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Modelling and analysis of the 
Brumadinho tailings disaster using 
advanced geospatial analytics
I. Atif1, F.T. Cawood1, and M.A. Mahboob2

Synopsis
On 25 January 2019, one of the most significant and deadliest tailings dam failures in history occurred at 
Brumadinho Córrego do Feijão iron ore mine in Brazil. Twelve million cubic metres of tailings travelling at 
120 km/h destroyed a total of 109 buildings, 36 belonging to Vale and 73 local residences. More than 259 
people died. Some farmlands were wiped out and left under a sea of mud and tailings up to 8 m deep. Seven 
sections of local roads, one main road, and one railway bridge were severely damaged. In this research, 
a GIS-based tailings spill path (TSP) model was developed using the Python programming language 
for predicting the potential tailings flow path – before failure of the tailings storage facility (TSF). The 
pre- and post-failure satellite images of the Brumadinho disaster were processed and analysed to map 
the damaged infrastructure and to extract digital footprints of the tailings waste and flow path. This 
model was then compared with the post-failure satellite images.  The TSP model is capable of generating 
the possible path of tailings flow and other important outputs like a processed digital elevation model 
(DEM), processed satellite image, down-path slope direction, and flow accumulation. The model was 
tested and validated for the Brumadinho and Samarco tailing disasters. The results are very promising 
and correlate well with the actual tailings spills. The methodology adopted in this research is robust, 
advanced, and can be applied to other tailings dams for hazard and risk assessment in case of their 
possible failure. The lack of high-resolution post-disaster satellite images and other topographical data 
were the main limitations of this research, which if available, could improve the modelling results. 

Keywords
Geospatial modelling, tailings dam failure, Brazil dam collapse, mining disaster, Brumadinho, Samarco 
tailings, tailings management.

Introduction
The mining industry plays a significant role in supporting the economies of several developed and 
underdeveloped countries around the globe. Massive volumes of solid and liquid waste are produced 
as part of the mining and metals extraction processes. This has the potential for several negative 
socio-economic and environmental impacts. Among these, the greatest threat is failure of a tailings 
storage facility (TSF), which may contain a large volume of mining wastes. TSF failure is not a new 
phenomenon and many such events have occurred around the world, as shown in Figure 1. Some 
of the critical failures are Mount Polley in Canada (Byrne et al., 2015), Merriespruit in South Africa 
(van Niekerk and Viljoen, 2005), Cieneguita mine in Mexico (Warden, 2018), Cerro Negro in Chile 
(Valenzuela, 2018), Rio Pomba Cataguases in Brazil (Oliveira and Kerbany, 2016), and Bento Rodrigues 
in Brazil (Segura et al., 2016), but there are many more.

There can be many reasons for TSF failures, such as an earthquakes (17% of global failures) 
(Villavicencio et al., 2014; Lyu et al., 2019), heavy rainfall (Ozkan and Ipekoglu, 2002), construction 
issues (17.3% of global failures) (Davies, 2002; Lyu et al., 2019), poor maintenance (Rico et al., 2008), 
excess pore water pressure (21.6% of global failures) (Wang et al., 2016, Lyu et al., 2019), starter wall 
and foundation failure and slope instability (Davies, 2002). Hence, proper monitoring, management, 
and risk assessment should be done to minimize the devastating impacts of a possible failure. To assess 
the risk of a potential TSF hazard, the first (and the most important) step is to map and quantify the 
magnitude of potential damage that can occur in the zone of influence. The zone of influence is the area 
that would be significantly affected in case of a TSF failure and should be categorized as a risk zone.

Usually, field-based surveys can be used to map the zone of influence. However, such mapping is 
expensive and time-consuming. Recent advances in digital technologies like Geographical Information 
Systems (GIS) and Remote Sensing (RS) have made mapping and modelling a viable option for 
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delineating the zone of influence. In the last decade, GIS and 
RS have been extensively and successfully used in disaster 
management studies, e.g. seismic disasters (Ehrlich et al., 
2009; Frigerio et al., 2016); flood disasters (Atif, Mahboob, and 
Waheed, 2015, Sajjad et al., 2020); geological disasters (Li et 
al., 2005, Mahboob et al., 2015b, 2019b); droughts (Raut et 
al., 2020, Atif, Iqbal, and Su, 2019); and fire disasters (Hinkley, 
2019). Several commercial and open-source satellite data-sets 
are available for both pre- and post-disaster analysis and future 
risk assessments (Mahboob et al., 2019b; Voigt et al., 2007; van 
Westen, 2013).

