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Synopsis
Total bound moisture (TBM) is a typical quality indicator of industrial-grade gypsum. This 
gypsum is comprised of three distinct phases, namely anhydrite, dihydrate, and hemihydrate, of 
which only the latter is of much industrial use. TBM analysis is a lengthy laboratory procedure, 
and an artificial neural network (ANN) TBM inference measurement is proposed as a fast and 
online alternative. An ANN inference model for gypsum TBM based on plant data was developed. 
The inputs to the network were primarily focused on the plant's calciner, and different network 
topologies, data divisions, and transfer functions were investigated. Furthermore, the applicability 
of the TBM value as a quality indicator was investigated based on a gypsum phase analysis. A 
strong correlation between TBM and the gypsum hemihydrate and anhydrite content was found, 
validating the plant target TBM of 5.8% as a quality indicator. A network topology consisting of 
one hidden layer with logarithmic-sigmoid (logsig) and pure linear (purelin) transfer functions 
showed the best performance (R > 90%). 
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Introduction 

Calcium sulphate and its phases
Calcium sulphate hemihydrate (CaSO4·½H2O), commonly known as bassanite or Plaster of Paris, is widely 
used in various industries, ranging from construction to medicine and even the arts. Pure gypsum (calcium 
sulphate dihydrate) is found in nature as a compact rock. Therefore, to obtain the valuable bassanite, the 
gypsum is calcined according to Equation [1] (Dantas et al., 2007).

 [1]

The dehydration reaction of gypsum to bassanite occurs at 100–120°C and is complete at 160°C (Dantas 
et al., 2007). The bassanite occurs in two forms: α-hemihydrate and β-hemihydrate (Singh and Middendorf, 
2007). α-Hemihydrate is formed in wet process units such as autoclaves, and β-hemihydrate is formed in 
predominantly dry conditions, such as in calciners (Singh and Middendorf, 2007).

Further dehydration of bassanite leads to calcium sulphate anhydrite according to Equation [2] (Dantas 
et al., 2007).

 [2]

Similarly to bassanite, three types of anhydrite are formed during thermal dehydration, namely III-
anhydrite (AIII), II-anhydrite (AII), and I-anhydrite (AI) (Li and Zhang, 2021). Anhydrite III is the first 
dehydration phase that forms from bassanite, followed by an unusable form of gypsum anhydrite, namely 
anhydrite II, and lastly, anhydrite I upon further heating. However, the latter form is unstable below 1180°C 
(Cave, 2000; Rajković et al., 2009). 

AIII is metastable at ambient conditions and rehydrates in the presence of water or water vapour (Cave, 
2000). When a large amount of soluble anhydrite (AIII) is blended into cement, it can result in a substantial 
expansion of the concrete and adversely impact the cement's strength (Tzouvalas, Dermatas, and Tsimas, 
2004). Furthermore, insoluble gypsum anhydrite (AII) affects the hydration reaction rate and amount of 
unusable material in the gypsum calciner product (Christensen et al., 2008). 
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Gypsum in industry
Natural gypsum contains approximately 3% equilibrium moisture 
and 20 mass% crystal moisture (Dantas et al., 2007). The partially 
dehydrated form of gypsum, calcium sulphate hemihydrate 
(CaSO4·½H2O), is the desired product for use in the construction, 
ceramic, and medical industries (Singh and Middendorf, 2007). 
The hydration of calcium sulphate hemihydrate (bassanite) is an 
exothermic reaction, given by Equation [3] (Singh and Middendorf, 
2007). During hydration (in paste form), the plaster sets, which 
develops the strength of the material (Singh and Middendorf, 2007).

 [3]

This research study investigated synthetic gypsum produced 
from the phosphoric acid fertilizer manufacturing process 
(MechChem Africa, 2019; Jordan and van Vuuren, 2022). This 
phosphogypsum is formed according to the reaction given by 
Equation [4] (Rajković et al., 2009):

 [4]

From Equation [4], it is clear that a substantial amount 
of phosphogypsum is produced with the phosphoric acid. In 
fact, according to Li and Zhang (2021), approximately 5 t of 
phosphogypsum is produced per ton of phosphoric acid, resulting 
in the generation of 280 Mt of phosphogypsum waste per year 
worldwide.

