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Evaluating the potential drilling 
success of exploration programmes 
using a three-dimensional geological 
model – A case study
by Z. Harris1, F.A.S. Reyneke1, R. K.W. Merkle1, and P.W.J. Delport1

Synopsis
The technological advancements in computing power in the last 30 years have enabled the practical 
visualization of complex geological environments in three-dimensional (3D) space. 3D models and their 
application in the mining industry are becoming increasingly important, for example, to identify future 
exploration areas and targets, for mineral assessment and evaluation, and prediction and planning of 
future drill-holes. However, acquiring borehole data is an expensive practice, with drilling programmes 
costing mining companies up to billions of dollars each year. Tighter financial constraints on exploration 
budgets result in more pressure being put on three-dimensional models to accurately identify future 
target areas. This article aims to evaluate the potential drilling success of simulated greenfield and 
brownfield exploration using a 3D geological model created of Leeuwpoort tin mine. These simulations 
investigate the probability of intersecting a mineralized zone of economic interest and evaluate how the 
probability is affected when the number of drill-holes and distance from a known intersection changes. 
Furthermore, these simulations attempt to obtain an indication for the minimum number of drill-holes 
required for a successful exploration campaign at the mine. The investigation also aims to establish 
a first-pass attempt towards developing a ‘favoured procedure’ for identifying potential exploration 
targets for tin deposits with geological and geochemical characteristics similar to Leeuwpoort. The 
results for the ‘favoured procedure’ established are statistically tested using the ‘bootstrapping’ method. 
By simulating various exploration scenarios, the study also emphasises the importance of predicting 
successful drilling, which aids in budgeting for drilling programmes as the minimum number of drill-
holes needed for a specific exploration project can be determined.

Keywords
three-dimensional modelling, Leeuwpoort tin mine, bootstrapping, brownfield exploration, drilling 
simulation, exploration simulation.

Introduction
The technological advancements in computing power in the last 30 years have allowed the practical 
visualization of complex geological environments in three-dimensional (3D) space (Aug et al., 2005; 
Barnes and Gossage, 2014; Calcagno et al., 2008; Chilès et al, 2004; Cowan 2012; 2017; Cowan et al., 2002; 
Cowan, Spragg, and Everitt, 2011; Cowan, Lane, and Ross, 2004; Jessell, 2001; Jessell et al., 2014; Lemon 
and Jones, 2003; Mallet, 2002; McInerney et al. 2005; Royse, Rutter, and Enwisle, 2009; Singer, 1993; Wang 
et al., 2011; Wu and Xu, 2004; Wu, Xu, and Zou, 2005; Yan-lin et al., 2011; Zu et al., 2012). Multi-sourced 
attribute data such as mining, geological, ore deposit, financial, and grade-tonnage data can be used in 
computer software packages (Leapfrog Geo, Datamine, Minesight, GEMCOM etc.) to create reliable 3D 
models that accurately represent geological environments or settings (Bye, 2006; Wu and Xu, 2004; Zu et 
al., 2012). 

3D models and their application in the mining industry are becoming increasingly important (Bye, 
2006; Jessell et al., 2014), for example, to identify future exploration areas, drill-holes, and targets (Barnes 
and Gossage, 2014; Cowan, 2017; Jessell, 2001; Jessell et al. 2014; Srivastava, 2005; Wang et al., 2011; 
Whiting and Schodde 2006; Yan-lin et al., 2011). These geological models are relied on heavily for mineral 
assessment and evaluation (Barnes and Gossage 2014; Cowan 2012; Cowan, Spragg, and Everitt, 2011; 
Knight et al., 2007; Renard et al., 2013; Shehu and Lipo, 2016; Srivastava, 2005; Wang et al., 2011). Even 
though the process of 3D model building has been optimized, the accuracy, certainty, and overall quality 
of the models created are still dependent on factors such as data quality and modeller competency 
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(Chilès et al., 2004; Cowan, 2017; Lindsay et al., 2013; Reid, 2017). 
The more complete the data used to create the 3D models, the 
more representative the models will be of the actual geological 
setting. 

However, acquiring borehole data is an expensive practice 
(Benning, 2000) with drilling programmes costing mining 
companies up to billions of dollars each year (Benning, 2000; 
Schodde and Guj, 2012; Whiting and Schodde, 2006). Tighter 
financial constraints on exploration budgets result in more 
pressure being placed on 3D models to accurately identify future 
target areas. 

Very recently Cowan (2017) stated that ‘we still do not 
understand how to efficiently identify exploration targets within 
the near environment of a particular mineral deposit any better 
than we did prior to 2000’. This article aims to evaluate the 
potential drilling success of a simulated exploration programme 
using the existing 3D geological model of Leeuwpoort tin mine 
(Harris, 2018). These simulations investigate the probability 
of intersecting an economic tin lode and evaluate how the 
probability is affected when the number of drill-holes and distance 
from a known intersection point changes. Furthermore, the 
simulations attempt to obtain an indication of the minimum 
number of drill-holes required for a successful exploration 

campaign at the mine. The investigation also aims to establish 
a first-pass attempt towards developing a ‘favoured procedure’ 
for identifying potential exploration targets for tin deposits with 
similar geological and geochemical characteristics to Leeuwpoort. 
The results of the exploration simulations are statistically tested 
using the bootstrapping method (Rossi and Deutsch, 2013).