The applications of these advanced technologies can also be 
useful in the mining industry, particularly for TSF management. 
For example, Rudorff et al. (2018) investigated the impact 
of the Samarco tailings dam collapse on the turbidity of the 
Doce River plume off the eastern Brazilian coast by applying 
Landsat and MODIS-Aqua imagery. Mura et al. (2018) used 
advanced differential interferometric synthetic aperture radar 
(A-DInSAR) data from TerraSAR-X satellites to monitor the 
spatial and temporal displacement and assess the vulnerability 
of the TSF at Samarco in Brazil. Goff et al. (2019) proposed 
a cost-effective solution for monitoring and management 
of tailings by combining satellite-based Earth observations 
and global navigation satellite systems, such as the Global 
Positioning System (GPS) technologies, with real-time on-site 
instrumentation. Wang et al. (2018) modelled tailings slurry 
runout using a Smoothed Particle Hydrodynamics (SPH) method. 
They concluded that SPH numerical modelling is a powerful 
technique that can be recommended for risk assessment and 
design assessments of TSFs. However, these numerical models 
are usually expensive and computationally very demanding when 
applied to solve the mathematical equations in order to predict 
the tailings flow paths.

On 25 January 2019, one of the most severe tailing dam 
failures ever occurred in Brazil at Brumadinho Córrego do Feijão 
iron ore mine. About 11.7 million cubic metres of tailings was 
released, inundating around five miles of the area downstream 
and killed at least 259 people (Vale, 2020). Nine persons are 
still missing. The reason for the dam failure is still under 
investigation. Along with the TSF failure at Samarco, this disaster 
has put the mining industry under enormous pressure concerning 
safety in the zone of influence. The risk of failure of tailings 
dams located in Brazil has been assessed by experts, who found 

that 27 of the total number of TSFs in the country represent a 
high risk to human life, infrastructure, and the environment 
(New York TImes, 2019). If these TSFs, which are located in 
mountainous regions, failed, then an estimated number of more 
than 100 000 people living downstream could be affected, along 
with severe environmental destruction. Hence, for effective TSF 
management, it is essential to define the zone of influence as 
part of the risk assessment process. In this research, advanced 
geospatial analytics have been used to develop a model for 
mapping the potential tailings spill path (TSP) in case of a TSF 
failure.  This can help decision-makers to assess, quantify, and 
manage the risk in a better, efficient, and scientific way.

Materials and methods

Study area
The study area is a tailings dam at Brumadinho Córrego do 
Feijão iron ore mine, located in Belo Horizonte’s Brumadinho 
metropolitan district in southeastern Brazil (Figure 2). The 
average minimum and maximum temperatures of the study area 
are 16°C and 27°C respectively, with average annual precipitation 
of 965 mm (38 inches). The Brumadinho region has a complex 
geology with different types of sedimentary ores like high-
grade compact and soft haematite, soft itabirite, canga rica, 
slumped canga, and rolado, with alluvial pebbles and cobbles 
of compact haematite (Simmons, 1968). Extensive mining has 
been conducted for more than 150 years (Chase, 2008) for gold 
and iron. Brazil is the world’s second-largest iron ore producing 
country (De Moraes and Ribeiro, 2019). 

Upstream construction method
The Brumadinho region has several tailings dams located in the 
vicinity of mining areas, most of which are constructed using the 
upstream method (Valenzuela, 2018).