Phosphogypsum must be calcined to deactivate impurities 
before being used as a building material, as these impurities impact 
the strength and settling times of the gypsum product (Li and 
Zhang, 2021; Tzouvalas, Dermatas, and Tsimas, 2004). According 
to Singh and Garg (cited by Tzouvalas, Dermatas, and Tsimas, 
2004; Li and Zhang, 2021), impurities are deactivated by coatings 
of insoluble calcium pyrosulphate at elevated temperatures. 
Similarly, Liu et al., (cited by Li and Zhang, 2021) found that soluble 
phosphorus was converted to insoluble calcium pyrophosphate 
through calcination at 800°C for 1 hour. Additionally, fluoride and 
phosphorus pentoxide can be removed at 700°C, with phosphatic 
impurities also being removed at 800°C. According to Saadaoui  
et al., (2017), the radioactive components in phosphogypsum can be 
considered negligible.

Calcination also produces gypsum hemihydrate by driving off 
crystal moisture (Koper et al., 2020). In the case of gypsum, the 
dihydrate phosphogypsum is calcined, and a mixture of calcium 
sulphate dihydrate, hemihydrate, and anhydrite is obtained (Koper 
et al., 2020). However, the amount of calcium sulphate anhydrite 
(especially the insoluble form) should be minimized (Christensen 
et al., 2008). This is because insoluble calcium sulphate anhydrite 
adds to the impurities in the gypsum, adversely affecting the 
quality. Furthermore, a high calcium sulphate anhydrite content 
i results in a significant increase in the heat of hydration of the 
mixture (Tydlitát, Medveď, and Černý, 2012). This would affect the 
properties of the gypsum, such as setting time, resulting in flash 
setting, which impacts the quality and strength of the gypsum 
(Tydlitát, Medveď, I. and Černý, 2012, p. 62; Tzouvalas, Dermatas, 
and Tsimas, 2004, p. 2113).

Therefore, quality control of the gypsum product from an 
industrial plant is of utmost importance to ensure the desired 
specifications are met. The total bound moisture (TBM) is often 
used as a quality control parameter. A simple method to determine 
TBM is thermogravimetric analysis (TGA), where the sample is 

dried and mass loss indicates the moisture in the original sample. 
Gürsel et al., (2021) investigated acoustic emission (AE) technology 
to determine the gypsum and anhydrite contents online. Seufert 
et al., (2009) used X-ray diffraction (XRD) analysis to determine 
the phase composition of dehydrated gypsum. However, Dantas et 
al., (2007, p. 692) found that XRD cannot be used to distinguish 
between the hemihydrate and anhydrite phases due to the 
superposition of the peaks. This was confirmed by Seufert et al., 
(2009, p. 940), who concluded that ‘high quality and high resolution’ 
XRD data is required for successful identification.

Artificial neural networks
An artificial neural network (ANN) receives inputs that are 
multiplied by a weight (Krenker, Bešter, and Kos, 2011). A transfer 
function in the body then transforms the summation of the 
weighted inputs and bias to produce an output. However, this 
output is initially meaningless as the weight and bias coefficients are 
random. Therefore, the network is trained using feed-forward or 
recurrent (feedback) learning algorithms, which adjust the weights 
and biases to a point where the network functions independently 
to make decisions predictively (Abraham, 2005). The key to 
understanding neural network training lies in first reviewing the 
basics of neural network transfer functions, which connect the 
input, hidden, and output layers. 

The transfer functions are typically log-sigmoid, hyperbolic 
tangent, sine or cosine, and linear functions. The sigmoid function is 
widely used and performs well for classification problems involving 
learning about average behaviour (Zhang, Patuwo, and Hu, 1998). 
The logarithmic-sigmoid (log-sigmoid) function is mathematically 
described by Equation [5] and produces an output between 0 and 1.

 [5]

The hyperbolic tangent sigmoid function is typically used for 
forecasting problems where the network learns about the deviations 
from the average (Zhang, Patuwo, and Hu, 1998). This function, 
which is given by Equation [6], produces an output between –1 and 1.

