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Application of MR and ANN in the 
prediction of the shovel cycle time, thereby 
improving the performance of the shovel-
dumper operation – A case study
by S. Dey1, S.K. Mandal1, and C. Bhar2

Synopsis
Loading and hauling of ore and waste are the key operations of an opencast coal mine and entail 
a high operational cost. The productivity of a mine can be increased by reducing the cycle time of 
loading equipment as well as utilizing dumpers optimally. In this paper we discuss the impact of rock 
type, bucket fill factor, rock fragmentation, the height of the cut, and angle of swing of the bucket on 
shovel performance. A time study is conducted on shovels in an opencast coal mine with experimental 
blasts of rocks to assess the impact of different factors on the performance of the shovel. Based on the 
data, the authors applied multiple regression (MR) and artificial neural network (ANN) techniques to 
develop different models for the prediction of the shovel cycle time. Developed models are validated by 
comparing the predicted data with actual field data. With the help of the best model, the plausible fleet 
size is determined in order to utilize the shovel and dumper optimally and to improve the performance 
of shovel–dumper operation.
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Introduction
India is the second-largest coal producer in the world, with around 7.9% of global coal production in 2018 
(BP Statistical Review of World Energy, 2019). To meet the country's coal demand, most of the coal-
producing companies have shifted from underground mining to opencast methods. In the present mining 
scenario, more than 94% of coal production in India is met by opencast coal mines. (Ministry of Coal, 
2019). Proper planning, as well as utilization of the machines used in opencast mines, is of paramount 
importance for effective and economical coal production. 

Rock fragmentation vis-à-vis loading and transportation of the blasted muck are the key modules of 
production in opencast coal mines and constitute about 50-60% of the total operating cost (Alarie and 
Gamache, 2002; Doktan, 2002; Hartman, 2002). In the Indian opencast mines, dumpers in conjunction 
with a shovel are generally used for material handling. The utilization of shovel and dumper needs to 
be optimized to reduce material handling costs and increase the commercial viability of the mines. 
Chaowasakoo, et al. (2017) simulated the most effective real-time truck dispatching strategy for assigning 
a combination of truck-shovel operations in order to maximize productivity considering the three 
uncertain parameters, i.e. truck cycle time, the loading time of the matched dumper and shovel, and idle 
times of trucks and shovels at PT. KitadinTandungMayang’s East Kalimantan production site, Indonesia. 
Pasch and Uludag (2018) conducted a similar study to optimize the loading-hauling fleet to improve 
the production of the opencast colliery. The literature reveals that, the match factor (MF) is one of the 
most important indicators to evaluate the utilization of any shovel – dumper operation (Krzyzanowska, 
2017). The MF is defined as the ratio of truck arrival rate to loader service rate, and it is one of the most 
important indicators to measure the effective utilisation of loading and hauling equipment. The match 
factor can be determined from Equations – [1] and [2] (Hanby, 1991; Kesimal, 1998).

[1]

[2]

where, MFi,i’ is the match factor of ‘i’ type truck and ‘i’’ type loader; xi is the number of ‘i’ type trucks; yi’ is 
the number of ‘i’’ type loaders; ti,i’ is the time taken to load ‘i’ type truck with ‘i’ type loader; and tX is the 
average cycle time of the trucks, excluding waiting times.
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Burt (2008) derived Equation [3] for heterogeneous types of 
loading and hauling equipment,

	 [3]

where, tX is the average cycle time of all types of trucks; xi is the 
number of i type of trucks; xi’ is i’ type of loader; ti,i’ is the time 
taken to serve the truck type i by loader type i’; and ti,h is the cycle 
time of truck type i on haul route h.