Leeuwpoort tin mine
Leeuwpoort tin mine is situated in the Rooiberg tinfield, which is 
located on the western lobe of the Bushveld Complex, 60 km from 
the closest town, Bela-Bela (formerly Warmbaths), in the Limpopo 
Province of South Africa (Figure 1). Mining took place for 87 
years. The orebody can be geologically classified into two distinct 
groups of lodes (Falcon. 1989; Hartzer. 1995; Labuschagne. 2004; 
Leube and Stumpfl. 1963a; Phillips 1982; Rozendaal, Misiewicz, and 
Scheepers, 1995; Rozendaal, Toros, and Anderson, 1986):

1.    Flat-dipping bedded lodes (vein deposits) with an 
approximate thickness of 10-15 cm and an average dip of 
8–15°. The bedded lodes are laterally extensive and form 
parallel to sub-parallel to the sedimentary bedding of the 
quartzites in the lower Boschoffberg Member, part of the 
Leeuwpoort Formation (Kent and Matthews 1980).

Figure 1—Locality map of Leeuwpoort tin mine in the Limpopo Province of South Africa. Modified after du Toit and Pringle (1998) 
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2.    Steeply dipping fissure and faulted lodes (vein deposits) 
that have a variable thickness ranging from 1-20 cm and 
dips ranging from 45-90°. 

These tin lodes were formed when ascending mineralized 
fluids moved from the underlying granites of the Lebowa Granite 
Suite through pre-existing fissure and faults created by the 
emplacement of the Bushveld Complex. At the time of mine 
closure in October 1993, 39 known tin lodes (22 bedded lodes and 
17 fissure and faulted lodes) had been identified. Displacement of 
the lodes occurred due to the development of a complex faulting 
system after the formation of the tin deposits. Various normal and 
thrust faults developed omnidirectionally from the main Rooiberg 
thrust zone (Leube, 1960; Leube and Stumpfl, 1963b; Stumpfl and 
Leube, 1963).  

Historical database
When the mine closed down, the only available electronic media 
was a 5-inch floppy disk containing the map catalogue. During the 
closure, some of the information was lost or misplaced, resulting 
in incomplete data for the exploration drill-holes such as missing 
survey, assay, lithological, and spatial data. The historical data 
consisted of:

1.    Surface, underground, regional, geological, civil, and 
surveying maps 

2.   Old handwritten borehole logs stored in books and files, in 
some cases recorded in the imperial and/or metric systems.

During an extensive data recovery process, the data for 476 
surface and 2402 underground boreholes was obtained along 
with all the 777 maps noted in the digital map catalogue. A 
digital catalogue was created for 14 106 peg positions recorded in 
surveyor logbooks. Extensive data validation and verification was 
conducted on the historical data, which was subsequently used 
to create a 3D geological model of the mine using Leapfrog Geo 
software (Harris, 2018). It is important to emphasise that the 3D 
geological model generated was created using limited historical 
data and that any estimations or simulations run from this model 
will introduce some uncertainty (Griffith 2007; Lindsay et al., 2013, 
2012; Rossi and Deutsch, 2013; Thore et al., 2002).

Methodology

Identifying points of tin intersection
The first exploration simulation was designed to identify known 
points of tin intersections based on random drilling within a 
defined boundary of the 3D geological model. The following 
assumptions were made for the simulation:

1.    We assume that exploration is required in a tinfield 
that was formed by the same geological conditions 
(geochemical and geophysical) as the study area – a 
stratigraphically and structurally controlled exogranitic 
hydrothermal process (Rozendaal, Misiewicz, and 
Scheepers, 1995; Rozendaal, Toros, and Anderson, 1986). 
This assumption may limit the applicability of the ‘favoured 
procedure’ established in this paper but could be used as 
the blueprint for further study on this topic. 

2.    The exploration simulation aims to identify the locations 
where the simulated drill-holes intersect an economic tin 
lode (tin lode of economic significance). This exploration 
test simulates greenfield exploration.

3.    500 random drill-holes (boreholes) will be simulated 

within a specified boundary. These simulated boreholes 
will be drilled vertically from the surface to a depth of 300 
m and will henceforth be referred to as ‘exploration phase 
1’. Beyond 300 m there is no reliable geological information 
based on the 3D geological model.

