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Mineral resource modelling using an 
unequal sampling pattern: An improved 
practice based on factorization 
techniques
D. Orynbassar1 and N. Madani1

Synopsis
This work addresses the problem of geostatistical simulation of cross-correlated variables by 
factorization approaches in the case when the sampling pattern is unequal. A solution is presented, 
based on a Co-Gibbs sampler algorithm, by which the missing values can be imputed. In this algorithm, 
a heterotopic simple cokriging approach is introduced to take into account the cross-dependency of 
the undersampled variable with the secondary variable that is more available over the entire region. 
A real gold deposit is employed to test the algorithm. The imputation results are compared with other 
Gibbs sampler techniques for which simple cokriging and simple kriging are used. The results show 
that heterotopic simple cokriging outperforms the other two techniques. The imputed values are then 
employed for the purpose of resource estimation by using principal component analysis (PCA) as a 
factorization technique, and the output compared with traditional factorization approaches where the 
heterotopic part of the data is removed. Comparison of the results of these two techniques shows that the 
latter leads to substantial losses of important information in the case of an unequal sampling pattern, 
while the former is capable of reproducing better recovery functions.

Keywords
Co-Gibbs sampler, variogram analysis, data imputation, principal component analysis.

Introduction
Multivariate geostatistical analysis of cross-correlated variables is of paramount importance in orebody 
evaluation, which directly impacts further stages in a mining project such as resource classification, 
mine planning, and geometallurgical design (Battalgazy and Madani, 2019a, 2019b; Abildin, Madani, 
and Topal, 2019; Maleki et al., 2020; Adeli, Emery, and Dowd, 2018; Adeli and Emery, 2017, 2021). 
However, when the number of variables increases, the modelling process becomes cumbersome. 
This difficulty can be ascribed to two main factors. The first deals with establishing a linear model 
of coregionalization (Journel and Huijbregts, 1978) for the inference of the cospatial continuity 
(Leuangthong and Deutsch, 2003; Goovaerts, 1993). The second involves using a cokriging system 
for establishing and deriving the corresponding weights, which might be demanding in terms of 
computation time. This problem becomes more manifests when one is dealing with multivariate 
geostatistical simulation (Abildin, Madani, and Topal, 2019). 

To overcome these impediments, several geostatistical avenues have been suggested in order to 
use factorization methods such as minimum/maximum autocorrelation factors (MAF) (Switzer and 
Green, 1985; Maleki and Madani, 2016), principal component analysis (Goovaerts, 1993), stepwise 
conditioning transformation (SCT) (Leuangthong and Deutsch, 2003), flow anamorphosis (Van 
den Boogaart, Mueller, and Tolosana-Delgado, 2017), and projection pursuit multivariate transform 
(Barnett, Manchuk, and Deutsch, 2016), to name a few. In these methods, the cross-correlated variables 
can be converted to uncorrelated factors where independent modelling can be implemented without the 
requirement to establish a cokriging system and infer a linear model of coregionalization. However, 
these approaches necessitate an equal sampling pattern of each variable, hence both variables should 
be accessible in all the sample observations. This, however, is problematic in the case of an unequal 
sampling pattern such as a partially heterotopic configuration (Wackernagel, 2003) of the data-set. 
One solution for using the factorization approach over such a data-set is to completely remove the 
incomplete part of the sample observations and continue the modelling process with the remaining 
isotopic portion of data. This could be problematic because one may lose a substantial part of the 
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information (Barnet and Deutsch, 2015). Another alternative 
is to impute the values at unsampled locations to quantify the 
uncertainty, and then use the multivariate relationship that exist 
between the variables.

Methods and tools have been developed in this study first 
for data imputation at unsampled location by using a Co-Gibbs 
sampler algorithm in a multivariate case study, and secondly to 
use PCA for factorization of variables with imputed values for the 
purpose of mineral resource modelling.

We first review the theory of data imputation techniques. 
We then analyse the proposed data-set, apply data imputation 
techniques to the heterotopic data-set, and compare the results. 
Finally, we perform the resource modelling by PCA on the 
imputed data-set and original heterotopic data-set, and compare 
the results. 