This economical construction method is very common in low 
seismic risk areas. A cross-section illustrating the construction 
method is shown in Figure 3 (Soares, Arnez, and Hennies, 
2000). In this method, the fresh tailings are deposited on top 
of the previously placed tailings. This requires the tailings to 
provide support for the dam and as such makes this type of dam 
potentially more prone to failure where the tailings are of low 
strength and materials may be prone to liquefaction (McLeod 

Figure 1—Historical global tailing dam failures. The colours correspond to 
the geographical region and numbers in the cells represent the number of 
accidents in that region for that decade  (data source: Lyu et al., 2019)

Figure 2—Location map of Brumadinho Córrego do Feijão iron ore mine 
tailings dam in Brumadinho region, Brazil
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and Bjelkevik, 2017). Most of the tailing dams that have failed 
in the past few decades, were constructed using upstream 
construction (Rico et al., 2008). This method is mostly suitable 
for arid regions and requires more careful supervision and water 
management than other methods.

The Brumadinho Córrego do Feijão tailings dam, which failed 
in January 2019, was constructed using the upstream method. 
Upstream constructed TSFs are not permitted in Chile and Peru 
(and recently in Brazil as a result of the failure) due to the 
higher probability of failure under static and dynamic loading 
(Breitenbach, 2010, Valenzuela, 2018).  

Satellite data
The Sentinel-2A satellite data was used owing to its good spatial 
resolution and open access from the European Union. For detailed 
analysis, another high-resolution open-source DigitalGlobe 
satellite image acquired from Google Earth dated November 2017 
was utilized to map the elements at risk. The specifications of the 
Sentinel-2A images are given in Table I. Two images were used 
– one from before the failure and the other from after the failure. 
The post-failure satellite image of Samarco dam was also used for 
validation of the model.

The satellite images were processed with respect to the 
analysis as recommended in several studies (Mahboob et al., 
2019a, , 2015a, Minu, Shetty, and Gopal, 2016), including 
atmospheric, radiometric, and geometric correction (Mahboob 
et al., 2019a). A command-line Atmospheric and Radiometric 
Correction of Satellite Imagery (ARCSI) software package was 
used to automate the pre-processing of Sentinel-2A imagery 
(Padró et al., 2017). It generates analysis-ready data by 
standardizing the surface reflectance for atmospheric correction, 
cloud masking, and topographic shadows correction. 

Topographical data
The Global Digital Elevation Model (GDEM) version 2.0 was 
extracted from Advanced Space-borne Thermal Emission and 
Reflection Radiometer (ASTER) images. The GDEM was the only 
open-access topographical data available before the Brumadinho 
tailings disaster. Several studies (Gesch et al., 2016; Courty, 
Soriano-Monzalvo, and Pedrozo-Acuña, 2019) have used ASTER 
data for detailed terrain and geomorphological analysis. The 
absolute vertical accuracy of GDEM2 was assessed by a joint 

team from the USA and Japan. They found an elevation offset of 
+7.4 m and Root Mean Square Error (RMSE) of 15 m in the high-
lying mountainous and forested area (Aster, 2016). 

Development of a GIS-based TSP model
The GIS-based model was developed using Python (computer 
programming language) in ArcGIS Desktop version 10.X to 
predict the potential path of tailings waste, in case of failure, 
by incorporating the satellite imagery and Digital Elevation 
Model (DEM).  Pre-processing of the DEM for filling of sinks is 
recommended (Köthe and Bock, 2009) before any application. 
The sinks are the cells in the data with very low or high 
values compared to their neighbour cells. Hence, it is crucial 
to identify any possible sinks in the data as they can distort 
the results. After the identification of sinks, the next important 
task was to fill those sinks.  For this, many methods have been 
proposed (Lindsay, 2016; Sharma and Tiwari, 2019). The linear 
interpolation method proposed by Pan, Xi, and Wang (2019) 
was applied for filling of sinks due to its simplicity and lower 
computational requirements. The Python library for GIS analysis 
was imported and the workspace environment specified. The 
maximum allowable difference for the depth of a sink and the 
neighbour cell was auto-defined by local variable h-limit to fill 
those sinks. The kernel window of 3×3 was run on the surface to 
identify which cell to be filled and which to remain untouched as 
per Equation [1].  

