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Stochastic analysis of dig limit 
optimization using simulated 
annealing
by J.R. van Duijvenbode1 and M.S. Shishvan1

Synopsis
The results of dig limit delineation in open pit mining are never truly optimized due to gaps in the 
underlying data, such as insufficient sampling. Aside from the data uncertainty, there is also an influence 
on the final dig limit by either humans or by the heuristic character of an optimization method like 
simulated annealing. Several dig limit optimizers have been published, which can replace the manual 
dig-limits designing process. However, these dig limit designs are generally not adapted to account 
for this heuristic character. In this paper we present a stochastic analysis tool that can be used with 
the results of heuristic dig-limit optimization to increase confidence in the obtained results. First, an 
enhanced simulated annealing algorithm for dig limit optimization is presented. Then, this algorithm 
is tested on ten different blasts at the Marigold mine, Nevada, USA, as a case study. Finally, the results 
are analysed with a destination-based ensemble probability map and an analysis conducted of the final 
solution data distribution. The generated dig-limit designs of the algorithm include high revenue areas 
that are excluded in comparable manual designs and show improved objective and revenue values. The 
analysis tool provides block destination probabilities and box plots with the distribution of opportunity 
value for the dig limit. Furthermore, with the analysis tool, it is possible to make well-informed design 
decisions in areas of uncertainty.
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Introduction
Hard rock open-pit mining involves the blasting of mining benches, after which the blasted material is 
sent to an assigned destination. Making decisions concerning the different material types from a bench 
and their destinations is commonly known as grade control (Dimitrakopoulos and Godoy, 2014; Kumral, 
2013; Verly, 2005). Grade control often relies on the results of grade analysis from blast-hole sampling 
(or dedicated grade control sampling). Modelling the spatial distribution of these grades results in a 
high-resolution grade control model, which helps with assigning an appropriate destination to a group 
of blocks. This approach, known as dig -limit delineation, aims to correctly cluster a group of blocks, 
which should be mineable, and outline and separate various ore types and waste material (Richmond and 
Beasley, 2004).

Recently various researchers have developed algorithms to automate and optimize the dig limit 
delineation process, which rely on heuristics and metaheuristic algorithms. The techniques used include 
greedy algorithm-based methods (Richmond and Beasley, 2004; Vasylchuk and Deutsch, 2019), mixed 
integer programming (MIP) (Hmoud and Kumral, 2022; Nelis and Morales, 2021; Nelis, and Meunier, 
2022; Sari and Kumral, 2017; Tabesh and Askari-Nasab, 2011), genetic algorithms (Ruiseco, 2016; Ruiseco, 
Williams, and Kumral, 2016; Ruiseco and Kumral, 2017; Williams et al., 2021), simulated annealing 
(Deutsch, 2017; Hanemaaijer, 2018; Isaaks, Treloar, and Elenbaas 2014; Kumral, 2013; Neufeld, Norrena, 
and Deutsch, 2003; Norrena and Deutsch, 2001), block aggregation by clustering (Salman et al., 2021) 
and convolutional neural networks (Williams et al., 2021), or a combination of techniques. With these 
algorithms, the definition of ‘mineability’ or ‘digability’ varied greatly between different investigators. 
The mineability of a dig limit is a quantitative measure that expresses how well a given item of equipment 
can extract the material without incurring dilution or ore loss. Earlier research methodologies used 
polygons and circles for dig limit designs (e.g., Neufeld, Norrena, and Deutsch, 2003), whereas currently 
blocks are often considered.
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An example of a greedy dig-limit delineation algorithm can 
be found in Richmond and Beasley (2004). They used a floating 
circle-based perturbation mechanism to satisfy the mining 
equipment constraints. To delineate ore zones, the method uses 
a floating circle, which moves over the grade control model 
and expands until the average grade of the covered blocks is 
below the cut-off grade. This process is repeated multiple times, 
and the results are stored and evaluated by a mean-downside 
risk efficiency model that evaluates their dig limit solutions 
considering the financial risk for the dig limit design. Wilde and 
Deutsch (2007) used a feasibility grade control (FGC) method 
to optimize the dig limit profit, which iteratively recalculates the 
objective value by amalgamating blocks into mining units. Two 
constraints applied to the mining unit are that all blocks must 
have an adjacent block with the same destination, and the shape 
must be easily extractable. Vasylchuk and Deutsch (2019) used a 
method where dig limits are subject to site-specific rectangular 
excavating constraints. To satisfy the constraint, the method uses 
a floating (rectangular) frame that moves over the grade control 
model. The frame was analysed for its optimal destination, and 
this destination was assigned to the blocks. Finally, their model 
adapted problematic locations by reconsidering the neighbouring 
blocks and their destinations and performed a hill climbing step 
to improve the solution iteratively. Williams et al. (2021) recently 
explored GA solutions using a CNN to assess the dig limit cluster 
quality. The algorithm was very fast but could not well distinguish 
different clustering penalties (position- and-orientation-related).