4.    The simulated drill-holes and all related information 
obtained are based on the 3D geological model of the mine.

Determining the confining boundary
It is necessary to confine the simulation to an area where 
sufficient information is available (Figure. 2). The simulation 
boundary encloses the historical mining area, which is also the 
area where the majority of the drill-holes used to create the three-
dimensional geological model are located. The surface drill-holes 
have an average spacing of 100 m, whereas the underground 
drill-holes are on average 50 m apart. This means that the defined 
spatial boundary coincides with the drill-lhole boundaries of 
both the surface and underground drill-holes. Drill-holes that fall 
outside the central portion where the majority of the drill-holes 
are located were excluded because the distance between them is 
too large. Any correlation between these sets of drill-hole data will 
not lead to meaningful estimation because the data density is too 
low. 

Generating the data for exploration phase 1
In order for the exploration simulation to be unbiased, the 
locations (x-, y-, and z-coordinates) of 500 drill-holes (exploration 
phase 1) were randomly generated using ‘random functions’ in 
Excel. The boundary limits were used as maximum and minimum 
coordinate values for the selected random coordinates to fall 
inside the boundary. Each drill-hole was given a unique name from 
PB1 to PB 500 (PB indicating planned borehole), a depth of 300 
m, and a dip of 90°. These drill-holes were then imported into 
Leapfrog Geo as ‘planned drill-holes’ and evaluated against the 
existing 3D geological model in order to identify the location of 
known points of tin intersection (Figure. 3). 

The exploration simulation indicated that of the 500 
random drill-holes simulated (exploration phase 1), 83 drill-
holes intersected one or more economic tin lodes. This means 
that if greenfield exploration was conducted based on the 500 
planned drill-holes, there would be a 16% chance of any particular 
drill-hole intersecting an economic tin lode within the selected 
boundary. This leads to the next question of the simulated 
exploration investigation: what is the probability of intersecting 
an economic tin lode a certain radial distance around a known 
point of intersection?

Application of a 3D model to brownfield exploration  
predictions
The second phase of the exploration simulation evaluates 
the probability of intersecting an economic tin lode using the 
known locations of the 83 economic intersections identified in 
exploration phase 1 as ‘central points’. These are the central drill-
hole points from which the brownfield exploration simulation is 
conducted. The following assumptions were made:

1.    We assume that brownfield exploration (Whiting and 
Schodde 2006) is required in a tinfield that formed 
under similar geological conditions (geochemical and 
geophysical) as the Leeuwpoort deposit. 

2.    The brownfield exploration simulation tests the probability 
of intersecting an economic tin lode, using known location 
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points (identified in exploration phase 1). A constant area 
around each of the 83 drill-holes is used for the brownfield 
explorations to be consistent. 

3.    Five test drill-holes from exploration phase 1 (PB2, 
PB38, PB122, PB192, PB267) were selected randomly to 
establish the favoured procedure for the parameters to 
be applied to the rest of the identified economic drill-
holes. The ‘favoured procedure’ thus refers to the optimal 
parameters based on this case study, i.e. the historical data 
and 3D geological model. The following parameters were 
investigated:

 (a)    The effect of change in the constraining area on the 
probability of intersecting an economic lode was 
investigated by choosing areas of 1 ha, 10 ha, and 
100 ha. 

 (b)    50 and 100 random drill-holes within the 
constraining area were simulated to test the effect 
of the number of drill-holes per constraining area. 

 (c)    The number of iterations used for the 

bootstrapping statistical method. The effect of 
using different numbers of simulations during the 
bootstrapping analysis was evaluated for 10, 50, 100, 
200, 500, 1 000, 2 000, 5 000, 7 000, 10 000, 20 
000, 50 000, 100 000, and 1 000 000 iterations.

 (d)    The amount of resamples selected per bootstrap 
analysis. The effect of changing the number of 
drill-holes resampled from exploration phase 2 was 
investigated by using 20 and 40 samples.

Determining the constraining areas around each economic  
drill-hole
For the simulation to be consistent for each of the planned 
drill-holes (exploration phase 2), a consistent area must be used 
to constrain the brownfield exploration simulation around the 
location of the economic drill-holes identified in exploration 
phase 1 (central points). The second step is to investigate what 
effect changing the area will have on the probability of intersecting 
an economic tin lode within the specified confining area. Areas of 

Figure 2—The confining boundary (red block) selected for exploration phase 1. The surface boreholes were used to constrain the boundary as they are the most 
laterally extensive. Drill-holes that are too far from the central mining area were excluded (red circle). The water drill-holes (blue circles) were not considered 
for the boundary because information for these boreholes is limited (program used: Leapfrog Geo) 
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1 ha, 10 ha, and 100 ha were chosen for this investigation and were 
subsequently used to calculate the respective radii around each of 
the ‘central points’ for the five test drill-holes to remain consistent 
in the simulation. The radial distance around each central point 
can be defined as the ‘constraining boundary’.