[1]

where Dsp is the depth of the sink cell, Do and Di are the depths 
of outflow and inflow cells respectively, and Dspi and Dspo

 are the 
distance from sink cell to inflow and outflow cells, respectively. 
This algorithm was iterated until all the sinks were filled within 
the pre-defined h-limit to obtain a DEM without depressions. 
After pre-processing, the smoothed DEM was incorporated in 
the TSP model to generate other hydrological parameters, i.e. 
flow direction and flow accumulation. To calculate the flow 
direction, the slope of each cell was determined using a geodesic 
measurement technique. Equation [2] was used to compute the 
slope variation in elevation surface:

[2]

where SDeg is the slope measurement in degrees and ∂z/∂x and 
∂z/∂y represent the change (difference) in horizontal and vertical 
directions, respectively. 

After computing the slope variations, a flow direction map 
was generated using the D8 technique, which was further based 
on three flow-modelling algorithms proposed by Jiaye et al. 
(2020). D8 calculates the flow direction for each cell with its 
downward steepest-slope neighbour cells. The flow direction 

Figure 3—Overview of upstream tailing dam construction method (redrawn 
from McLeod, Murray, and Berger, 2003)

   Table I

  The specifications of Sentinel-2A satellite data used 
   Sr. no. Event Image date No. of spectral bands Spatial resolution Remarks

   1 Brumadinho tailings dam pre- failure 7 January 2019 
4 (blue, green, red, 

 10 × 10 m Model testing
   2 Brumadinho tailings dam post- failure 1 February 2019 and near-infrared)   
   3 Samarco tailings dam post- failure 26 December 2015   Model validation
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grid was generated to represent flow in several directions with 
unique colour symbols, where the colours represent directional 
distribution of flow (Figure 4). 

The flow direction raster was then used to generate the flow 
accumulation map to highlight the total accumulated flow from 
higher to lower elevation based on the specified threshold value 
for the pixels (Figure 5). It is noteworthy that flow accumulation 
plays a vital role in dam failures, surface landslides, and 
subsurface land subsidence (Liu et al., 2014).  

For the delineation of tailing spill paths, the threshold was 
examined by applying the histogram equalize stretch to the flow 
accumulation raster. It helps to determine the minimum number 
of cells that contribute to generating flow into the target cells. 
This threshold was found to be the most sensitive parameter 
of the TSP model for determining the spill path accurately. The 
lower the threshold value, the lower will be the number of cells 
that can contribute to generate the flow. The model was tested 
for the Brumadinho Córrego do Feijão tailings dam for threshold 
values starting from 100 and increasing in steps of 100 till the 
flow accumulation started towards the downslope cells. The 
final threshold value was found to be greater than or equal to 
2000. The model was further validated on another TSF (Samarco 
dam disaster) located in a similar region to assess its accuracy 
under certain conditions. The work flow and Python code for 
the development of the TSP model are given in Figure 6 and 
Appendix-A, respectively.  

Results and discussion
The pre-failure Sentinel-2A satellite image of the Brumadinho 
Córrego do Feijão TSF is given in Figure 7. The dark and light 
green tones represent the forest cover and farmlands respectively. 
The whitish-grey colour represents the semi-urban region 
(towns and villages), and the dark purple colour highlights the 
freshwater resources. The TSF is shown as dark grey, which 
might be related to the altered chemical materials in the tailings. 

In addition to this pre-failure satellite image, the high-
resolution DigitalGlobe satellite image acquired from Google Earth 
was also analysed to assess the significant elements at risk due 
to TSF failure (Figure 8). 

The post-failure Sentinel-2A satellite image (Figure 9) shows 
the spill and the extent of destruction caused by the failure. After 
mapping of the affected area, the digital footprint of the tailings 
spill was extracted and overlaid on the high-resolution imagery 
for detail damage analysis, as shown in Figure 10.  

The results show that the total area of the spill was about  
3.1 km2. A straight line from the start (the TSF) to end of the 
flow (Paraopeba River) measured 6 km. However, the length 
of the spill measured along the centre line of the flow path was 
about 10 km. The main infrastructure affected comprised the Vale 
administrative office, a railway bridge, some farmlands in the 
northwest, and houses located in the southern side of the town. 
A considerable portion of the tailings ran into the Paraopeba 
River, causing significant pollution. 