More frequently applied optimization methods for solving dig 
limit problems include SA, GA, and MIP. SA is a metaheuristic, 
stochastic search algorithm used to approximate the global 
optimum of a given function (Aarts, Korst, and van Laarhoven, 
1997; Kirkpatrick, Gelatt, and Vecchi, 1983; Rutenbar, 1989). The 
algorithm moves towards a final (optimum) solution by accepting 
or rejecting solutions based on an acceptance probability 
(Kirkpatrick, Gelatt, and Vecchi, 1983). SA has been used widely 
in the mining industry for various optimization problems, for 
example, for resource modelling (Deutsch, 1992), optimization of 
blasting costs (Bakhshandeh Amnieh et al., 2019), strategic open-
pit mine production scheduling (Dimitrakopoulos, 2011; Kumral 
and Dowd, 2005) for multiple destinations (Jamshidi and Osanloo, 
2018) with and without stockpile considerations (Danish et al., 
2021) or blast movements (Hmoud and Kumral, 2022). These 
applications focus on maximizing the profit for mining of each 
mining block by considering revenues, penalties, dilution factors, 
or mining constraints. Typically, the results are used in short-term 
planning, as input for blast design or grade control, surveying, and 
for field markup of mining benches (Maptek Vulcan, 2016). 

In this paper we focus on the application of SA to the dig 
limit problem, as in Isaaks, Treloar, and Elenbaas (2014) and 
Hanemaaijer (2018). They used an optimization function that 
minimizes revenue loss due to wrong block assignments but 
limited their outcomes to only one near-optimal solution. Their 
constraints focused explicitly on creating dig limits that account 
for equipment constraints. For this constraint, they assigned a 
minimal mining width (MMW) that prevented the individual 
selection of blocks. Similarly, Ruiseco (2016) and Ruiseco and 
Kumral (2017) used a GA algorithm for the dig limit selection 
problem. In addition, they assigned a penalty, when blocks 
deviated from the correct clustering size. The correct clustering 
size is related to the mineability and how well a block of material 
can be extracted. Finally, the algorithm accepted a final solution 

with the highest objective value. Ruiseco’s work also showed a 
distribution from the solution’s objective value after multiple runs 
and indicated the reliability of this non-optimal solution method. 
Sari and Kumral (2017) indicated that the dig limit selection 
problem was not solved using an exact method and therefore 
used MIP. Their approach complies with an MMW constraint by 
ensuring each block is connected to an ore or waste zone at least 
as big as the MMW.

Various commercial implementations of dig limit or grade 
control-related optimizers are available, which provide polygon 
outlines as a result (Deswik, 2019; Isaaks, Treloar, and Elenbaas, 
2014, Maptek Vulcan, 2016; Orica, 2021). However, only from the 
mineable shape optimization tool, it is known that it uses a SA 
and/or a branch and bound algorithm  (Deutsch, 2017; Maptek 
Vulcan, 2016). Furthermore, these applications have limited 
flexibility and provide few insight into details of the algorithms 
for solving the dig limit optimization problem, or the probability 
or quality of any of the solutions. This substantiates the need for 
an improved SA application methodology which runs multiple dig-
limit optimizations and gives a stochastic probability insight into 
the quality of the solutions.