This study emphasizes shovel operation only in the opencast 
coal mines, where the cycle time of dumper operation is known. 
The productivity and efficiency of a shovel are affected by 
several variable factors like muckpile characteristics, loading 
geometry, practice, operating conditions, and loader design 
(Singh, 2006). Independent factors like size and type of loading 
equipment, the experience of the operator, site characteristics, 
operating conditions of the machine, and rock properties also 
affect the performance of the shovel (Ceylanoğl, Karpuz, and 
Paşamehmetoğlu, 1994). Various researchers have established a 
correlation between rock fragmentation characteristics and the 
productivity of loading equipment vis-à-vis actual production of 
a mine (Allen, Hawkes, and Noy, 1999; Doktan, 2002; Michaud, 
Lizatte, and Scoble, 1997; Singh and Narendrula, 2001). 
Researchers have also indicated that production can be enhanced 
by 3% of reducing the cycle time of loading equipmentby 20% 
(Hawkes 1998). Kirmanli and Ercelebi (2009), developed an 
expert system to select the excavator and dumper combination to 
minimize production cost, whereas a genetic algorithm was used 
by Marzouk and Moselhi, (2002) to optimize the loader-haul fleet 
for a particular type of loader and dumper. 

Literature reveals that the cycle time of a shovel is affected 
by different factors. The study of factors affecting the shovel 
operation and prediction of the cycle time of shovel helps to 
optimize the utilization of shovel-dumper fleet. Therefore, an 
effort has been made to study dumper operation to predict 
the total cycle time of the shovel by applying multiple linear 
regression (MR) and the artificial neural network (ANN) 
techniques separately. The major objective is to minimize the 
total cycle time of the shovel and optimize the shovel–dumper 
operation to enhance productivity. The developed model was 
validated by comparing the predicted cycle time from the models 
output data with actual field values, and encouraging results have 
been observed. 

Factors affecting shovel performance
Production of a shovel is expressed in bank cubic metres per unit 
time and is always less than the equipment's rated capacity. The 
production cycle of the shovel consists of four basic components; 
fill the bucket, swing with the load, dump the load, and return 
swing for the next load. Bucket fill factor, bench height, swing 
angle, and rock fragmentation sizes are the major factors affecting 
the shovel's actual production.

Bucket fill factor
The bucket fill factor is defined as the ratio of the actual volume 
of material excavated to the nominal volumetric capacity of the 
shovel bucket; it varies with the rock type. It is predominantly 
an operational variable and depends upon the loading strategy, 
operator experience, and willingness to fill the bucket and 
the angle of repose of the material on top of the bucket 
(Bozorgebrahimi, Hall, and Blackwell, 2003). An improper 

fragmentation results in large boulders, which reduce the bucket 
fill factor and increase the cycle time of the shovel as well as the 
waiting time of the dumper. 

Bench height
Bench height, which influences the muck profile and cycle time of 
the shovel and dumper, is as the vertical distance between crest 
and toe of the bench (Ercelbi and Basceetin, 2009). For a high 
bucket capacity shovel (> 2.5 m³), a shallow bench height may 
incur more passes to fill a dumper and may also involve increased 
the traversing time along the blasted muck. A higher bench height 
compared to the maximum digging height of the excavator may 
reduce the depth of penetration in the blasted muck or more 
strokes may be required to fill the bucket for one pass. It may 
result in incomplete removal of blasted muck from the crest 
of the bench and improper fragmentation in the subsequent 
blast. Therefore, an optimum bench height with regards to the 
maximum digging height of the excavator may optimize the cycle 
time of the excavator.

Angle of swing of bucket
The angle of the swing of the shovel bucket, i.e., the angle in the 
horizontal plane between the loading and unloading points of the 
shovel, directly influences the cycle time of the shovel. Therefore 
a minimum swing angle can minimize shovel cycle time and 
waiting time of dumpers during intermittent periods. 

Effect of rock fragmentation on shovel operation
Improper fragmentation results in more void spaces in the bucket 
and an increase in the cycle time of the shovel to fill a dumper. 
It also increases the time required to handle individual oversize 
boulders during mucking and increases the total loading time. 
Neilson (1987) correlated different pass sizes of boulders (50%, 
80%, and 90%) with the bucket fill factor of loading equipment. 
Doktan (2001) indicated that a better-fragmented blast results 
in a 35% reduction in shovel digging time and a 22% increase in 
productivity. The author has derived Equation [4] to determine 
digging time.