 [6]

Alternatively, the sine or cosine and linear functions can be used 
as transfer functions. The sine and cosine function outputs also vary 
between 1 and –1, whereas that of the linear function is unbounded. 
However, the output values generated by these functions would have 
to be normalized (Zhang, Patuwo, and Hu, 1998).

Learning algorithms
The backpropagation learning algorithm (also known as the steepest 
decent algorithm) is one of the most powerful ANN learning 
algorithms (Caocci et al., 2011, p. 223; Yu and Wilamowski, 
2011). With enough hidden layers, the backpropagation learning 
algorithm can approximate any nonlinear function (Abraham, 2005, 
p. 904). This method converges asymptotically, resulting in slow 
convergence, especially near the solution (Yu and Wilamowski, 
2011; Zhang, Patuwo, and Hu, 1998). Furthermore, according to 
Zhang, Patuwo, and Hu (1998), the backpropagation method is 
inefficient, lacks robustness, and is very sensitive to the learning 
rate (α). Small α-values result in very slow learning, whereas 
large α-values may result in oscillations (Zhang, Patuwo, and Hu, 
1998). Another training algorithm that minimizes a quadratic 
error function is Newton's method (Abraham, 2005). This method 
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exhibits fast convergence but performs well only for almost linear 
systems, which is not the case in ANNs (Wilamowski, 2011).

The Levenberg-Marquardt algorithm is a combination of 
the steepest descent (backpropagation) and the Gauss-Newton 
algorithms. When the solution is far from the desired one, the 
algorithm behaves like the steepest descent algorithm – slow but 
sure to converge (Lourakis, 2005; Yu and Wilamowski, 2011). 
Similarly, when the current solution is close to the desired one, the 
algorithm behaves like the Gauss-Newton algorithm (Lourakis, 
2005; Yu and Wilamowski, 2011). The Levenberg-Marquardt 
algorithm is regarded as one of the most efficient training 
algorithms and has been found to apply to small and medium-
sized problems (Brezak et al., 2012; Yu and Wilamowski, 2011). 
According to Alwosheel, van Cranenburgh, and Chorus (2018) the 
sizes of the training data-sets are typically between 10 and 100 times 
the number of weights in the neural network.

Topology
The topology of a neural network is situational-dependent, 
meaning that one size does not fit all. The following list 
summarizes important characteristics to consider when designing 
an ANN:
 ➤  The training data should consist of all the characteristics of the 

problem. The more complex the problem is, the more data is 
required (Abraham, 2005, p. 904).

 ➤  Noise or randomness in the data will aid the creation of a robust 
and reliable ANN (May, Dandy, and Maier, 2011, p. 19).

 ➤  One hidden layer is sufficient for many practical problems 
(Heaton, 2008, p. 158)

 ➤  The network is usually trained for a specific number of epochs 
or until the error decreases below a specified threshold 
(Abraham, 2005, p. 904). However, care must be taken not 
to overtrain the network (Wilamowski, 2011, p. 16). This 
will result in a network that is too adapted to the training 
examples and will be unable to classify samples outside of the 
training set (Wilamowski, 2011, p. 16). Overtraining can be 
avoided by (Azadi and Karimi-Jashni, 2016, p. 19):

 ➤  Dividing the available data-set into training, validation, and 
test sets (Azadi and Karimi-Jashni, 2016, p. 19).

 ➤  The training set is used to train the model and is fed through 
the network during each epoch (Baheti, 2022).

 ➤  The validation set is used to validate the performance of 
the model during the training process (Baheti, 2022). The 
validation set is used to determine the stopping point – this 
will prevent overtraining the network (Azadi and Karimi-
Jashni, 2016, p. 19). The model is validated after each epoch 
(Baheti, 2022).

 ➤  The test set is used after the training is completed to confirm 
the results (Baheti, 2022). 

 ➤  The number of neurons in the hidden layer affects the 
performance of the network (Abraham, 2005, p. 904). A large 
number of hidden neurons will ensure proper training and 
forecasting; however, overtraining may occur (Sheela and 
Deepa, 2013, p. 1). Contrarily, too few hidden neurons will 
result in poor training and large errors (Sheela andDeepa, 
2013, p. 1). Although many guidelines exist on the appropriate 
number of hidden neurons, it ultimately comes down to trial 
and error (Heaton, 2008, p. 159)

 ➤  The chosen initial weights are crucial for proper convergence; 
however, no recommendations exist in this regard (Abraham, 
2005, p. 905). A trial-and-error approach should be followed 
to improve the results obtained.