In this paper we investigate the stochasticity of dig limit 
optimization through SA using an enhanced framework that uses 
similar frame and MMW constraint ideas as mentioned above. 
However, the heuristic character of SA implies that the final 
solution could vary for each realiztion and motivates the use of 
multiple dig-limit realizations to reduce algorithm uncertainty 
and increase confidence in the results. The work does not use 
an interpolated (kriged) grade control model to better show 
the stochastic influences of dig limit optimization rather than 
stochastic influences by interpolation. This is also supported by 
the continuity of the case study orebody and spatially dense data-
set of grades due to the small spacing between blast-holes. The SA 
algorithm is tested on a case study with ten blasts and dig limit 
designs. We explore the stochastic and metaheuristic effects of 
SA and dig limit optimization and describe a new tool for making 
conclusions regarding the dig limit design. The paper concludes 
with a discussion of the stochastic analysis tool and potential 
improvements.

Methodology
The following steps were performed to prepare the data-set for 
the SA algorithm, summarized in Figure 1a. First, a regular grid 
was fitted to the blast-holes that best represent these original 
data-points. The blast-hole coordinates were snapped onto the 
nearest point in this regular east-north grid. As mentioned, the 
approach’s rationale was to avoid the commonly used kriging 
method because the initial assumption was that the blast-holes 
were planned at an (almost) regular densely spaced pattern, and 
y a high-resolution spatial model is not necessary as long as the 
average grade of the dig block can be estimated correctly. Finally, 
the assay results from multiple blast-holes were averaged to 
determine the metal grades at the grouped blast-holes. At this 
stage, the data-set was represented by regularized blast-holes with 
their corresponding attributes. It should be noted that no vertical 
dimension was used, as the assay results were averaged over the 
entire blast-hole, which removes the vertical dimension. No blast 
movement adjustments were made.

The following two concepts were used in the SA algorithm:
➤   Frames (Figure 1b) indicate the area around a blast-hole 

(node) that must comply with the MMW. Each blast is 
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divided into frames that contain fx × fy number of nodes, 
where fx,fy are the frame dimensions in the east and north 
direction, respectively. Thus, for each node fx × fy possible 
frames exist.

➤  A misfit value is assigned when the destination of a node is 
not optimal in relation to the surrounding area, as shown in 
Figure 1c. The misfit value is defined as the number of nodes 
in any possible frame not assigned to the same destination 
as the largest group of nodes in the frame. It is independent 
of the destination of the misfits, and the value only indicates 
how many blocks in the frame are not sent to the largest 
destination group (Hanemaaijer, 2018). Objectives 2 and 3 
from the objective function explain how the algorithm uses a 
node and frame misfit value to indicate the solution quality. 

Simulated annealing framework
The presented algorithm uses all the steps of a normal SA 
algorithm (Kirkpatrick,Gelatt, and Vecchi 1983) to find an 
optimized solution regarding dig limit shape and revenue by 
minimizing switching between ore and waste and minimizing the 
MMW penalty. Normally, the solution is not guaranteed to be the 
optimal one, especially not during the first run and, therefore, 
it is proposed to run multiple SA optimizations and define a 
destination-based ensemble average for the dig limit. The SA 
framework (Figure 2) was previously described by Hanemaaijer 
(2018), but is adapted for this study to also produce the ensemble 
average maps. The algorithm is initialized with a dig limit design 
(initial solution) and maximized towards a final optimum by 
iterating over the following steps: penalty calculation, objective 
value calculation, accept/reject decision, temperature adjustment, 
perturbation of the solution, and stop criteria check. For each 
step of the algorithm, different variations were tested before the 
algorithm as presented was chosen. The reader is referred to 
Hanemaaijer (2018) and Villalba Matamoros and Kumral (2018) 
for more details. Each step of the SA framework (Figure 2) is 
explained in the following sections. 

Initial solution 
The SA algorithm automatically generates an initial solution from 
the regularized node data-set. For each non-overlapping frame, 
the best destination was chosen by determining the revenues for 
the nodes in the frame by setting all destinations to ore or waste. 
The highest revenue value determined the initial destination for 
the nodes in the frame. This procedure also accounted for frames 
that occurred at bench boundaries. Tests with a free selection or 
random initial solution provided similar results but entailed a 
longer computation time.