Generating drill-hole data for exploration phase 2
The second parameter investigated was the effect of having 50 or 
100 simulated boreholes within the constraining boundary, and 
how this influenced the chance of intersecting an economic tin 
lode. For exploration phase 2 to be comparable to exploration 
phase 1, the drill-holes had to be randomly generated within the 
constraining boundary by using ‘random functions’ in Excel. The 
radial distance around each central point of 1 ha, 10 ha, and 100 
ha (Figure. 4) was set as the boundary limit, which meant that the 
random coordinates generated for exploration phase 2 fell within 
the constraining boundary. 

The drill-holes were simulated from surface vertically to a 
depth of 300 m, as this correlated to the depth of the deepest drill-
holes used to create the  3D geological model. The drill-holes for 
exploration phase 2 were imported into Leapfrog Geo as ‘planned 
drill-holes’ to evaluate the number of lodes intersected per drill-
hole using the existing 3D geological model.

Determining the number of lodes intersected in Leapfrog Geo
Evaluations were conducted in Leapfrog Geo to determine the 

number of tin lodes intersected per drill-hole for exploration 
phase 2 within constraining areas of 1 ha, 10 ha, and 100 ha. 
Descriptive statistical analysis (pie charts) of the number of lodes 
intersected within these constraining boundaries was conducted 
in IBM SPSS Statistics 23 (Figure. 5). 

Statistical analysis of the brownfield exploration results using 
bootstrapping

The bootstrapping statistical method was used to analyse the 
results obtained in the brownfield exploration simulation. The 
statistical investigation will further determine what the effect on 
the probability will be if (1) the samples population is changed, 
and (2) the number of iterations used during bootstrapping 
changes.

Bootstrapping and resampling
The bootstrapping method is a resampling process that is repeated 
thousands of times to build a distribution that will most likely 
be Gaussian (Efron and Tibshirani, 1994; Good, 2006; Rossi and 
Deutsch, 2013). By resampling the original data multiple times, 
statistical inferences can be made about the population from 
which the data came (Curran-Everett. 2009; Grunkemeier and 
Wu. 2004; Simon. 1997; Simon and Bruce. 1991; Wilcox. 2010; 
Yu. 2003). Bootstrap analysis has become increasingly popular 
for hypothesis testing (Davidson and MacKinnon. 2000; Efron 

Figure 3—Plan view of the intersection between exploration phase 1 (black dots represent drill-holes) and the tin lodes modelled in Leapfrog Geo (GM)
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Figure 4—Visual representation of exploration phase 2 (black crosses) in (a) 1 ha,( b) 10 ha, and (c) 100 ha areas around the known locations for exploration 
phase 1 (red diamonds) that intersect a certain number of economic lodes of interest, using Excel
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and Tibshirani. 1991) as it is considered to be a more thorough 
technique compared to other resampling methods such as 
jackknife, cross-validation, and randomization exact tests (Yu 
2003). With the bootstrapping method, two types of resampling 
techniques are possible: sampling with replacement and sampling 
without replacement.

When a sample of a population has multiple chances to be 
selected it is referred to as sampling with replacement (Bardossy, 
Szabo, and Vaga, 2003; DiCiccio and Efron, 1996; Good, 2006; 
Grunkemeier and Wu, 2004; Olken and Rotem, 1986; Simon, 
1997). However, when the sample has only one chance of being 
selected (zero per cent chance of reselection) from the population 
it is referred to as sampling without replacement (Horvitz and 
Thompson, 1952; Narain, 1951; Olken and Rotem 1986; Raj ,1956; 
Rao, Hartley, and Cochran, 1962; Sampford, 1967; Vitter, 1985; 
Yates and Grundy, 1953).

Sampling without replacement is used for the bootstrap 
analysis of the simulated brownfield exploration conducted on 
the 3D geological model. Because the drill-holes are randomly 
simulated within the constraining boundary around a central 
point, we assume that no hole was drilled (simulated) twice and 
that a drill-hole can therefore be selected only once during a 
resample. 

Defining the parameters for the bootstrap simulation
Before the bootstrap can be scripted, the simulation criteria 
need to be defined. The data generated in exploration phase 2 is 

resampled. The bootstrap simulation was conducted on the five 
test drill-holes identified in exploration phase 2: PB2, PB38, PB122, 
PB192, and PB262. The probability and standard deviation of each 
resampling event are recorded and analysed to determine which 
parameters are considered to be the ‘favoured procedure’ to use 
based on the historical data and 3D geological model.

Setting up the bootstrap simulation
The bootstrap simulation was created using V3.6.0 of the R 
software environment. R is a programming language and a 
software environment that is freely available and is widely used for 
statistical analysis and visualization. For data result visualization 
‘ggplot2’ is used in conjunction with R to create graphs, in this 
case, to visualize the bootstrap results. A bootstrap simulation 
needed to be created for each of the five test boreholes where the 
change in the parameters discussed above can be evaluated. The 
full R source code can be downloaded from https://github.com/
fas-r/BoreholeBootstrap.