 ➤  The learning rate influences the step size by which the weight 
is updated. A too-fast learning rate may result in overstepping 
the local minimum. This could result in oscillations and 
slow convergence. Similarly, a too-slow learning rate will 
result in a large number of oscillations, also resulting in slow 
convergence (Abraham, 2005, p. 905).

Problem statement
Laboratory analysis of the quality parameter (total bound moisture - 
TBM) associated with gypsum calcination into a hemihydrate form 
is time-consuming, thus prohibiting proper quality control of such 
equipment.

Motivation
The residence time in f the calcination plant in question is very 
short (less than half an hour). However, conventional quality 
analyses, such as thermogravimetric and XRD, take significantly 
longer to complete. Furthermore, the laboratory methods already 
established on the plant were used for analyses. Therefore, this study 
investigates the possibility of implementing a soft sensor, which 
can be developed using ANNs. Using this soft sensor, the quality of 
the gypsum product can be estimated in real-time with the current 
plant conditions.

Theory

Model software
The neural network toolbox of MatlabTM R2021a (using Windows 
11 Pro on a machine running Intel® Core™ i5-8350U CPU @ 
1.70 GHz, 8.0 GB RAM 64-bit operating system), specifically the 
nftool function, was initially used to obtain access to the ANN 
environment. Subsequently, the graphical interface of the nftool 
function was used to generate the relevant MatlabTM code. This code 
could then be adapted for different topologies, transfer functions, 
and training data divisions.

Model procedure

Data division
The training data comprises inputs and an output, where the 
inputs are made up of the collected data described in Table I and 
the output is the experimentally obtained TBM. The input data-
set (comprising 813 data-sets) is divided into the training and 
simulation sets in a 70:30 ratio. This division ensures that the 
variation in the output data is captured for the training data and 
that enough data is available for the simulation of the network. The 
training data is then subdivided into the training, validation, and 
testing subsets in a 70:15:15 ratio.

Variables
The topology and transfer function variables are summarized in 
Table II. Each ANN consists of an input, one hidden, and an output 
layer with a transfer function in the hidden and output layers. The 
number of neurons in the hidden layer was also varied.

Lastly, the input data used to train the ANN was varied, as 
given in Table III and further explained in the subsection on 
data shuffling. The heading 'No SP' in this table describes neural 
networks where the set-point data (as shown in Table I) was not 
included as input to the ANN. Furthermore, 'Chronological' 
means that the input data to the ANN was in chronological order 
as the samples were taken and sensor data collected. The heading 
'Random' refers to individual data shuffling (discussed in the 
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subsection Data shuffling). Similarly, 'Blocked random' refers to 
blocked data shuffling. Lastly, 'First', 'Last', and 'Daily' refer to the 
70% training data being either the first 70% of the set, the last 70% 
of the set, or the last 70% of each sampling day, respectively.

For example, attempt 1 utilizes all of the 18 inputs as 
described in Table I. The input data consists of the first 70% of the 
chronological data-set. Furthermore, an ANN was trained using 
5, 10, 15, 20, 50, 80, and 100 hidden neurons. For each of these 
configurations, the transfer function pair, as described in Table 
II, was also considered. Hence, one of the networks trained for 
attempt 1 will comprise 18 inputs, using 5 hidden neurons and a 
tansig transfer function in the hidden layer with a purelin transfer 
function in the output layer.