Objective function
The dig limit delineation problem is expressed as a maximization 
problem of the revenue by assigning the best destination to each 
node (a grade control block) and penalizing it due to constraint 
violations. Penalty weights are used to balance the importance and 
effect of the corresponding constraint on the dig limit design. The 
problem is solved by a multi-objective SA function, which consists 
of three components:

1.  Maximize the blast revenue
2.  Minimize witching between material types (frame misfit
3.  Minimize the MMW penalty (minimal node misfit).
The objective function that determines the objective value is: 

[1]

 Objective 1. Selecting the right node destination will increase the 
revenue from extraction. If the ore is sent to the waste dump, 
there is opportunity loss, but when waste is classified as ore, 
the extra processing costs outweigh the value recovered. The 
objective, to get high revenue for a blast, is expressed as follows:

Maximize

[2]

where

[3]

[4]

[5]

where n is the total number of nodes and i the index number 
of each node (i=1,…,n). Each i also represents a unique ix  and iy 
position of the node along the corresponding axis (x=1,…,nx and 
y=1,…,ny), where nx and ny are the number of nodes in the east 
and north directions, p is the metal price, ri the recovery related 
to node i, gi is the metal grade for node i, desti is the destination 
indication for node i, which is generally ore or waste, and 

Figure 1–SA algorithm design concepts. (a) (1) grid fitting (rotation and shifting), (2) blast-hole snapping, and (3) assay averaging. (b) Each node represents 
a block. Frames with a 2 x 2 dimension result in 4 frames per node and are used to indicate the equipment excavation constraints. (c) Frame misfit and node 
misfit values
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mcwaste,mcore, and pcore are the mining and processing costs for waste 
and ore, respectively. No node mass was used in the optimization 
algorithm.
 Objective 2. A frame misfit value is assigned to all possible 
frames in the blast grid (Figure 1c). Minimizing the frame 
misfit values helps the algorithm with the discouragement of 
switching between destinations. This is done with a higher frame 
misfit value which occurs when there are boundaries between 
destinations. This objective is defined as:

Minimize 

[6]

where

[7]

where fn is the total number of frames in the grid and f the index 
number of each frame (f=1,…,fn), misfitf is the misfit value from 
frame f, fx and fy are the frame dimensions in the east and north 
directions, and max is the value of the largest group of node 
destinations in the frame (Figure 1c), wpF is the frame penalty 
weight. A high wpF will discourage frequent destination switching 
in a frame and results in bigger zones of one destination. 
However, a poorly selected value would result in too much ore 
loss and dilution.
 Objective 3. A node misfit is assigned to each node of the blast 
grid (Figure 1c). The node misfit is the minimum of all frame 
misfits from the frames that contain the given node. This misfit 
value helps to indicate whether a node is in at least one frame 
where all destinations are the same. Satisfying this ensures 

compliance with the MMW constraint of the equipment. This 
objective is expressed as:

Minimize
          [8]

where

[9]

where misfiti is the misfit value from node i, min{misfitf} is the value 
of the smallest frame misfit value from all frames where the node 
corresponds to (Figure 1c), and wpN is the node penalty weight. 
Similar to the frame penalty weight, the value of wpN should be 
carefully selected. A small value will result in a highly selective 
dig-limit design, which is an infeasible solution.

Perturbation mechanism 
The perturbation step generates new solutions by changing the 
destination of the nodes in one frame to a randomly chosen 
destination. The frame choice was either by selecting a frame with 
a misfitf > 0 or by a random frame. The first selection method helps 
to specifically induce changes at locations in the grid that have 
boundaries (for instance, a single waste node in an ore region). 
After perturbation, the minimal node and frame misfits were 
updated to accommodate the changes in node destination.

Acceptance criterion
The model uses a metropolis algorithm in order to have a 
stochastic criterion of acceptance of worse solutions. The 
Boltzmann probability P(accept)=e-dE/T defines the probability 
of acceptance of a worse solution, where dE is the absolute 
objective value difference between the new and old solution 

Figure 2–Overview of the simulated annealing optimization framework (modified after Hanemaaijer, 2018)
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and T is the current temperature. The temperature is analogous 
with the model progress (cooling down). When the model cools 
down (progresses), then the changes in solutions become less 
sporadic. If the Boltzmann probability is greater than a random 
number between 0 and 1, then the new solution is accepted as 
the current solution and becomes the old solution. Conversely, 
if the probability is less than the random number, the algorithm 
rejects the new solution, and the old solution stays the same for 
comparison in the next iteration (Martín and Sierra, 2009). 