Methodology
Rationale of missing data
First, we consider the theory of missing data and basic concepts 
in this problem of geostatistical modelling. Missing data or 
incomplete data-sets do not necessarily imply flaws in the data 
collection process. A good example is in oil reservoir modelling, 
where there is always more seismic information available than 
other data (Xu et al., 1992). In this case, the abundance of 
secondary information can be used to improve the quality of 
estimation (modelling) using the scarce primary data alone. In 
ore deposits, it is also common to find a secondary variable that 
is abundantly available compared to the primary variable. The 
reasons for unequal sampling of the primary and secondary 
variables vary, but could be related to the costs of assaying some 
particular elements/minerals. In this sense, one may face three 
sampling patterns for the purpose of orebody evaluation in multi-
element deposits (Wackernagel, 2003) (Table I):

 ➤   Isotopic (homotopic): primary and secondary variables are 
available at all sample locations

 ➤   Totally heterotopic: primary and secondary variables are 
available at different sample locations 

 ➤   Partially heterotopic: some primary and secondary variables 
share the same locations. 

Most geostatistical algorithms need data at all sample 
locations (isotopic sampling). The challenge in geostatistical 
factorization analysis, therefore, is how to deal with the missing 
data in partially and totally heterotopic sampling patterns. An 
imprecise yet immediate solution is to remove the incomplete 
data from the whole data-set. However, losing this important 
information will produce biased results (Barnett and Deutsch, 
2015). Another solution is using a regression function to impute 
the values at missing locations (Little and Rubin, 2002). For 
instance, linear regression analysis aims to fit a function to the 
available data irrespective of geographical location (Enders, 
2010). This method is impractical since it provides a unique 
single value for that location where it is unable to compute the 
uncertainty. Another difficulty is that this method may ignore 
the location of the variables, and fail to recognize the spatial 
continuity of the corresponding variables. An alternative for data 
imputation is to simulate the values at unsampled locations by 
some iterative geostatistical approach such as the Gibbs sampler.

Gibbs sampler
The Gibbs sampler algorithm is a practical approach to missing 
data analysis (Barnett and Deutsch, 2015). The rationale of this 

algorithm is built on the Markov chain theory, which implements 
sampling from a multivariate Gaussian distribution. By virtue 
of its iterative nature, the Gibbs sampler updates the simulated 
values several times, taking into account the conditioning of 
available data, until it reaches a target distribution (Casella and 
George, 1992). In a univariate case, wherever only one variable 
is considered for imputation of the value at an unsampled 
location, a univariate Gaussian random vector with missed m 
observations, Z = (Z1,…,Zm)T, with zero mean and variance-
covariance matrix C, can be imputed in an iterative manner, 
by updating one selected observation based on conditioning 
to the other hard and previously imputed observations in the 
corresponding vector. This algorithm consists of the following 
steps (Barnett, Manchuk, and Deutsch, 2016; Madani and 
Bazarbekov, 2020):

 ➤   Initialization: Commence the imputation by an independent 
random vector Z(0)

m×1. This can be done by acceptance-
rejection method. 

 ➤   Iteration: for i = 1,2,…,I
 •   Choose an index j ∈ {1,…,m} either in regular or 

random order (Roberts and Sahu, 1997; Galli and 
Gao, 2001; Arroyo et al., 2012). 

 •   Estimate Zj conditionally to the other observations, 
(Z1,…,Z(j-1), Z(j+1),…Zm) by employing simple 
kriging in a unique neighbourhood to return the 
kriging estimated value Zj

SK(i) and variance of 
estimation error σj

SK(i). In this step, the conditioning 
data includes hard data and previously imputed 
values at missing m observations. 

 •   Impute a new random vector Zj
(i) using the conditional 

distribution, with mean equal to its simple kriging 
estimate and variance equal to its variance of 
estimation error.

