K leads to for each attribute h ∈ H 
pK

k,t	� Discounted purchase cost for each investment k ∈ K 
for each period t ∈ T

ψk	� The periodicity of the investment k ∈ K
Lh,i,t, Uh,i,t	� The static upper and lower bounds for each hereditary 

attribute h ∈ H, location i ∈ M ∪ S ∪ P ∪ W, and 
period t ∈ T

Decision Variables
vp,i,t,s,vh,i,t,s	� Quantify the value of primary (p) and hereditary 

(h) attributes at each location  i ∈ M ∪ S ∪ P ∪ W in 
period t under scenario s, respectively

xb,t,s	 �A set of binary extraction sequence decision variables 
that denotes if a block b is extracted in period t in 
scenario s as 1, otherwise 0

zg,j,t,s	� A destination policy decision variable that takes a 
value of 1 if blocks in group g are sent to destination j 
∈ O(g), in period t ∈ T 

yi,j,t,s	� A continuous processing stream decision variable that 
defines the portion of product that is sent from one 
destination i ∈ S ∪ P to destination j ∈ O(i)⊆ S ∪ P in 
period t ∈ T and scenario s ∈ S, yi,j,t,s ∈ [0,1]

ωk,s,t	� A capital investment decision variable that defines if 
a capital investment k ∈ K is executed in period t ∈ T 
and scenario s ∈ S

σk,t,s	 �The number of investments undertaken for each 
investment k ∈ K in period t ∈ T and scenario s ∈ S

un
k*,t	� A binary variable equals unity when the design 

branches over option k* ∈ K* in node n in period t ∈ T, 
otherwise 0

A	� A binary variable that activates the non-anticaptivity 
constraints taking on the value 0, 1.