Temperature decrement and termination rule
An epoch is a state of the algorithm where the temperature 
variable is not changed over a fixed number of iterations. After 
each epoch, the system cools by a quadratic additive cooling 
function which uses the total number of epochs and fixed final 
temperature:

[10]

where Tk is the temperature at epoch number k, T0 the initial 
temperature, Tn the final temperature, and n the total cooling 
epochs (Martín and Sierra, 2009). The initial temperature 
ensures an initial acceptance ratio of  approximately 0.5 and 
that the advantage of having a guided initial solution remains. 
When the system temperature reached Tn, it was kept running 
until the predefined total number of epochs, which was one of 
the stop criteria. The second stop criterion stops the algorithm 
earlier when a certain number of non-improving consecutive 
perturbations (iterations) is reached. This number was chosen to 
be greater than the total number of nodes in the grid, to ensure 
that at least every node could be randomly assigned once for 
perturbation. 

Hanemaaijer (2018) tested four different temperature 
schedules, from which the quadratic additive cooling function was 
selected as the preferred function. It counteracts the exponential 
decay (see the Boltzmann probability) in the acceptance criterion 
with decreasing temperatures. This ensures that no major worse 
solutions are accepted any more (relatively fast), and that the 
cooling schedule, or Tn, becomes the termination criterion of the 
SA algorithm. Furthermore, it is fairly unlikely that new solutions 
will be found if Tn is reached and thus the choice of cooling 

function and speed has a direct bearing on the near-optimality of 
the SA.

Marigold mine case study
A case study was carried out to demonstrate the performance 
of the proposed SA algorithm for dig limit optimization. Two 
benches (A and- B), with five different blasts on each, were studied 
(Figure 3). 

The Marigold mine (MG), in northern Nevada, USA, is owned 
and operated by Marigold Mining Company, a wholly owned 
subsidiary of SSR Mining Inc. A typical drill and blast, truck and 
shovel technique is used to extract the ore from several open 
pits. The ore is processed using heap leaching. An ore bench has 
a height of 7.6 m (25 ft) or 15.2 m (50 ft). The blast patterns are 
7.3 m by 6.4 m for the waste benches and 7.6 m by 6.7 m for ore 
benches. The mine uses three shovels (2 × 28.7 m³ and 1× 52.8 m³ 
bucket capacity), and the bucket widths define the typical minimal 
mining width (MMW) of 12.2–15.2 m or two blast-holes. Blast-hole 
sampling is done to define ore zones. One sample per blast-hole 
is assayed for gold in an on-site laboratory to obtain a cyanide-
soluble and a fire-assay grade, which together determine the total 
gold value (Aui) contained in each blast-hole (Marigold Mine, 
2017).

The traditional dig limit procedure involves entering fire 
equivalent grades associated with each blast-hole into the grade 
control model. The blast pattern is then converted to a new 
block model with block sizes of 3.05 m × 3.05 m × 7.6 m. Next, 
the blast-hole assay data is kriged using ordinary kriging in two 
dimensions on the bench. If there are enough blocks above the 
cut-off grade to constitute a mineable body of ore, this is manually 
blocked out and marked in the pit to be sent to the leach pad for 
processing (Marigold Mine, 2017). The data-set used in this paper 
was obtained in the way described above, except that the data was 
not kriged.  

Design and parameter selection
The selected SA parameters were chosen after testing and 
parameter tuning (Table I), following procedures similar to those 
described by Hanemaaijer (2018). Table II displays th case study 
parameters corresponding with the MG operation. The algorithm 
is written in the Python programming language according to 

Figure 3–Input grade control model of benches A and B for dig limit delineation, each consisting of five blasts
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established geostatistical conventions (GSLIB convention), 
for example, with the east direction as the x-axis and the north 
direction as the y-axis (Deutsch and Journel, 1997).

Results

Objective value
For each of the ten blasts, 25 SA runs were conducted to perform 
a stochastic analysis on dig limit optimization using SA. Each 
run reached 1500 consecutive non-improving perturbations 
and caused the algorithm to stop. This shows that each run is 
converged to an optimum. The average run time was 160 seconds. 
For example, Figure 4 shows two solutions from level B blast 3, 
one with the highest objective value (a) and one with the highest 
revenue (b) from the 25 runs. The difference can be found in the 
lower left corner, where solution (a) selected a larger ore region. 
This raised the objective value by 0.57% because a lower penalty 
was assigned due to the switching between material types. The 
revenue difference between the two solutions is only 0.58%.