Results and discussion

Effect of using 50 and 100 drill-holes 
Two different sets of drill-holes were generated for exploration 
phase 2. In each case, 50 drill-holes and 100 drill-holes (Table I) 
were simulated within the confining boundaries (areas) to test the 
effect on the probability of intersecting an economic tin lode. For 
both bootstrap simulations, 20 and 40 samples were investigated, 

Figure 5—Probability of intersecting a certain number of lodes for a population of 100 randomly simulated drill-holes around a ’central point’ in exploration 
phase 2 using 1 ha (A), 10 ha (B), and 100 ha (C) as the constraining boundary. The probability of intersecting one or more lodes of economic significance is 92%, 
80%, and 55%
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using 1000 iterations per bootstrap within a 1 ha confining area; 
the only difference is the number of drill-holes simulated. Table I 
indicates that the probability of intersecting an economic tin lode 
increases when a larger number of drill-holes are used within the 
confining area. In this instance, a higher chance of intersecting a 
tin lode can be expected when using 100 drill-holes per confining 
area. However, the probability of intersecting a tin lode seems to 
decrease for test drill-holes PB192 and PB267 when 100 simulated 
drill-holes are compared to 50 simulated drill-holes. This 
phenomenon can be ascribed to statistical noise, as these two test 
drill-holes are located within the sector where the majority of the 
tin lodes have been identified. The fluctuations of the probability 
and standard deviation values are due to the small number of 
iterations used for the bootstrap analysis.

Effect of changing the confining area
The chance of intersecting a tin lode is dependent on the size of 
the confining area. In order to test the effect of using 1 ha,  
10 ha, and 100 ha (Table II) as a confining boundary around the 

central points, bootstrap simulations were conducted using 1000 
iterations, 100 simulated drill-holes, with 20 samples and 40 
samples per simulation. The number of iterations, sample size, 
and drill-holes remained constant with each bootstrap simulation; 
the only parameter that was changed was the confining area.

From the probability table (Table II) it becomes evident that 
the probability of intersecting a tin lode decreases with increasing 
area size (confining area) around the central points. The greater 
the distance around each central point, the smaller the chance of 
intersecting a tin lode since a larger area is now included in the 
confining area where tin lodes do not occur (see Figure 4 and 5).

The statistical effect of the different confining areas on the 
sample size selected for the bootstrap simulation (20 or 40 
samples) should also be observed in the tables. One important 
aspect to note for this simulation is that even though the same 
bootstrap parameters were used (100 drill-holes, 1000 iterations, 
1 ha confining area, 20 and 40 samples), a slight variation occurs 
for the results obtained for the probability and standard deviation. 
With each bootstrap simulation conducted, new samples 

   Table I

    Bootstrap resampling using 1000 iterations on 50 simulated boreholes in a 1 ha area around a known borehole location  
modelled in exploration phase 1 that intersects a point of economic interest

Exploration phase 2 (20 samples) 
   Number                           PB2                              PB38                            PB122                             PB192                   PB267 
   of Probability Standard Probability Standard Probability Standard Probability Standard Probability Standard 
   drill-holes  deviation  deviation  deviation  deviation  deviation

   50 0.580 0.085 0.452 0.088 0.523 0.086 0.904 0.052 0.812 0.0662
   100 0.613 0.092 0.483 0.102 0.575 0.097 0.859 0.072 0.789 0.084

 Exploration phase 2 (40 samples) 
   Number                            PB2                              PB38                            PB122                            PB192                     PB267 
   of Probability Standard Probability Standard Probability Standard Probability Standard Probability Standard 
   drill-holes  deviation  deviation  deviation  deviation  deviation

   50 0.571 0.040 0.433 0.037 0.512 0.037 0.904 0.023 0.806 0.030
   100 0.598 0.058 0.460 0.062 0.573 0.060 0.851 0.044 0.787 0.049

   Table II

    Bootstrap resampling using 1000 iterations on 100 simulated boreholes, for both 20 and 40 resamples, in 1 ha, 10 ha, and  
100 ha areas around a known borehole location modelled in exploration phase 1 that intersects a point of economic interest

Exploration phase 2 (20 samples) 
   ha                           PB2                              PB38                            PB122                             PB192                   PB267 
    Probability Standard Probability Standard Probability Standard Probability Standard  Probability Standard 
     deviation  deviation  deviation  deviation  deviation

   1 0.615 0.096 0.474 0.103 0.586 0.096 0.859 0.073 0.792 0.085
   10 0.320 0.090 0.468 0.098 0.551 0.097 0.715 0.089 0.630 0.095
   100 0.233 0.077 0.290 0.089 0.246 0.082 0.591 0.094 0.504 0.097

 Exploration phase 2 (40 samples) 
   ha                            PB2                              PB38                            PB122                            PB192                     PB267 
    Probability Standard Probability Standard Probability Standard Probability Standard  Probability Standard 
     deviation  deviation  deviation  deviation  deviation

   1 0.601 0.060 0.463 0.061 0.570 0.063 0.855 0.042 0.785 0.050
   10 0.300 0.055 0.456 0.060 0.542 0.060 0.709 0.056 0.620 0.062
   100 0.209 0.048 0.269 0.052 0.228 0.049 0.579 0.059 0.493 0.061
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are reselected for the simulation, which will result in a slight 
difference in the probability as each set of samples reselected will 
have different probabilities of intersecting an economic tin lode.