Table I

Data collected as input to the ANN

1 The set point of the hopper discharge motor current 10 The set point of the hopper discharge rate
2 The set point of the exhaust fan motor current 11 The set point of the distribution fan motor current
3 Pressure setpoint of oil burner 12 Oil burner pressure
4 Hopper discharge rate 13 Hopper discharge motor current
5 Hammer dryer motor current 14 Exhaust fan motor current
6 Distribution fan motor current 15 Ball mill drive current
7 Hammer dryer inlet temperature 16 Hammer dryer outlet temperature
8 U-bend temperature 17 Exhaust fan temperature
9 Calciner temperature (4 sensor values) 18 Combustion furnace temperature

Table II

Model variables (topology and transfer functions)

Variables: Hidden neurons and transfer functions

Hidden neurons 5, 10, 15, 20, 50, 80, 100

Transfer function in layer 1 
(hidden layer)

Transfer function in layer 2 (output 
layer)

Tansig Purelin

Logsig Purelin

Logsig Logsig

Table III

Model variables (input data)
Variables: Data input

Chronological Random Blocked random

Attempt No SP First Last Daily First Last Daily First Last Daily

1 X
2 All data random
3 All data random
4 All data random
5 X
6 X
7 Discrete
8 X X
9 X X

10 X X
11 X
12 X X
13 X
14 X X
15 X
16 X X
17 X
18 X X
19 X
20 X X
21 X
22 X X
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Data shuffling
In the first attempt, the data to the ANN is imported chronologically 
using the first 70% of the data (as shown in Table III). In this 
division, the minimum and maximum data-points are included in 
the training set, which is essential due to the poor extrapolation 
ability of neural networks (Hasson, Nastase, and Goldstein, 2020).

Furthermore, since the model does not receive dynamic data 
(such as a rate of change resulting from a dependency between 
data-points in a time sequence), data shuffling was investigated. It 
has been observed that data shuffling reduces overfitting, improves 
the testing accuracy and convergence rate, and results in better 
generalization of the neural network (Kaushik, Choudhury, Kumar, 
Dasgupta, Natarajan, Pickett, and Dutt, 2020, p. 2; Ke, Cheng, and 
Yang, 2018, p. 1; Nguyen, Trahay, Domke, Drozd, Vatai, Liao, and 
Gerofi, 2022, p. 1085). There are various methods to shuffle the data, 
including individual shuffling using shuffling algorithms, batch 
shuffling, etc. (Baheti, 2022). Shuffling can occur at different points 
during the training process. MatlabTM offers two main options: 
shuffling once before training starts (default) or after every epoch 
(MathWorks, 2022).

All data was shuffled during attempt 2, including the simulation 
data. However, the question arose whether shuffling impacted 
the results; hence attempts 3 and 4 were also performed. Another 
problem with these three attempts was that the actual plant data 
would not enter the ANN shuffled but rather chronologically as 
a data stream, and random shuffling is, therefore, not an accurate 
representation. Thus, attempts 2–4 are considered invalid and not 
repeated for different transfer functions.

The training data was grouped into three groups as follows 
(Table III):

1  Using the first 70% of the data 
2  Using the last 70% of the data
3   Using the last 70% of each sample day's data (blocked 

shuffling).
These three groups of data were shuffled as follows:
1  Chronological data (no shuffling)
2   Random shuffling of only the training data (individual 

shuffling)
3   Grouping the data into sample blocks (blocked shuffling).
The default training parameters in MatlabTM were used as given 

in Table IV. However, the weights and biases were initialized at 
0.5 wso that all models could be compared from the same starting 
point.

Experimental methodology

Materials and sample preparation
Phosphogypsum samples were collected at the product bagging 
section of the plant after the calcining and milling processes. To 
determine the optimum sampling rate, the residence time of the 
plant is required. This residence time was determined at start-up: 
from when the feed conveyor belt started to when the first material 
reached the bagging section. Using the Nyquist sampling rate 
criterion, it was determined that the sampling rate should be half of 
the residence time (Landau, 1967).

The crucibles were engraved for identification purposes, 
cleaned, and dried in an oven. The cleaned crucibles were then left 
to cool in a desiccator, after which the mass of each was determined 
and recorded (Mc). A Mettler Toledo AB204-S/FACT analytical 

Table IV

Default training parameters
Training parameter Value

Maximum number of epochs 1 000
Performance goal (MSE) 0
Minimum performance gradient 1 x 10-7

Maximum validation failures 6

Initial momentum parameter (μ) 0.001

Decrease factor for μ 0.1
Increase factor for μ 10
Maximum value for μ 1 x 1010

balance was used for this purpose. Lastly, 95% ± 0.15% ethanol was 
prepared from 99.99% ethanol.