The black outlined area in Figure 4 indicates the ore zone from 
MG’s dig limit solution. There is a big difference in the selected 
number of blocks and the associated loss in objective value and 
revenue. A 16% higher objective value and 5% higher revenue were 
found compared to MG’s solutions. However, the solutions do not 
always comply with the MMW constraint (Figure 4a at node (6,1)). 
In these cases, the penalty for not complying with the constraint 
was lower than the benefit gained while complying. The penalty 
weights, wpF and wpN, were chosen such that destination switching 
was discouraged and the algorithm was forced to comply with 
the mining constraints (Hanemaaijer, 2018). That the outcome in 
terms of objective value (and revenue) is better than the manually 
created dig limit design is promising, despite the fact that SA does 
not guarantee optimality. 

Revenue 
The revenues corresponding with the objective values were 
compared with the manual designed dig limit solutions from MG. 
Comparing the revenues could be misleading since optimization 
was done regarding the objective value. However, revenue is still 
one of the most important factors for the mine. The revenue 
differences between the MG dig limit and all blast optimization 
runs (25 each) are shown as box plots in Figure 5. The box extends 
from the lower to upper quartile values of the data, with a line at 
the median and the length of the whiskers being within 1.5 times 
the box length. The algorithm shows that it can improve revenue 
compared to the MG solution from mining the bench, whether 
it is in the loss, transition, or profit revenue zone. The boundary 
between the profit and loss revenue zones is where the total bench 
revenue moves from positive to negative. Generally, the loss zone 

  Table I

  Simulated annealing initialization parameters

  Parameter Value

  Initial and end temperature 10 J 0
  Iterations per epoch 15
  Consecutive non-improving perturbations before termination 1500 (iterations)
  Total epochs 2000

Figure 4–Best objective value and revenue dig-limit solutions of level  
B – blast 3 with projected dig limits of MG (black outline)

  Table II

  Case study parameters (Marigold mine, 2017)

  Parameter Definition Value

  p Gold price $1250 per ounce

  nx,ny,nz Number of nodes Bench-specific

  fx,fy Frame dimension 2.2 nodes

  
ri

 
Recovery

          Cyanide–soluble grade
 ×0.92a

  Fire–assay grade 

  mcore, mcwaste Mining costs $2.134 per ton, $1.865 per ton

  pcore Processing costs $1.459 per ton

  wpF, wpN Penalty weight 10 0.1

aMarigold Mine (2017)



Stochastic analysis of dig limit optimization using simulated annealing

721The Journal of the Southern African Institute of Mining and Metallurgy VOLUME 122 DECEMBER 2022

corresponds with mining a lot of waste material (level A – blast 3). 
An improved dig limit reduces the mining costs, and less potential 
value ends up at the waste pile. Within the revenue transition 
zone, a potential loss is converted to a profit (dotted loss-profit 
boundary). It can be concluded that improvements in the profit 
region are beneficial for the mining company because small details 
could be improved during the manual designing process.

In nine out of ten cases the SA’s mean was higher than the 
MG dig limit revenue (Figure 5). This indicates that the SA 
optimization performed well. The set of solutions with a small 
revenue improvement, in the range up to $15 per ton, suggests 
that MG’s dig -limit solution was already reasonably good. Two 
solutions outperformed the MG solution with a difference of $22 
and $50 per ton, respectively (level A – blast 5 and level B – blast 
3). In these cases, the solution missed or included one or several 
regions rich in ore or waste. Finally, there was one solution 
that, on average, did not lead to any improvement (lA – blast 
2). The main reason for this was that the grid preparation tool 
had difficulties in constructing the grid correctly. However, it is 
promising that better revenue solutions were found, and thus 
future improvements may also improve these difficult blasts.  

Stochastic analysis
SA is a metaheuristic optimization method whereby accepting a 
solution does not guarantee an optimized result. Therefore, we 
analysed the probabilistic chance for achieving a good solution. 
Generally, the best solution from the solution distribution should 
be selected as the final solution. However, the quality of this 
solution depends on the number of runs. Increasing the number of 
runs costs more in computational time while not always giving a 
better result. An alternative consideration is to use a destination-
based ensemble probability map which shows the areas the 
algorithm is struggling with.