 •   Update the random vector by 
                                                                                                  [1]

   Table I

   Isotopic (a), partially heterotopic (b) and totally 
heterotopic (c) sampling pattern; (- indicates missing 
datum

   Coordinates   Primary variable Secondary variable

  (a) ISOTOPIC (HOMOTOPIC) DATA-SET

   East North Elevation  
   193.0 528.6 39.0 0.032 0.12
   335.1 38.0 97.0 0.109 0.13
   250.7 593.4 36.0 0.066 0.13
   275.8 517.2 86.1 0.400 0.19

(b) PARTIALLY HETEROTOPIC DATA-SET
   East North Elevation  
   193.0 528.6 39.0 - 0.12
   335.1 38.0 97.0 0.109 0.13
   250.7 593.4 36.0 - 0.13
   275.8 517.2 86.1 0.400 0.19

c) TOTALLY HETEROTOPIC DATA-SET
   East North Elevation  
   193.0 528.6 39.0 - 0.12
   335.1 38.0 97.0 - 0.13
   250.7 593.4 36.0 0.066 -
   275.8 517.2 86.1 0.400 -
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 •   Go back to step 1 and loop I times. 
One of the exceptional advantages of this sampling 

technique is the iterative process, i.e. it continues to simulate 
the values at undersampled points through a loop until it 
reaches the desired spatial continuity. The stated feature of the 
Gibbs sampler originates from the Markov chain that allows 
communicating of any states with positive probability distribution 
in a determined number of transitions, which accentuates the 
distinctive properties of this chain, namely aperiodicity and 
irreducibility (Lantuéjoul, 2002). Moreover, through promotion 
of the initial probability to a higher state, it aims at reaching 
the intended distribution (e.g. standard Gaussian distribution), 
which will entail the equilibrium or invariant distribution. These 
characteristics of the process encourage convergence of the global 
distribution to a Gaussian random vector with zero mean and the 
desired variance-covariance matrix C(x) through an increasing 
number of iterations (Iα) (Tierney 1994; Lantuéjoul 2002). 

In order to illustrate the notation of the Gibbs sampler 
mechanism in data imputation, a simple example is provided. A 
data-set is given with N number of observations, including some 
missing observation locations (Figure 1a, right). The variogram 
model is constructed using the known (isotopic) part of the data 
and is depicted in Figure 1a, left. After running the Gibbs sampler 
with setting for 100 iterations, a value is inferred for the missing 
point (consider only one missing point), and the corresponding 
variogram is computed (Figure 1b, left). Subsequently, the results 
are given after 1000 and 10000 iterations (Figures 1c and 1d). 
With an increasing number of iterations, the variogram of the 
data-set, including the imputed value, approaches the variogram 
model, until it matches it completely, at which point the final 
value is accepted and iterations cease. 

However, the Gibbs sampler algorithm is not suitable for 
multivariate data imputation, because it ignores the dependency 
of the undersampled variable on other available data. We now 
show how data imputation is performed in a multivariate context.

Proposed algorithm 
In a multivariate data-set, the data imputation may result in 
total or partial heterotopic sampling patterns. In this method, 
the imputed values at missing locations are subject to the 
cross-correlation structure that exists between the primary and 
secondary variable. In this study, we only show the methodology 
for imputation in a multivariate case with a partially heterotopic 
sampling pattern. This can be applied further for resource 
modelling using the factorization techniques where an isotopic 
sampling pattern is required. Therefore, the first step is to impute 
the values at unsampled locations of the data-set to make the 
sampling pattern isotopic. In this respect the secondary variable 
with more data accessibility boosts the quality of imputation of 
values for the primary variable at missing locations. To achieve 
this, Madani and Bazarbekov (2020) proposed a Co-Gibbs 
sampler algorithm, in which simple kriging in the conventional 
Gibbs sampler (as already explained) can be substituted for the 
simple cokriging system based on two neighborhood search 
strategies:  
 ➤   Isotopic search: all sampling locations containing both the 

primary and secondary variables are selected (Table II, 
right). 