Sampling
Hemihydrate samples were taken at the bagging section of the plant. 
The residence time of the plant was 20 minutes; so according to the 
Nyquist theorem, sampling should occur in 10 minute intervals 
(Landau, 1967). As the samples were taken and sealed in plastic 
containers, the time, date, and product bag number were recorded 
on the container. A portion of each sample was also taken and 
stored in a sealable bag for repeatability analysis. It is important to 
note that sampling could only occur once the plant was operating 
at a steady state, i.e. when normal operating conditions had been 
maintained for approximately 2 hours.

Sample analysis
Total bound moisture (TBM)
The TBM analyses were done by weighing and recording 
approximately 10 g of material in a crucible (Msc). The crucible 
name, sample, and mass of the sample were recorded. The samples 
were placed in a furnace (Carbolite Gero AAF 1100 and VMF 1000) 
at 450°C for 2 hours. The samples were then removed and allowed 
to cool in a desiccator. Finally, the mass of the dried sample (with 
the crucible) was recorded (MAH). The TBM was then calculated as 
follows:

 [7]

Gypsum anhydrite
To determine the amount of gypsum anhydrite in the sample, 10 g 
of each sample was again weighed off, and the mass was recorded 
as Msc. Then, approximately 10 ml of 95% ethanol was added to 
the sample, ensuring the sample was submerged in the liquid. 
Care was taken to ensure no spillages occurred as the liquid was 
swirled in the crucible. The hydrated sample was then placed 
in an oven at 45°C (Scientific Series 2000) for 24 hours. At this 
temperature, dehydration of the gypsum does not occur, and only 
surface moisture is removed (Li and Zhang, 2021). Furthermore, the 
anhydrite samples were dried for the same time as the hemihydrate 
samples for consistency. The crucible was then removed from the 
oven and allowed to cool in a desiccator. The mass of the sample and 
crucible was then recorded as Msd.
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If the recorded mass of the sample (Msc) was greater than the 
hydrated mass (Msd – Mc), then weight loss occurred, which can 
be attributed to surface moisture in the sample; thus, no gypsum 
anhydrite was present. Alternatively, if a mass gain occurred (Msc > 
Msd – Mc), the water in the ethanol reacted with the soluble gypsum 
anhydrite and gypsum hemihydrate formed. The percentage of 
gypsum anhydrite (%AH) present in the sample can be calculated 
as follows:

 [8]

The fraction of water gained by converting the anhydrite 
gypsum to hemihydrate gypsum is calculated as follows:

 [9]

Gypsum hemihydrate
The same procedure as with the anhydrite analysis was followed 
to determine the amount of gypsum hemihydrate in the sample. 
However, the ethanol was replaced with ultrapure (Milli-Q) 
water. The fraction of water gained by converting the gypsum 
hemihydrate to gypsum dihydrate was determined using Equation 
[10] (note that any gypsum anhydrite will also react).

 [10]

The percentage of gypsum hemihydrate (%HH) can then be 
calculated using Equation [11]:

 [11]

Inert analysis
After the samples for the hemihydrate analysis had been weighed, 
the completely hydrated samples were further heated to 450°C for 
4 hours. At this temperature, all the free moisture and crystal water 
is removed. The percentage of pure gypsum (%Purity) can then be 
calculated as the ratio between the actual mass of water gained vs. 
the theoretical maximum water gain.

 [12]

where

  [13]

The percentage of impurities (%Inerts) in the sample can then 
be calculated as:

 [14]

Gypsum dihydrate
The phase analysis was completed by a mass balance to determine 
the percentage of gypsum dihydrate (%DH) in the sample:

 [15]

Results and discussion

TBM as a quality indicator
The correlation between gypsum dihydrate and TBM (Figure 1) 
was poor. The correlation between gypsum hemihydrate and TBM 
was significantly stronger (Figure 2). This is expected as a TBM 
analysis is commonly used to quantify a gypsum product's plaster 
(hemihydrate) content (ASTM Standard C 471M-01, 2017). The 
correlation between gypsum anhydrite and TBM is shown in Figure 
3. An even stronger correlation can be observed. However, the slope 
of the regression plot is negative.