	 [4]

where; a = 8.9942, b = 6.8706e-2, X50 = 50% passing size, and Un = 
Uniformity coefficient

With the help of time study data, Molotilov, Cheskidov, and 
Norri (2008) derived Equation [5] to calculate bucket fill time and 
indicated that the bucket size (capacity) should be increased to 
minimize the effect of fragment size on digging time.

	 [5]

where, tw is the shovel bucket filling time, dcr is fragment size, and 
Ek is the geometric capacity of a shovel bucket 

Methodology and data analysis
The study on loading and hauling operations was conducted at 
Jharia Coalfield, Dhanabd, India. The study was conducted on one 
10 m3 and one 5 m3 capacity shovel, which are employed to load 
overburden on 60 t and 85 t dumpers. The study was conducted 
in four phases. In the first phase, a time study was done on 
shovel–dumper operation. In the second phase, the factors that 
affect the shovel's performance were identified. In the third phase, 
different models were developed for predicting shovel cycle time 
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by applying MR and ANN techniques separately, and the models 
were validated with actual field data. In the fourth and final phase, 
the best prediction model was applied the the shovel and dumpers 
that are allocated for material handling operations.

During the first phase of the study, it was observed that 
the waiting time of the dumper behind shovels is the highest 
operational delay in a shift hour (Figure 1). Initial data, presented 
in Table I, shows that the value of the MF is greater than 1.00, 
which indicates that the utilization of shovels and dumpers 
is not optimum, and hence the loading–hauling performance 
is poor. Further, It was also observed that the quality of rock 
fragmentation was very poor, affecting the shovel cycle time. The 
initial blasting parameters of the mines are given in Table II. 

A few experimental blasts were conducted to improve rock 
fragmentation. Afterwards, a time study of each shovel was done 
against the loading of rocks of different fragmentation sizes at 
different heights of cut with varying angles of swing to obtain the 
cycle time under different conditions. The total loading time of a 
dumper is calculated from Equation [6].

	 [6]

where Tl is complete loading time, tc is shovel cycle time, n is the 
number of passes to load the dumper, and a is the time allowance 
for spotting the shovel to the digging location during one 
complete loading cycle. 

In the above equation ‘n’ depends on the bucket capacity of 
the shovel, the capacity of the dumper, the fill factor, and swelling 
factor of the muck. Operational delays due to face cleaning, minor 
breakdowns of shovels, and dozer operations are not considered 
in the study. The experimental blasting parameters are tabulated 
in Table III.

WIPFRAG software was used to determine the rock 
fragmentation size with the help of a Cannon HD camera. Rock 
fragmentation was determined by four passing sizes, K100 or 100%, 
K80 or 80%, K50 or 50%, and K20 or 20% passing sizes. In this study, 
the average cycle time of shovels is considered for accessing the 
effect of different factors on shovel performance. MINITAB 17 
software was used for statistical analysis of data. 

Analysis of time study data
The coefficient of correlation between the average cycle time 
of theshovel (tc) and different factors; the rock fragmentation 
size (K20, K50, K80, and K100 passing sizes), the uniformity Index 

Figure 1—Different types of operational delays of dumpers in an 8-hour 
shift

Table I

Initial data of shovel – dumper operation and match factor

Sl  
no

Shovel  
capacity

Average shovel 
cycle time

Average dumper 
cycle time

Type and 
number of 

dumpers used
Match factor

1. 10 m³ 384 seconds 1106 seconds 6 85 t 2.08

2. 5 m³ 393 seconds 965 seconds 5 60 t 2.03

Table II

Initial blasting parameters during the study
Sl  
no

Blast hole diameter 
(mm)

Burden 
(m)

Spacing 
(m)

Bench height 
(m)

Explosive per hole 
(kg)