 ➤   Multiple search: all sampling locations containing both 
the primary and secondary variables are selected, together 
with the secondary datum at target-undersampled location 
(Table II left). 

These two neighbourhoods allow for two alternatives 
cokriging systems: (a) isotopic simple cokriging, and (b) 
heterotopic simple cokriging, in a unique neighbourhood. It is 
also possible to use moving neighbourhood; however, the rate of 
convergence may be slow and unconvincing (Arroyo, Emery, and 
Peláez, 2012). Readers are referred to Madani and Bazarbekov 
(2020) for more detail about the proposed Co-Gibbs sampler 
algorithm for data imputation.

Once both variables are available at sampling locations 
(i.e., building an isotopic sampling pattern), the next step is to 
decorrelate the variables. This can be done by any decorrelation 
technique; however, in this study we propose PCA due to its 
simplicity and straightforwardness. Since one avails several 
realizations at imputed locations, one needs to implement the 
PCA over all these realizations. In this step, one variable is 
always fixed and another variable that conveys the imputed 
values changes with each run of PCA. After this step, the factors 
can be simulated independently subject to the variogram analysis 
of each factor. Each realization of conditioning data leads to one 
realization over the target grids. Therefore, R realizations of 
imputed values produce R maps over the simulated grid nodes. 
Then, simulated results are back-transformed to the original scale 
to restitute the original correlation coefficient. The final step is to 
use the simulated results for resource modelling.

The capability of the proposed algorithm, its validity, and 
the improved performance of either of these two alternatives 
compared to the Gibbs sampler for data imputation, are presented 
and the proposed searching strategies are compared in the 
following case study. 

Case study 
The data-set used in this work belongs to an undisclosed gold 
deposit located in Australia. It includes 2458 sample locations 
with availability of two elements: gold (Au) and silver (Ag). This 
data-set is partially heterotopic, in that Ag data is less available 
and is missing at some sample locations, whereas Au grades are 
available at all sample locations. The 614 (scarce) Ag data points 
are primary, with the 2458 (abundant) Au data points being 
secondary. Therefore, only 614 observations include both Au and 
Ag variables (the isotopic part of the data-set). 

Exploratory data analysis 
Exploratory data analysis establishes statistical parameters 
for the data-set aimed at detecting data errors and statistical 
inconsistencies which, if ignored, could lead to significant biases 
in the output results (Rossi and Deutsch, 2014). In this context, 
the presence of duplicates and outliers must be identified through 
diagrammatic statistical tools such as histograms and scatter 
plots, particularly in the case of s multivariate data-set (Rossi and 
Deutsch, 2014; Verly, 1993). Once identified, duplicate data and 
outliers are removed or capped from the data-set, respectively.

The original histograms for Au and Ag data are shown in 
Figure 2, and statistical parameters of the data-set are presented 
in Table III. 

The linear correlation between the 614 isotopic silver and 
gold data-points, shown in the scattergram of Figure 3, has a 
correlation coefficient of 0.65, indicating a high dependency 
between Au and Ag in this deposit. The strength of the 
correlation coefficient suggests that data imputation by means of 
the proposed algorithm is acceptable, by first imputing values of 
Ag at locations missing this variable and secondly by apply PCA 
for Au resource modelling. The method is motivated because the 
Ag data will contribute to the modelling of Au in the deposit.
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Figure 1—Gibbs sampler algorithm example – left: variogram model, and right: portion of data-set; black solid line: desired variogram model; red: variogram model 
of imputed data-set

   Table II

   Two possible options for cokriging neighbourhood in partially heterotopic data-set (Wackernagel, 2003);  
(- indicates missing data)

                                                   Multiple Search                                                            Isotopic Search 
   Primary variable grade (%)                  Secondary variable grade (%) Primary variable grade (%) Secondary variable grade (%)

   0.032  0.12 0.032 0.12
   0.109  0.13 0.109 0.13
   0.066  0.13 0.066 0.13
   -NaN-  0.19 - 0.19
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Generally, a high dependency between two variables and a 
heterotopic sampling pattern are two most important factors 
determining the suitability of the proposed algorithm in this 
study. 