Destination-based ensemble average
Figure 6 shows a revenue box plot and node (mining blocks) 
destination probability map for 25 SA runs of level A - blasts 1 and 
5. The displayed node destination is the destination’s ensemble 
average from the 25 runs. This ensemble average can be linked 
with the confidence of the algorithm and the probability that a 

node should be assigned to a destination. For instance, nodes with 
a destination probability of approximately 0.5 indicate uncertainty 
regarding the best destination of the node. Therefore, a single run 
from the algorithm could be misleading and insufficient. 

When a node’s destination probability is higher, it suggests 
that this node causes the objective value to increase because 
the node reduces ore loss and dilution. Ore loss is decreased 
when nodes of good grade are inside the dig limit, and dilution 
is reduced when waste material is removed from the dig-limit. 
However, depending on the economics, it can be worthwhile 
to include a few waste nodes so that the dig limit can include a 
higher-grade ore node.

For example, if for a node with a destination probability of 
approximately 0.5 from level A – blast 1 it was decided to designate 
the material as waste, then no additional dilution and revenue 
was created. Thus, most likely, the revenue value of the resulting 
solution will be in the 25-50% quartile. Two additional factors 
should be considered when this node is designated as ore. First, 
when this node is included in the dig limit there is potential 
that the solution’s revenue will increase due to reduced ore 
loss. Probably, the final solution’s revenue will be in the 50-75% 
quartile. Conversely, the node can also be of low grade, causing 
the mining constraints to fail, including dilution, and reducing the 
revenue value. In addition, analysing the quartile ranges suggests 
that the potential revenue gain is smaller than the potential 
loss. Secondly, assigning this node as ore implies a neighbouring 
higher-grade ore node that is worthwhile to include in the dig 
limit. It should be checked whether this is applicable. For level 
A - blast 5, the 0.5 destination probability node (lower-right) can 
be better designated as waste since the added revenue value is 
relatively small. Additionally, selecting this node as waste ensures 
that the remaining dig limit is less diluted. Similar considerations 
could be made for the other blasts.

Distribution of final solution data
Analysing the variance of the objective value or revenue from 
all found solutions could be a measure for the final dig limit 
acceptance and how close the outcome of SA is to optimality. 
Hereby, no distinction is made whether the objective value or 
revenue distribution is considered. While doing multiple runs, an 
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Figure 5–Box plot of all blasts with the difference between SA and MG revenue ($ per ton). The blasts are separated into loss, transition, or profit revenue zones. 
The whiskers are within 1.5 times the box length
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objective value or revenue boxplot could show the distribution 
of the final solution data at that moment. When enough of the 
solution space is explored, one approach is to accept the solution 
with the highest objective value at that moment and to consider 
the destination-based ensemble probability map. For example, 
Figure 7 displays the revenue distribution of 5, 10, 25, 50, and 100 
consecutive runs for level A – blast 2. For this example, monitoring 
the data distribution change could already suggest that after 
ten runs, enough of the solution space is explored and that the 
corresponding highest objective value solution should be accepted 
as the final dig limit. 

Analysing the revenue box plot while conducting multiple 
runs together with the associated destination-based ensemble 
average helps to inform a final decision regarding the dig limit 
design. The highest objective value solution provides the so-far 
best result, and the ensemble average gives more insight into 
potential interesting areas, which could be included in a final dig 
limit design. 

It is known that the SA solutions are not guaranteed to be 
the global optimal solutions and they are optimized in terms of 

objective value and not revenue. However, from the distribution 
of solutions in Figure 7 and the associated objective values it 
is possible to estimate how close most of the solutions are to 
optimality in terms of objective value. The highest revenue 
solution ($875 per ton) was only found once (1% chance), but 
did not have the highest objective value due to its higher penalty. 
In contrast, the solutions with the highest objective value had a 
revenue of $863 per ton and would, therefore, better represent 
the near-optimal solution. The significant effect of the applied 
penalties is shown in the 100-run box plot in Figure 7 because 
most solutions are grouped at a revenue of $863 per ton (28 runs) 
and $869 per ton (45 runs). That implies that the highest revenue 
is not the global optimal solution, but that it is more likely to be 
related to the 73 solutions with a revenue between $863 and $869 
per ton. 