Figure 5—Generation of flow accumulation raster from flow direction  
(Mahboob et al., 2019b)

Figure 4—Generation of flow direction raster (Mahboob et al., 2019b)

Figure 7—Pre-failure Sentinel-2A satellite image of the Brumadinho Córrego 
do Feijão TSF area (green, near-infrared, and red bands highlighted as R, G, 
and B)

Figure 6—The work flow followed to create the TSP model
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A total of 109 buildings were damaged; 36 belonged to Vale 
and the remaining 73 were local residences (Figure 11). Some 
farmlands were wiped out and left under a sea of mud with 
depths of around 8 m. Seven sections of local roads, one main 
road, and one railway bridge were severely damaged. Field 
pictures from post-failure are given in Figure 12, showing the 
collapsed bridge (Figure 12A), aerial views of the catastrophe 
(Figures 12B and F), and demolished roads and houses (Figures 
12C–E). 

For the back-propagation modelling of the TSF failure, the 
TSP model was developed and applied to predict the potential 
path of the tailings spill based on the DEM of the area.  The 
Graphical User Interface (GUI) of the developed model is shown 
in Figure 13. 

The input of the model is the raw DEM and satellite image of 
the study area. The model can generate several output maps such 
as processed DEM, processed satellite image, elevation, slope, 
flow direction, flow accumulation, and the potential path that the 
liquefied tailings will take. The elevation map showed that the 
vertical height variation from Brumadinho Córrego do Feijão TSF 
to the Paraopeba River was 207 m (from 948 m to 741 m above 
mean sea level), as shown in Figure 14.

The results of slope analysis (Figure 15) showed a slope 
profile of between 0 and 28 degrees with the maximum slope of 
28 degrees at the TSFs and zero towards the Paraopeba River.   

The developed model was applied to delineate the potential 
tailings flow paths, before the failure.  The results show that 
the potential spill path as predicted by the TSP model using 
geospatial analytics matched the actual extents of the tailing spill, 
shown in Figure 16. 

The elevation profile of the predicted tailings spill path was 
also extracted – illustrated in Figure 17. The elevation difference 
is 207 m with an average topographic slope of 2.07% over the  
10 km horizontal distance to the Paraopeba River. 

A TSP model was developed for TSFs located in mountainous 
terrain and was further validated for the Samarco Tailings dam of 
Brazil. The Samarco TSF failure, which occurred on 5 November 
2015, also constituted a major disaster in the history of the 
mining industry. Figure 18 shows the potential tailings spill path 
(red line) from the Samarco TSF as predicted by the TSP model, 
overlaid on the post-failure satellite image. The results illustrate 

Figure 8—High-resolution DigitalGlobe satellite image before Brumadinho 
Córrego do Feijão TSF failure

Figure 9—Post-failure Sentinel-2A satellite image of the Brumadinho Cór-
rego do Feijão TSF area, tailing spills highlighted in purple (green, near-in-
frared, and red bands highlighted as R, G, and B) 

Figure 10—Digital footprint of tailing spill (red) overlaid on high-resolution 
satellite image

Figure 11—Detailed damage assessment map post-failure 
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that the predicted tailings flow path is in accordance with and 
within the actual tailings spill extent, hence validating the model.  

This TSF failure devastated two communities, Bento 
Rodrigues and Paracatu de Baixo, located about 2 km and  
38 km away from the collapsed dam (do Carmo et al., 2017). The 
section in Figure 19 shows the modelled tailings flow up to point 
X in Figure 18, which is 50 km away from the start of the spill. 
Modelling was stopped at point X due to the presence of thick 
cloud cover in the next satellite image. In this case, the elevation 
difference is 804 m with an average slope of 2.2%. 

The validation results showed that the model is capable of 
making acceptable predictions of the potential tailings flow path 
in the case of TSF failures in mountainous regions. The output 
of the model is also suitable for mapping a first pass of the zone 
of influence, which in turn can be used in the development of 

Figure 12—Field pictures of post-failure damage. Railway bridge (A), aerial 
views (B and F), houses (C and D), and destroyed road (E) Source: Bonac-
corso (2019)

Figure 13—Graphical user interface (GUI) of the TSP model

Figure 14—Pre-failure topographical digital elevation model of the tailings 
spill area
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Figure 15—Pre-failure topographical slope profile of tailing spill path
Figure 16—Modelled tailing spill path (red) overlaid on real tailing spill extent 
(black)

Figure 17—Elevation profile of Brumadinho tailings spill path

Figure 18—Spatial footprint (red line) of the Samarco TSF spill modelled by TSP (map scale 1cm : 1km)

Figure 19—Elevation profile of Samarco tailing spill path
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mitigation strategies as well as guide search and rescue missions. 
The accuracy of the TSP model is highly dependent on the spatial 
resolution of the input DEM. Fine resolution (≤5 m) will generate 
more detailed and accurate results. 