1. 250 6.5 5.0 10 160

2. 250 6.5 5.0 8 132

Table III

Blast parameter implemented during experimental trials
Sl  
no

Blast hole diameter 
(mm)

Burden 
(m)

Spacing 
(m)

Bench height 
(m)

Explosive per hole 
(kg) 

1. 160 3.5 4.2 10 75

2. 160 3.5 4.2 8 60

3. 110 2.8 3.3 10 48

4. 110 2.8 3.3 8 38

5. 110 2.8 3.3 6.5 32
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of rock fragmentation (Un), the angle of swing (As) of the shovel 
bucket, and the ratio of the height of the cut (or face height) to 
the maximum digging height of the shovel (Hr) are tabulated 
in Table IV. The scatter plots of shovel cycle time and different 
fragmentation sizes are shown in Figure 2.

It is observed from Table IV that the cycle time of the shovel 
is mainly affected by the quality of rock fragmentation and the 
swing angle of the shovel. K50, K80, and K100 passing sizes of rock 
fragmentation and swing angle have a good correlation with the 
cycle time of the shovel. The uniformity index is not correlated 
with the cycle time of the shovel. The height of the cut rarely 
affects the cycle time. However, only three heights of cut were 
considered in the study. The height of the cut is considered here 
as the ratio of the height of the cut to boom height.

Application of multiple regression for prediction of shovel 
cycle time
Based on the available data and correlations between different 
parameters and average cycle time of the shovel multiple linear 
regression models were developed, with an assumption that 
there exists a linear relationship between average cycle time and 
different factors like fragmentation size and swing angle. Three 
models were developed using regression analysis, presented in 
Equations [7], [8], and [9]. All the fragmentation sizes; K20, K30, 

K80, and K100, and swing angles are considered for developing 
Model 1. Similarly, fragmentation sizes K80, K100, and swing angle 
considered in Model 2, and fragmentation sizes; K50, K100, and 
swing angle for developing Model 3.

Model 1:
	

[7]

Model 2:
	[8]

Model 3:

	[9]

where tc is the cycle time of shovel, K20, K50, K80, and K100 are the 
fragmentation sizes of materials, and As is the swing angle

Interpretation regarding regression models of the cycle time of 
shovel
Table V shows the statistical summary of regression analysis 
conducted using the three developed models presented in 
Equations [7], [8], and [9]. The following interpretations are made 
from the data.
(a) 	� The p-value for all the regression models in Table V (0.000) 

shows that the model estimated by the regression procedure 
is significant at 0.05. 

(b) 	� The higher values of R2 and adjusted R2 indicate that all the 
three models fit the data well.

(c) 	� For all the three models the predicted R2 value is close to 
the R2 and adjusted R2 values. Therefore the models do not 
appear to be over it and have adequate predictive ability. 

Figure 2—Average cycle time vs. different sizes of rock fragmentation

 Table IV

 �Correlation coefficients of shovel cycle time with different 
paramets

 K20	 K50	 K80	 K100	 Un	 Hr	 As

 0.38	 0.71	 0.74	 0.69	  0.67	 0.09	 0.58
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(d) 	� The normal probability plots (Figures 3, 5, and 7) of all three 
models show an approximately linear pattern consistent 
with a normal distribution. 

(e) 	� Plots of residuals versus the fitted values (Figures 4, 6, and 
8), show that most of the residuals are scattered around the 
reference line in the same manner.

(f) 	� The p-values for all the estimated coefficients of Equation 
[9] are less than 0.05, and hence they are related to ‘cycle 

time’ significantly at an a-level of 0.05, but the estimated 
coefficient of K80 and As are only significantly related to 
‘cycle time’ at an a-level of 0.05 for Equations [7] and [8].

(g) 	� VIF of predictor ‘As’ for all the equations is near to unity, 
which indicates that it is not correlated to any predictor 
variable in any equation. For Models 1 and 2 (Equations 
[7] and [8]), the VIF value of predictors other than ‘As’ is 
greater than 5 and indicates that severe multi-colinearity 
may exist among the predictors. For Model 3 (Equation [9]), 
the VIF value of predictors is less than 5, indicating that the 
predictor may be moderately correlated.