Effect of sample size and number of iterations in bootstrap 
simulations
The number of samples selected from the population and the 
number of iterations chosen influences the probability and, 
subsequently, the standard deviation. In the case of the bootstrap 
simulations conducted on the exploration simulation, 20 samples 
and 40 samples were investigated. For the bootstrap simulations, 
100 drill-holes were simulated in a 1 ha confining area where 20 
and 40 samples were randomly selected. The number of iterations 
per bootstrap simulation was changed to determine the effect on 
the probability of intersecting an economic tin lode. The results 
obtained using 10, 50, 100, 200, 500, 1 000, 2 000, 5 000, and 7 
000 iterations are listed in Table III.

Bootstrap tests are dependent on a finite number of samples 
(Davidson and MacKinnon, 2000). In practice, thousands to tens 
of thousands of iterations are used during the bootstrap test as 
this minimizes any fluctuation in the results, generally smooths 
the data, and represents a more Gaussian distribution. Thus, the 
number of samples selected for resampling and the number of 
iterations used for the bootstrap simulation will depend on the 
data-set. When the bootstrap simulations were being set up, the 
general assumption was made that more samples selected from 
the population should yield a higher probability. However, the 
number of iterations used per bootstrap simulation needs to be 
considered as well. Consider test drill-hole PB2 (Table III). If 20 
samples are selected from the population there is a 64% chance 

of intersecting a tin lode, whereas if 40 samples are selected the 
probability of intersecting a tin lode is 55%. In this instance, the 
probability decreased with an increase in samples selected per 
bootstrap analysis.

The decrease in the probability of intersecting an economic 
tin lode can be ascribed to more drill-holes falling outside the 
lode boundaries identified within the 3D geological model. In 
other words, more drill-holes have a higher chance of intersecting 
barren geology (containing no ore), especially if the random drill-
hole is simulated off the modelled tin lode. It is generally expected 
that with an increase in the number of iterations, the fluctuations 
for the probability and standard deviation for the samples 
will smooth out. The use of fewer iterations for the bootstrap 
simulation will result in more variability in the data (standard 
deviation). 

The fluctuation noted in the probability and standard 
deviation for the 20 and 40 samples selected indicates that an 
inadequate number of iterations were used. To determine the 
minimum number of iterations needed to minimize the variation 
in the data, 10 000, 20 000, 50 000, 100 000, and a million 
iterations were tested using 40 samples reselected from the 100 
drill-holes simulated in exploration phase 2 within a 1 ha confining 
area around the central points for the bootstrap simulations (see 
Table IV). For these simulations, 40 samples were selected instead 
of 20 samples from the population, as the results indicated that 
40 samples lowers the variability of the data, and also generally 
increases the probability. The study found that for a greater 
number of iterations, the variability decreases, as is evident by the 
reduction in the fluctuation of both the probability and standard 
deviation for the five test drill-holes.

   Table III

    Bootstrap resampling using 10, 50, 100, 200, 500, 1 000, 2 000, 5 000, and 7 000 iterations on 100 simulated boreholes in a  
1 ha area around a known borehole location. The results for both 20 samples and 40 samples are listed

Exploration phase 2 (20 samples) 
   Iterations                           PB2                              PB38                            PB122                             PB192                   PB267 
    Probability Standard Probability Standard Probability Standard Probability Standard Probability Standard 
     deviation  deviation  deviation  deviation  deviation

   10 0.645 0.072 0.465 0.088 0.535 0.111 0.895 0.050 0.745 0.112
   50 0.624 0.086 0.477 0.084 0.578 0.122 0.860 0.071 0.802 0.066
   100 0.603 0.117 0.492 0.104 0.579 0.094 0.845 0.073 0.787 0.073
   200 0.611 0.090 0.479 0.090 0.585 0.093 0.858 0.075 0.797 0.081
   500 0.605 0.101 0.474 0.093 0.579 0.097 0.855 0.071 0.794 0.083
   1000 0.613 0.092 0.483 0.102 0.575 0.097 0.859 0.073 0.789 0.084
   2000 0.613 0.098 0.477 0.095 0.582 0.099 0.857 0.070 0.789 0.081
   5000 0.611 0.097 0.479 0.097 0.582 0.096 0.j858 0.071 0.791 0.080
   7000 0.611 0.096 0.477 0.098 0.584 0.099 0.857 0.071 0.791 0.083