Normal score transformation and variogram analysis
The first step in implementing the Gibbs sampler is a 
transformation of original data to a normal score distribution 
with mean 0 and variance 1, using an independent quantile-
based approach for each variable (Verly, 1993). A scattergram 
of normal score-transformed data, shown in Figure 4, indicates 
a linear bivariate distribution of points, suggesting that the 
multivariate relationship between normal scores for Au and Ag 
meets bivariate Gaussianity.

Next, the omnidirectional experimental direct and cross-
variograms were calculated for the standard normal scores data-
set. The cross-variogram is calculated for paired observations of 
silver and gold, i.e. the isotopic part of the data-set that involves 
only 25% of all the data. The variogram models were fitted 
by using the linear model of coregionalization, where a two-

spherical structure, including the respective nugget effect, is fitted 
to these experimental variograms. The corresponding values of 
sill matrices, ranges, and models are as follow:

[2]

As can be seen in Figure 5, all depicted variogram models 
adequately reveal the spatial continuity of the data of interest. 
The sill variance for direct variograms has reached unity, 
entailing a stationary phenomenon. Lastly, the presence of a 
nugget effect (Equation [2]) also can be observed in all cases.  

Results and validation
Once the linear models of coregionalization have been 
established, the Gibbs sampler algorithm can be implemented 
over the missing data locations to impute the Ag values. The 

   Table III

  Statistical parameters of original Ag and Au grades (ppm)
   Variables Number of Samples Max Min Mean Variance  Coefficient of variation 

   Ag  614 874.35 0.025 70.111 10627.53 1.471
   Au  2458 82.60 0.015 4.221 47.04 1.625

Figure 2—Original histograms of Ag (a) and Au (b) grade distributions (both in ppm)

Figure 3—Scattergram of Au versus Ag (ppm) with a correlation coefficient 
of 0.65 Figure 4—Scattergram of Gaussian Au and Ag
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number of iterations is set to 10 000, provided updates for 
inferred values can reasonably reach the target multivariate 
distribution.

Following the proposed algorithm, three alternatives of the 
proposed Gibbs sampler are mainly examined: 

 ➤   GISO: Co-Gibbs sampler with isotopic simple cokriging.
 ➤   GHET: Co-Gibbs sampler with heterotopic simple cokriging 
 ➤   GSK: Gibbs sampler with simple kriging

The results of two alternatives (GISO and GHET) are 
compared to the conventional Gibbs sampler where only simple 

kriging (GSK) is employed. Therefore, we consider this as the 
third alternative, where one ignores the existence of a secondary 
variable. 

The derived results can be validated by examining the 
correlation coefficients between imputed Ag and Au values and 
comparing them with the original cross-correlation coefficient 
of 0.65. The distribution of correlation coefficients for 100 
realizations is shown in Figure 6, with reference to the original 
correlation coefficient of 0.65. The average correlation coefficients 
for all three approaches, including GSK, are shown in Table IV. 
The overall outcome for the correlation between Au and imputed 

Figure 5—Experimental and theoretical direct and cross-variograms; the sawtooth line is the experimental variogram and the the straight line is the theoretical 
variogram obtained from the linear model of coregionalization

Figure 6—Correlation coefficient between Imputed Ag and Au over 100 realizations
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Ag values (GHET) is reasonably close to the original correlation 
coefficient (0.65), whereas GISO and GSK yielded poor results, 
failing to reach desired value of cross-correlation.

The measure of correlation between the average correlation 
of imputed values of Ag and original Au is another statistical 
parameter for validating the reproduction of bivariate 
relationships. A comparison of Figure 7 and Figure 3 shows that 
GHET outperformed GISO and GSK, the reason being that GISO 
and GSK ignore the importance of secondary data at the target 
locations. The efficiency of the Gibbs sampler alternative can 
be compared based on the reproduction of the original shape 
of bivariate relation (Figure 7). As can be observed, GSK’s 
bivariate pattern certainly failed to follow the initial scatter 
pattern showing same value of Ag for a portion of the respective 
Au values. Also, from the visual representation of GISO’s case, 
the pattern is ambiguous and does not properly reproduce the 
original ‘diagonal’ pattern. However, in the case of GHET, the 
bivariate relationship is compatible with the original bivariate 
relationship between Au and Ag, as demonstrated in Figure 3. 