Figure  3—Normal probability for Equation [7]

Figure 4—Residual vs. fitted values for Equation [7]

Figure 5—Normal probability for Equation [8]

Figure 6—Residual vs. fitted values for Equation [8]

Figure 7—Normal probability for Equation [9]

Figure 8—Residual vs. fitted values for Equation [9]
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The above analysis reveals that Equation [9] (Model 3) is the 
most suitable for the prediction of the shovel cycle time. During 
the study, it was observed that in a few cases, the maximum size 
of fragmentation or K100 enhances the digging time and swing 
time (with load), and hence the shovel cycle time is increased 
to a maximum extent. K100 is therefore kept as a variable in all 
the equations. The mean particle size of fragmentation or K50 
can be predicted by Equation [10], developed by V.M. Kuznetsov 
(Cunningham, 2005). Table V shows the statistical analysis of 
regression. It is revealed from the analysis that Equation [9] 
(Model 3) is the most suitable for the prediction of the shovel 
cycle time. Therefore Equation [9] can be more helpful in 
predicting the cycle time in the field with the help of this equation.

 
	 [10]

where, Xm = mean particle size (cm); Fr = rock factor (varying 
between 0.8 and 22, depending on hardness and structure), E = 
powder factor, which is expressed in kilograms of explosive per 

cubic metre of rock; Qb = mass of explosive charged in the blast-
hole kg; RWS = relative weight strength of explosive. ( ANFO =100, 
TNT = 115).

Prediction of shovel cycle time through ANN
In ANN, the analysis system learns from the sequence of input 
and output data-sets and gathers the knowledge by detecting 
the patterns and relationships in data through experience. The 
effectiveness of ANN depends on the proper analysis of technical 
parameters, input data, and operating conditions (Schabowicz and 
Hola, 2007). 

Here, three types of networks have been structured for the 
prediction of average cycle time; the three structures are shown 
in Figures 9, 10, and 11. Easy NN-Plus software was used for the 
ANN models. For training of the ANN models, three types of data 
structures were used for the three networks, Table VI shows the 
data structures. A total of 37 sets of data were used for each of the 
three networks. Table VII shows the details and number of layers 
considered for the three types of structure used for learning or 
training ANN models. 

Figure 9—ANN I Figure 10—ANN II Figure 11—ANN III

Table V

Statistical summary of regression analysis

Model  
no.

‘p’ value of 
regression 

models
R2 Adjusted 

R²
Predicted 

R²

‘p’ values of 
estimated

coefficients 

VIF of 
estimated 
coefficient

1 0.000 92.4%  91.2% 89.6% K20-0.102 
K50-0.818 
K80-0.007
K10-0.214
As-0.000

K20-2.50
K50- 20.33
K80-27.21
K100-8.04
As- 1.08

2 0.000 91.8%  91.0% 89.7% K80-0.000
K10o-0.418
As-0.000

K80-7.41
K100-7.41
As- 1.00

3 0.000 90.1%  89.2% 87.9% K50-0.001 
K10o-0.036 
As-0.000

K50- 4.64 
K100-4.63 
As-1.00
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Table VI

Data structures for training of different networks
Sl. no. Input parameters Output parameters

K20 K50 K80 K100 As Average cycle time (s)