Conclusion
Geospatial technologies were successfully applied for post-failure 
modelling and analysis of TSF failures. The TSP model was 
developed and applied to two TSF failures, Brumadinho Córrego 
do Feijão and Samarco in Brazil. The predicted tailings flow paths 
based on geospatial technologies were found to correlate well 
with the actual (post-failure) paths. 

An attempt was made to delineate the path followed by the 
spill from the Brumadinho Córrego do Feijão iron ore mine TSF 
using satellite data and geospatial technologies. The TSP model 
developed, and methodology adopted, in this research is robust, 
advanced, and can be applied to other TSFs for assessment of 
areas which could be affected in case of failure. Currently, the 
model is suited for the prediction of the longitudinal section of 
a tailings flow; however, further research into prediction of the 
the cross-sectional characteristics is also recommended. High-
resolution LiDAR (Light Detection and Ranging) point cloud 
data-sets could be used for this purpose. The unavailability of 
high-resolution post-failure satellite images and topographical 
data (≤1m spatial resolution) was the main limitation of this 
research. This data, if available, could improve the modelling 
results.
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Appendix A
Python code for the development of the TSP model
import arcpy
from arcpy import env
from arcpy.sa import *
env.workspace = “C:\GIS-TSP Model\Data”
arcpy.CheckOutExtension(“Spatial-Analyst”)
arcpy.ProjectRaster_management(in_raster=Satellite_Imagery, 
out_raster=Atmospherically___Radiometrically_Corrected__
Satellite_Image_, out_coor_system=”PROJCS[‘WGS_1984_UTM_
Zone_23N’,GEOGCS[‘GCS_WGS_1984’,DATUM[‘D_WGS_1984’,S
PHEROID[‘WGS_1984’,6378137.0,298.257223563]],

PRIMEM[‘Greenwich’,0.0],UNIT[‘Degree’,0.0174532925199433]],

PROJECTION[‘Transverse_Mercator’],

PARAMETER[‘False_Easting’,500000.0],

PARAMETER[‘False_Northing’,0.0],

PARAMETER[‘Central_Meridian’,- 45.0],PARAMETER[‘Scale_
Factor’,0.9996], PARAMETER[‘Latitude_Of_Origin’,0.0],

UNIT[‘Meter’,1.0]]”, 

resampling_type=”NEAREST”, 
cell_size=”29,9314345838804 29,9314345838805”, 
geographic_transform=””, 

Registration_Point=””,

in_coor_system=”GEOGCS[‘GCS_WGS_1984’,

DATUM[‘D_WGS_1984’,

SPHEROID[‘WGS_1984’,6378137.0,298.257223563]],
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PRIMEM[‘Greenwich’,0.0],

UNIT[‘Degree’,0.0174532925199433]]”, 

vertical=”NO_VERTICAL”)

arcpy.ProjectRaster_management(in_raster=DEM, 
out_raster=Output_Project_DEM, out_coor_
system=”PROJCS[‘WGS_1984_Complex_UTM_Zone_23N’,

GEOGCS[‘GCS_WGS_1984’,

DATUM[‘D_WGS_1984’,

SPHEROID[‘WGS_1984’,6378137.0,298.257223563]],

PRIMEM[‘Greenwich’,0.0],

UNIT[‘Degree’,0.0174532925199433]],

PROJECTION[‘Transverse_Mercator_Complex’],

PARAMETER[‘False_Easting’,500000.0],

PARAMETER[‘False_Northing’,0.0],

PARAMETER[‘Central_Meridian’,-45.0],

PARAMETER[‘Scale_Factor’,0.9996],

PARAMETER[‘Latitude_Of_Origin’,0.0],

UNIT[‘Meter’,1.0]]”, 

resampling_type=”NEAREST”, 

cell_size=”29,9314345838804 29,9314345838805”, 

geographic_transform=””, Registration_Point=””, in_coor_
system=”PROJCS[‘WGS_1984_UTM_Zone_23N’,