Discussion
The dig limit analysis tool gives insight into the existing variability 
of the dig limit results. This variability is due to the stochastic 
influences from the metaheuristic optimization method of 

Figure 6–Revenue box plot and the destination-based ensemble probability map of level A - blasts 1 and 5

Figure 7–The revenue distribution of level A – blast 2 is explored after 10 of the 100 runs of the model
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simulated annealing. As opposed to using a single result, the 
destination-based ensemble averages and box plots were 
combined as a new data-set to show these stochastic influences. 
A sequential manual decision could directly incorporate this 
stochasticity into a final dig limit design. The destination-based 
ensemble average approach can also be used for dig limit results 
derived from GA or CNN approaches. These algorithms also 
provide near-optimal solutions, and running them multiple 
times will similarly give a distribution of opportunity values and 
designs for the dig limit. However, these approaches require a 
large population of solutions, for all of which the objective value 
needs to be evaluated. This makes SA easier to implement and 
less computationally intensive. The approach would not work for 
MIP because this will always give the same optimal solution if the 
problem is feasible. The computation time of the algorithm is also 
much longer than SA, GA, or CNN and likely not practical for real 
mining operations.

Normally, uncertainty in grade control is due to unknown (or 
interpolated) grades and to-be-included mining constraints. For 
example, for the areas with much uncertainty, the final (manual) 
destination decisions can be made by knowing what the impact 
of the decision will be. This way, for example, it is possible that 
a single high-grade pocket in a waste area is still classified as 
ore because there is confidence that the ore will pay for the 
waste material. Additionally, the blast design’s best practice 
includes locating the blast boundaries at pre-indicated ore and 
waste boundaries. The result of this is that the material at the 
boundary could be assigned to different material classes (due to 
a grade gradient) and may be indicated as an uncertain region. 
With human interaction, it is possible to give a final correct 
classification due to the acquired knowledge while being confident 
in the decision due to the optimizer.

Some of the conclusions in this research were made based 
on the revenue, while the optimization was done regarding the 
objective value. This is because the objective value was mainly 
considered to facilitate the induced mining constraints, whereas 
revenue is often the more important factor in the dig limit design 
for a mine. A balanced mix (adapting the penalty weights) of these 
two useful insights will improve the grade control procedures. 

This study used non-interpolated grade control models and 
destination ensemble averages to analyse the stochasticity of 
grade control. The geostatistical interpolation method in similar 
studies is often not mentioned (Ruiseco, 2016; Sari and Kumral, 
2017), and the studies that do mention the method use simulation 
and kriging (Richmond and Beasley, 2004; Vasylchuk and 
Deutsch, 2019). Moreover, these studies often do not discuss the 
stochastic effects and their impact on the methodology used. This 
research was not focused on giving attention to the stochastic 
or metaheuristic behaviour of the SA algorithm itself. Induced 
stochastic effects by dig limit optimization and SA (Deutsch, 1992; 
Gu, 2008) could be considered in further studies.

Conclusions
A simulated annealing (SA) algorithm for dig limit optimization 
has been presented and tested on ten blasts on two mining 
benches. The aim was to investigate the stochasticity of dig limit 
optimization through SA. The algorithm used a blast-hole data-set 
which was optimized regarding the dig limit shape and revenue. 
This was managed by minimizing switching between ore and 
waste and minimizing the MMW penalty. Compliance with these 
constraints was achieved by the use of a frame concept. The SA 

algorithm results showed that positive revenue improvements 
($0-15 per ton) could be obtained. However, the results also 
contained solutions with substantially higher improvements 
because they included high revenue areas that were excluded 
in the manual designs. An improved grid preparing tool could 
potentially increase the lower limit of the improvement range.

The solutions were further explored by an ensemble average 
destination analysis tool, which gave more insight into the dig 
limit design and its uncertainty. The destination probability 
indicated the areas with high and low destination confidence, and 
the box plot gave evidence for the to-be-made decision regarding 
the final dig limit design. Additionally, the distribution -of the 
solution space motivated the acceptance of the best solution so 
far and further analyse of it together with the destination-based 
ensemble average.

Future research could focus on including stochastic grades at 
ore-waste boundaries to accommodate the transition between ore 
and waste. Stochastic grades are not necessary for larger waste or 
ore regions since, for these regions, the destination probability 
and decision are straightforward.
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