Network-1

1 420 850 1210 1770 2.093 55

2 350 820 1130 2040 2.617 58

--- ---- ---- ---- ---- ---- ----

Network-2

1 Nil 410 Nil 700 2.617 44

2 Nil 340 Nil 780 2.093 37

--- ---- ----    ---- ---- ---- ----

Network-3

1 Nil Nil 770 1070 2.093 47

2 Nil Nil 540 700 2.617 44

---- ---- ---- ---- ---- ---- ----

Table VII

Details of three networks considered for predicting average cycle time of shovel
No. of nodes in layers No. of learning 

cycles
Learning  

rate
Average train-

ing errorInput Output Hidden

1st Network 5 1 6 3542 0.6 0.049

2nd Network 3 1 7 2358 0.6 0.049

3rd Network 3 1 7 4872 0.6 0.049

Table VIII

Experimental fragment sizes
Experiment no. K20 K50 K80 K100 As

1 270 470 560 860 150º

2 240 410 540 820 150º

3 190 340 430 590 90º

4 210 290 410 630 120º

5 190 230 410 620 120º

6 250 530 620 890 150º

by applying both MR and ANN techniques, Model 3 (Equation 
[9]) of MR shows the best result in terms of mean percentage of 
error, which is based on three factors; K50, K100, and As. Therefore, 
Equation 9 is applied further to predict the shovel cycle time 
and determine the dumper fleet size accordingly so that the 
performance of shovel–dumper operations can be improved. 

Determination of dumper fleet size by applying the Model 3 
developed by the application of MR technique
From the above study, it is revealed that the MR Model 3 
(Equation [9]) is the most efficient in terms of prediction of 
shovel cycle time. This model is therefore used for determination 
of the dumper fleet size and improvement of shovel–dumper 
productivity. Time allowances for positioning of shovel are to 
be considered during the calculation of the total loading time of 
the dumper. The study found that the mean time allowance is 
different for 10 m3 and 5 m3 shovels. Figure 13 shows the histogram 
of time allowances is different for 10 m³ and 5 m³ shovels. The 
mean time allowances for the 10 m³ and 5 m³ shovels are 26.39 
seconds and 31.28 seconds, respectively. The histogram shows 
that the variation in data for 5 m³ shovels is more than that for 
10m³ shovels. Six studies were conducted with the calculated total 
loading time of the dumper with the help of predicted shovel cycle 
time by multiple regression Model 3 (Equation [9]) and mean 
time allowances of shovels. Accordingly, the number of each type 
of dumper to be utilized with each shovel is determined, keeping 
the value of tMF near 1.00. Instead of a homogeneous fleet (single 
type of dumper), a heterogeneous fleet comprising two types of 
dumper is proposed. Table X shows the proposed dumper fleet 
sizes for the six studies.

Validation of prediction models for shovel cycle time
A few experimental blasts were conducted considering different 
rock fragmentation sizes and angular positions of the shovel 
relative to the dumper position. The average cycle time of the 
shovel was predicted by applying all three models developed 
by MR and the three models developed by ANN. The details of 
fragmentation sizes and angle of swing (As) are shown in Table 
VIII. Prediction models were validated after conducting actual 
studies on shovel cycle time with different fragmentation sizes 
Table VIII, and the actual and predicted values of cycle time 
compared. The statistical analysis of actual and predicted data is 
presented in Table IX. The scatter plot of the actual average cycle 
time vs predicted/estimated cycle time is shown in Figure 12.

The above analysis reveals that the coefficient of correlation 
between actual and predicted values for all three models 
developed by applying the MR technique is higher than for the 
models developed using ANN. Among the six models developed 
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Results and discussions
After conducting the study based on experimental blasts and 
determining the dumper fleet size against each of the shovels by 
predicting dumper loading time, the performance of the shovel 
was studied and is tabulated in Table XI. The study is summarized 
in Table XII, and the scatter plot of predicted vs actual cycle time 
of shovels is shown in Figure 14. It was found (Tables XI and XII) 
that the average production of the 10 m³ shovel, in terms of the 
average number of buckets of material loaded to dumper per hour, 
is increased by 19% (from 67 to 79.75), and that of the 5 m³ shovel 
is increased by 16% from 72 to 83.5. The average waiting time of 

dumpers at the loading point of 10 m³ shovels is decreased by 
56% (from 43 minutes or 2580 seconds to 1135.25 seconds), and 
similarly, for 5 m³ shovels, it is reduced by 42% (from 43 minutes 
or 2580 seconds to 1496.5 second) in a shift of 8 hours. Therefore 
the experiments show a significant improvement in loading-
hauling or shovel–dumper fleet performance.