GEOGCS[‘GCS_WGS_1984’,

DATUM[‘D_WGS_1984’,SPHEROID[‘W
GS_1984’,6378137.0,298.257223563]],

PRIMEM[‘Greenwich’,0.0],

UNIT[‘Degree’,0.0174532925199433]],

PROJECTION[‘Transverse_Mercator’],

PARAMETER[‘False_Easting’,500000.0],

PARAMETER[‘False_Northing’,0.0],

PARAMETER[‘Central_Meridian’,-45.0],

PARAMETER[‘Scale_Factor’,0.9996],

PARAMETER[‘Latitude_Of_Origin’,0.0],UNIT[‘Meter’,1.0]]”, 

vertical=”NO_VERTICAL”)

arcpy.env.overwriteOutput = False

Filled-DEM = arcpy.GetParameterAsText(0)

Satellite_Imagery = arcpy.GetParameterAsText(1) Atmospherically_
Radiometrically_Corrected_Satellite_Image_ = arcpy.
GetParameterAsText(2) 

Rectified_DEM = arcpy.GetParameterAsText(3) 

Flow_Direction_Map = arcpy.GetParameterAsText(4) 

Flow_Accumulation_Map = arcpy.GetParameterAsText(5) 

Tailing_Spill_Path = arcpy.GetParameterAsText(6) 

Strahler_Order = arcpy.GetParameterAsText(7) 

inSurfaceRaster = “Elevation”

sink_minimum = ZonalStatistics(sink_areas, “Value”, 
inSurfaceRaster, “Minimum”)

sink_maximum = ZonalFill(sink_areas, inSurfaceRaster)

sink_depth = Minus(sink_maximum, sink_minimum)

h-Limit = 3.28

Output-Fill = Fill(inSurfaceRaster, h-Limit)

Output-Fill.save(“C:\GIS-TSP Model\Data\Filled-DEM”)

inRaster = “Filled-DEM”

outMeasurement = “DEGREE”

method = “GEODESIC”

arcpy.CheckOutExtension(“3D-Analyst”)

arcpy.Slope_3d(inSurfaceRaster, outMeasurement, method)

arcpy.Slope_3d.save(“C:\GIS-TSP Model\Data\Slope”)

inRaster = “Filled-DEM”

method = “D8”

output-FlowDirection = FlowDirection(inRaster, method, outRaster)

output-FlowDirection.save(“C:\GIS-TSP Model\Data\Flow-Direction”)

inflow-DirectionRaster = “output-FlowDirection”

dataType = “INTEGER”

Output-FlowAccumulation = FlowAccumulation(inflow-
DirectionRaster, dataType)

Output-FlowAccumulation.save(“C:\GIS-TSP Model\Data\Flow-
Accumulation”) 

Flow-Accumulation-Conditional = Con(Raster(“Output-
FlowAccumulation”) > 2000, “ Output-FlowAccumulation”)

Flow-Accumulation-Conditional.save(“C:\GIS-TSP Model\Data\Flow-
Accumulation-Conditional”)

RasterConditioning = “Flow-Accumulation-Conditional”

TailingSpillPath = “C:\GIS-TSP Model\Data\Tailing Spill Path.shp”

backgrVal = “ZERO”

dangleTolerance = 50

field = “VALUE”

arcpy.RasterToPolyline_conversion(inRaster, TailingSpillPath, 
backgrVal, dangleTolerance, “SIMPLIFY”, field)

StreamRaster = “Output-FlowAccumulation”

FlowDirectionRaster = “output-FlowDirection”

StreamorderMethod = “STRAHLER”

TSPStrahlerOrder = StreamOrder(StreamRaster, 
FlowDirectionRaster, StreamorderMethod)

TSPStrahlerOrder.save(“C:\GIS-TSP Model\Data\Spill Path order.
shp)    u