 Exploration phase 2 (40 samples) 
   Iterations                            PB2                              PB38                            PB122                            PB192                     PB267 
    Probability Standard Probability Standard Probability Standard Probability Standard Probability Standard 
     deviation  deviation  deviation  deviation  deviation

   10 0.577 0.072 0.495 0.071 0.600 0.059 0.855 0.037 0.820 0.042
   50 0.598 0.055 0.464 0.059 0.563 0.060 0.849 0.043 0.794 0.044
   100 0.604 0.066 0.464 0.062 0.571 0.058 0.859 0.045 0.780 0.050
   200 0.603 0.063 0.467 0.056 0.579 0.060 0.853 0.044 0.789 0.053
   500 0.600 0.061 0.466 0.061 0.573 0.059 0.854 0.043 0.787 0.051
   1000 0.603 0.061 0.463 0.059 0.573 0.061 0.854 0.047 0.785 0.051
   2000 0.599 0.060 0.463 0.060 0.571 0.060 0.6854 0.043 0.786 0.051
   5000 0.600 0.061 0.464 0.061 0.571 0.061 0.854 0.043 0.786 0.051
   7000 0.602 0.061 0.463 0.061 0.571 0.061 0.854 0.044 0.786 0.051
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To finally determine the minimum number of iterations 
needed to conduct a bootstrap simulation using the 3D model, 
the point where a negligible change took place in fluctuation in 
the variability needed to be determined. A summary of all the 
bootstrap simulations conducted on the five test drill-holes of 
exploration phase 2 is given in Table V. Variability graphs for PB2, 
PB38, PB122, PB192, and PB267 (Figure. 6) were constructed by 
plotting the probability of intersecting an economic tin lode for 
these samples against the number of iterations used (using a 
logarithmic scale). The fluctuation in the variability as a factor 
of the number of iterations can now be graphically viewed to 
help determine where the data is sufficiently smoothed to have 
minimal fluctuation in the bootstrap analysis. These graphs 
indicate that the minimum number of iterations needed to 
conduct a bootstrap simulation is 2000 iterations.

Defining the ‘favoured procedure’
One of the main aims of these simulations was to establish a 
‘favoured procedure’ for bootstrap simulations conducted at 
Leeuwpoort tin mine; in other words, the optimal parameters that 
are best suited for a statistical analysis applicable to the mine. 
From the multiple bootstrap simulations conducted, the following 
points were determined:

1.    When choosing the number of drill-holes needed for 
the bootstrap simulation to determine the probability of 
intersecting a tin lode, a larger sample size is favourable. 

For this case study, 100 simulated drill-holes have a higher 
chance of intersecting a tin lode than 50 drill-holes.

2.    The confining boundary (area) used for the bootstrap 
simulation conducted for each of the drill-holes identified 
in exploration phase 2 around the central points must be 
constant in order to be able to compare the results. The 
optimal confining area to conduct the bootstrap analysis is 
1 ha rather than 10 ha and 100 ha because a 1 ha confining 
area results in a higher probability of intersecting a tin 
lode. 

3.    For the tested bootstrap simulations, 20 samples and 40 
samples were selected from the population. The results 
indicate that the variability decreases with an increasing 
number of samples selected. For this case study, 40 
samples give better probability results with less variability.

4.    The extensive bootstrap tests run on exploration phase 
2 indicate that a greater number of iterations reduces 
variation in the data for this data-set. In the case study, a 
million iterations was used to test the smoothing effect of 
bootstrapping to the extreme. The number of iterations 
required to reduce variation is dependent on the data 
used for the bootstrap analysis. The case study found 
that variation is reduced at 2 000 iterations for the data 
obtained during the bootstrap analysis. Statistically, 2 
000 iterations should be considered to be the minimum 
amount. The recommended number of iterations is  

   Table IV

    Bootstrap resampling for 40 samples using 10 000, 20 000, 50 000, 100 000, and 1 000 000 iterations on 100 simulated boreholes  
in a 1 ha area around a known borehole location modelled in exploration phase 1 that intersects a point of economic interest

Iterations (100 boreholes per 1 ha) 
   Exploration                         10 000                             20 000                       50 000                      100 000                1000 000 
   phase 1 Probability Standard Probability Standard Probability Standard Probability Standard Probability Standard 
     deviation  deviation  deviation  deviation  deviation

   PB2 0.600 0.061 0.602 0.060 0.600 0.060 0.600 0.061 0.600 0.060
   PB38 0.464 0.061 0.464 0.061 0.463 0.061 0.464 0.061 0.464 0.061
   PB122 0.571 0.060 0.571 0.061 0.571 0.061 0.571 0.061 0.571 0.061
   PB192 0.853 0.044 0.853 0.044 0.854 0.044 0.854 0.044 0.854 0.044
   PB267 0.786 0.050 0.785 0.050 0.785 0.051 0.785 0.051 0.785 0.051