Conclusion
The studies demonstrated a strong relationship between blast 
fragmentation and average shovel cycle time. Fragmentation 
sizes of K50, K80, and K100 have a good correlation with shovel cycle 

Table IX

Regression analysis between actual and estimated values
Parameters Correlation 

coefficient
Mean

percentage of
error

Standard deviation of
percentage of error

Average cycle time

Output of regression Model-1 0.95 5.59 2.40

Output of regression Model-2 0.96 5.09 1.76

Output of regression Model-3 0.95 4.58 3.06

Output of ANN Structure-1 0.92 11.76 7.34

Output of ANN Structure-2 0.91 7.80 5.83

Output of ANN Structure-3 0.92 5.83 4.24

Figure 12—Scatter plot of actual time vs. estimated for different models

Figure 13—Histogram of time allowances of shovels
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Table X

Estimation of match factor with predicted cycle time of shovel 

Sl. 
no.

Loading time (s) Average cycle
time of dumper

(s)

Number of dumpers
Match
factor85 T

dumper
60 T

dumper
85 T 60 T

10 m3 shovel

1 310.2 215.4 965 2 2 1.09

2 302.4 210.0 898 3 0 1.01

3 216.0 153.0 1079 5 0 1.00

4 247.8 174.0 1258 3 3 1.01

5 m3 shovel
1 460.2 317.4 1021 1 2 1.07

2 613.8 419.4 1021 1 1 1.01

Table XI

Data regarding the improvement in performance of shovel during the study
Study

no.
Type 

of  
shovel

Total no. of buckets 
of material loaded to 
dumper in one shift

(A)

Average no. of buckets of 
material being loaded to 

dumper per hour
(B)

Mean value 
of 

parameter  
‘B’

Total waiting time of 
dumper near shovel in 
second in one shift (s) 

(C)

Mean value 
of 

parameter 
‘C’

1 10 m³ 520 65

79.75

1156

1135.25
2 10 m³ 576 72 1122

3 10 m³ 816 102 1124

4 10 m³ 640 80 1139

5 5 m³ 736 92
83.5

1504
1496.5

6 5 m³ 600 75 1489

Figure 14—Scatter plot of predicted vs. actual cycle times of 10 m³ and 5 m³ shovels during determination of fleet sizes by applying Model 3

time. Shovel cycle time is also correlated with the swing angle 
of the bucket. It is essential to use an appropriate blast design 
according to the rock properties for a good fragmentation of 
the rock mass. It is also important to place either the shovel or 
the dumper in such a manner that the swing angle of the bucket 
will be minimized during loading of the dumper. Estimation of 
the cycle time of the shovel helps to determine the appropriate 
dumper fleet size for each of the shovels in order to utilize the 
shovel and dumper optimally and obtain better loading–hauling 

performance. Multiple regression (MR) and artificial neural 
network (ANN) techniques are the most useful tools to predict or 
estimate the shovel cycle time, and either of these methods can 
be applied after conducting a time study of loading and hauling 
equipment. The study reveals that the estimation of shovel cycle 
time with a appropriate blast design improves the productivity of a 
10 m3 shovel by 19% and that of a 5 m3 shovel by 16%, whereas the 
operational delay of shovel-dumper operation is decreased by 56% 
in the case of the 10 m3 shovel and by 42% for the 5 m3 shovel. 
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Table  XII

Summary of the study for the determination of dumper fleet size by applying Model 3
Type of 
shovel

Correlation 
coefficient between 
actual and predicted 

cycle time

p-value Mean 
percentage

of error

Standard 
deviation 

percentage 
or error

Increase in average 
number of buckets 
of material loaded 

per hour

Decrease in average 
waiting time of 

dumpers at loading 
point in one shift

10 m3 shovel 0.988 0.000 3.46 2.24 19% 56%

5 m³ shovel 0.992 0.002 5.72 3.17 16% 42%
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