Resource calculation
The overall results show that the Gibbs sampler with heterotopic 
simple cokriging (GHET) provides satisfactory results in term of 
reproduction of original correlation coefficient for imputation of 
Ag values at missing sample locations.

Furthermore, through using available 100 series of the 
data-set, inclusive of the imputed Ag values, one can proceed to 
the resource calculation for the deposit. In this study, we chose 
principal component analysis (PCA) (Wackernagel, 2003; Sarma 

et al., 2007) for factorization of Au and Ag. The rationale/
principle of this methodology is to transform a set of correlated 
variables into independent uncorrelated factors thorough solving 
the eigenvalue problem.

The advantages of the proposed algorithm for resource 
modelling based on factorization by means of data imputation are 
considered in two cases: 

 ➤   Case I: an isotopic sampling pattern for 614 sample 
locations where both Au and Ag are available

 ➤   Case II: an isotopic sampling pattern, where all 2458 
sample locations are informed by existing Au data 
and imputed Ag values (100 realizations) obtained by 
heterotopic simple cokriging.

The first step after PCA factorization is to check the degree of 
correlation of derived factors at all lag distances. To achieve this, 
the cross-correlogram over the factors is calculated (Goovaerts, 
1997) as illustrated for cases I and II in Figure 8, indicating the 
factors are uncorrelated over all lag distances. Therefore, one can 
use the independent simulation for modelling the factors since 
there is no dependency between these factors.

   Table IV

   Correlation Coefficient results between imputed Ag  
and Au

   Original correlation  GHET GISO GSK

   0.65 0.7459 0.4364 0.2583

Figure 7—Scattergram between imputed Ag (ppm) and Au (ppm): GHET (a), GISO (b), and GSK (c)
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Variograms for the decorrelated variables of interest are 
established as a necessary step towards simulation. The 
variograms for case I and case II are illustrated in Figure 9. 
The variogram analysis for case II is implemented over the 
uncorrelated factors that are obtained from 100 imputed 
realizations for Ag. The average experimental variogram is 
calculated and the theoretical model fitted. The variogram 
formulae are as follows: 

Case I:

[3]

[4]

Case II:

[5]

[6]

For both case, the variogram models are quite simple, 
consisting of only one structure (spherical) and without any 
nugget effects. Furthermore, case II with 100 realizations (green 
variograms) with averaged variogram (red variogram), and so 
the respective variogram fitting in case II was done over the 
average of variograms for simplicity.

Once the variogram models are derived, a turning bands 
simulation algorithm (Emery and Lantuejoul, 2006) is used to 
simulate the factors independently. This technique of simulation 
is selected because of simplicity and straightforwardness 
and its ability to reproduce the statistical parameters of the 
original data (Paravarzar, Emery, and Madani, 2015). The 
E-type maps (average map of 100 realizations/maps) of each 
case are illustrated in Figure 10. As can be seen, there is a 
visible difference between the results obtained from two cases. 

Figure 8—Cross-correlogram between the factors: left – case I, right – case II. The cross-correlogram for case II is obtained through averaging the cross- 
correlograms obtained from each single realization

Figure 9—Variogram analysis. The direct variograms are obtained from decorrelated factors of original data as in case I (a), and case II (b). The green line is the  
experimental variogram of the factors and the blue line is the theoretical variogram model; the red line in case II is the average of realizations conveying the  
imputed data; the fitting variogram in case II is implemented over the red line (i.e., average of variograms)
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For instance, eastern part of the maps in Case II shows more 
concentration of both variables (Au and Ag) comparing to the 
maps obtained from Case I. This difference also is very tangible 
in the north-eastern and south-eastern part of the deposit. In 
north-eastern, Case I shows a high concentration of Au and Ag, 
whereas in south-eastern part of the region almost lacks the 
high concentration. This can happen due to ignoring substantial 
part of important information of Au by removing 1,844 sample 
observations in this Case. The results obtained from Case II is 
more compatible with the geological information of the deposit. 