   
Table V 

    Summary of the bootstrap simulations conducted for exploration phase 2using 10, 50, 100, 200, 500, 1 000, 2 000, 5 000, 7 000,  
10 000, 20 000, 50 000, 100 000, and 1 000 000 iterations, 40 samples selected per population, 100 drill-holes per 1 ha  
confining area
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Figure 6—Variability graphs for test drill-holes. (a) PB2, (b) PB38, (c) PB122, (d) PB192, and (e) PB267, plotting probability against the number of iterations 
where 2 sigma is used as confidence intervals to illustrate variability. The fluctuation of the probability becomes constant at 2 000 iterations (log(2000) = 3.3 on 
the x-axis) indicating that this is the minimum number of iterations that should be used to conduct a bootstrap simulation at Leeuwpoort tin mine
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Figure 6—Continuead

100 000, just to reduce computational time, and because 
there is no notable statistical difference between using 100 
000 and a million iterations. 

Conclusions
Exploration is crucial for any mining venture, whether it is 
greenfield exploration or brownfield exploration. This case 
study aimed to evaluate the potential success of greenfield and 
brownfield exploration drilling using the three-dimensional 
geological model of Leeuwpoort tin mine. For the first exploration 
simulation, 83 (16%) of the 500 randomly simulated drill-holes 
intersected an economically significant lode. These drill-holes 
were then used as central points, around each of which 100 drill-
holes were simulated to establish ‘exploration phase 2’ as part of 
the brownfield exploration simulation.

The overall probability of intersecting a tin lode for 
exploration phase 2 is calculated at 92% (Figure. 5). However, the 
distribution of the probability is positively skewed for exploration 
phase 2, which gave rise to various bootstrap simulations 
conducted for the distribution to resemble a more Gaussian 
distribution. The bootstrap simulations aimed to establish a 
first-pass attempt at developing a ‘favoured procedure’ for the 
parameters used in this case study that would result in a small 
amount of variability. The favoured procedure was established 
by investigating the effect of changes in the number of simulated 
drill-holes, constraining boundary, bootstrap sample size, and 
number of iterations based on the probability of intersecting a tin 
lode determined in exploration phase 2. 

From the statistical analysis of the exploration simulation, 
the optimal statistical parameters that should be used to identify 
future exploration targets in the case study area are 100 simulated 
drill-holes within a 1 ha constraining boundary (area) of the 
known location point of a drill-hole that intersects a tin lode, 
using 100 000 iterations for the bootstrap simulation with 40 
samples selected from the population without replacement. 

The exploration simulations conducted on the 3D geological 
model concluded that potential exploration projects could be 
simulated successfully and that 3D models can be used to identify 

future mining targets. However, it is important to note that 
3D models cannot be considered to be 100% accurate; any 3D 
geological model created is subject to uncertainty and variability 
because the models are dependent on the quality of the data, and 
are also dependent on the interpretation by the geologist that 
creates the model. 

The paper is intended to illustrate a first attempt on the 
approach to determining the probability of success in exploration 
drilling rather than a generalized procedure or best practice 
method. These parameters could potentially be used for future 
brownfield exploration to identify potential mining targets 
comprising ore deposits that have the same geological and 
geochemical characteristics as those of Leeuwpoort tin mine. 
However, these estimations cannot be accepted as accurate 
without knowing the geochemical and geophysical heterogeneity 
of the orebody. Nonetheless, this case study can be used for the 
prediction of successful drilling and can aid in budgeting for 
drilling programmes because the minimum number of drill-holes 
needed can be determined.

The ‘favoured procedure’ parameters identified for the 
statistical analysis of the historical data using bootstrap 
simulations indicate that the potential exploration success can be 
evaluated by simulating various parameters such as the number 
of drill-holes required in a confined area. However, in order to 
develop a generally applicable approach, or for our findings to be 
transferable to other mineralized areas of similar type, a broader 
base of similar studies is required.

Computer code availability
Name of code: BoreholeBootstrap
Developer: F.A.S. Reyneke
Contact email: stephan.reyneke7@gmail.com; zandri.harris27@
gmail.com 
Telephone number: +27 82 462 4311; +27 83 707 9501
Year first available: 2020
Hardware requirements: At least 2 GHz or faster processor, 4 GB 
RAM, and 1 GB of free hard disk space to store results. A faster 
machine is recommended if available to speed up bootstrap 
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analysis time.
Software requirements: R version 3.6.0 with the ‘ggplot2’ package 
installed. The script automatically installs this package.
Program language: R
Program size: 10.1 KB
Source code:
To access the source code, navigate to the following GitHub 
repository: https://github.com/fas-r/BoreholeBootstrap
Click on the ‘Clone or download’ button, and select ‘Download 
ZIP’. The source code is now downloaded to your machine. 
Open the README.md file in a text editor application (such as 
Notepad) for usage and test instruction information.
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