It is of interest to check which of the simulation results 
could produce the outcome approximate to the original statistical 
parameters of the data-set. The direct and cross-variograms 
for the simulation results can be compared with the original 
theoretical model, as shown in Figure 11. Cases I and II were 
both able to reproduce the spatial statistical parameters. The 
cross-variogram for case II is slightly better than that for case I, 
but not significantly so, since the cross-variogram is informed by 
homotopic part of the data-set (614 sample points), which is the 
same in both cases.

The box or whisker plot of the derived correlation coefficient 
distribution was calculated and is illustrated in Figure 12. Once 
again the findings from the imputed data-set are distinguished 
by a higher median value and shorter interquartile range (IQR) in 
case II. Reproduction of the mean value for Au is also examined 
through the calculation of a mean value for each of the 100 

realizations, and the distribution of means is shown in Figure 
13. As can be observed, case II improves the reproduction of the 
original mean.

The recovery functions, including tonnage, mean grade, and 
metal quantity above cut-offs for Au, are computed over the 
simulated results. As it can be seen from Table V, the results of 
the imputed data-set for case II provide the highest values of the 
recovery functions for each cut-off grade.

This significant difference should be seriously considered in 
the case of conventional removal of the data-set that is common 
in factorization techniques. Furthermore, the application of these 
methods goes beyond resource estimation, also affecting the 
cash flow of the project, the net present value (NPV) calculation, 
and other decision-making procedures in further mine planning 
exercises. Due to the distinct results obtained above, the data 
imputation role in enhancing the outputs should be reconsidered 
in modern resource modelling.

Conclusions 
An iterative algorithm based on the Gibbs sampler has been 
presented in this study for data imputation at unsampled 
locations. For this, a heterotopic simple cokriging is applied 
in the Gibbs sampler that considers the cross-dependency of 
the undersampled variable with another variable that is more 
available. This algorithm showed that the correlation coefficient 
after imputation corresponds more closely to the original 

Figure 10—E-type maps obtained from case I (a) and case II (b)
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correlation coefficient. This shows that even using simple 
cokriging or simple kriging may not be an appropriate approach 
for such imputation. The results of employing a factorization 
approach also illustrate a good practice for resource modelling 
and calculation of recovery functions comparing to the traditional 
approaches, which only remove the incomplete part of the data-
set, in terms of better computation of recovery functions. This 
work can also be expanded for modelling a data-set with more 
than two variables. 
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Figure 13—Mean reproduction of Au for Case I (a); and Case II (b). (green line: average of realizations; red line: original average of the variable) 

   Table V

  Recovery function reports based on Cut-off for Au
   Cut-off              Tonnage                      Mean grade                   Metal quantity 
                  (t)                 (ppm)                     (t, ppm) 
 Case II Case I Case II Case I Case II Case I

   0.021 466,390 458,142 1.5572 1.5222 72,721 69,919
   0.040 436,934 428,118 1.6599 1.6265 72,687 69,883
   0.046 423,632 413,310 1.7110 1.6834 72,665 69,859
   0.057 407,482 398,294 1.7773 1.7454 72,632 69,828
   0.0620 395,670 388,706 1.8293 1.7875 72,604 69,806
   0.105 352,656 347,070 2.0471 1.9966 72,463 69,668
   0.12 342,396 336,592 2.1069 2.0570 72,417 69,621
   0.150 327,682 318,878 2.1988 2.1680 72,340 69,528
   0.252 300,628 296,714 2.3891 2.3237 72,128 69,355
   0.473 275,454 273,428 2.5940 2.5091 71,767 69,019
   1.086 250,324 244,602 2.8264 2.7716 71,062 68,213