These correlations seem counterintuitive since one would expect 
the two phases with crystal water (gypsum dihydrate and gypsum 
hemihydrate) to correlate strongly with a bound moisture indicator. 
Instead, the strongest correlation with TBM is found with the 
gypsum anhydrite phase. These results are in accordance with an 
analysis done by the plant engineer. Unfortunately no explanation 
could be found for this observation, but additional studies are under 
way to understand this concept. 

The industry target TBM of 5.8% was investigated. A gypsum 
hemihydrate content of between 60% and 80% was achieved at this 
TBM. Furthermore, the gypsum anhydrite content was 10–30%, 
and the gypsum dihydrate content was 4–14%. At this TBM, a large 
amount of gypsum hemihydrate is present, with a small amount 
of gypsum anhydrite and limited amounts of gypsum dihydrate. 
The low gypsum dihydrate content is desired since this indicates a 
large conversion from feed gypsum to useful gypsum hemihydrate. 
Furthermore, the quantity of gypsum hemihydrate should be 
maximized, with a small amount of gypsum anhydrite to improve 

Figure 1—Correlation between gypsum dihydrate and TBM

Figure 2—Correlation between gypsum hemihydrate and TBM
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setting times (Tzouvalas, Dermatas, and Tsimas, 2004). However, 
the gypsum anhydrite content should also be limited, otherwise 
flash settling might occur (Tydlitát, Medveď, and Černý, 2012).

Artificial neural network
For each attempt and each run, the training, validation, testing, and 
simulation performance was documented using the mean squared 
error (MSE) and correlation coefficient (R). The performance is 
based on the lowest MSE and highest R-value for each attempt. The 
results indicated that the best run of the logsig-logsig configuration 
is still worse than the other two configurations, where the logsig-
purelin configuration shows the best results. 

The best-performing models for each of the transfer function 
pairs with respect to the two performance measures are shown in 
Table V. Of the six best networks, only two (attempt 9 of the logsig-
purelin and tansig-purelin configurations) performed well when 
the set-point data was removed. Therefore, it can be concluded that 
the set-point data is valuable training information for the ANNs. 
A possible explanation for this is that the set-point offers a more 
constant value than the slightly deviated measurement. Additionally, 
a set-point change is immediate, whereas plant conditions have 
a slower response, and hence the model would ‘see’ and ‘expect’ 
a change. Furthermore, the chronological data also performed 
well, as seen in attempt 1 of the tansig-purelin and logsig-logsig 
configurations. Lastly, attempts 17 of the logsig-purelin and 13 of 
the logsig-logsig configurations also performed well. These two 
attempts consisted of data from the first two days of sampling with 
quite variable product quality and the 'stable' last day of sampling. 
Similarly, attempt 9 also consisted of data from all the days. This 
shows the importance of training the model using data that 
encompasses the characteristics of the entire data-set.

The hyperbolic tangent and log-sigmoid transfer functions are 
widely used for multilayer backpropagation networks (Dorofki et 

Figure 3—Correlation between gypsum anhydrite and TBM

Figure 4 – Modelled vs actual TBM for logsig-purelin configuration (largest R)

al., 2012; Hagan et al., 2014; Kriesel, 2007). The performance of each 
transfer function depends on the application thereof, as confirmed 
by Dorofki et al., (2012). This result was also seen in the application 
to the calciner, as the logsig-purelin topology seems to outperform 
the tansig-purelin topology. However, Kriesel (2007) states that it is 
essential that the output transfer function is linear, so as not to limit 
the output interval. This is also seen in the results obtained – the 
logsig-purelin topology outperforms the logsig-logsig topology. A 
parity plot of the logsig-purelin configuration is given in Figure 4.

Conclusions and recommendations
The industry operational target of 5.8% total bound moisture 
(TBM) is deemed sufficient. At this point, a gypsum dihydrate 
conversion of about 90% is achieved. Furthermore, gypsum 
hemihydrate makes up most of the product (about 70%), with 
a sufficiently small quantity of gypsum anhydrite (about 20%). 
Therefore, based on these results, the target TBM is sufficient to 
control the product quality. Furthermore, no offset between the 
calculated and experimental TBM was observed on the last day of 
sampling, which could be due to the stricter plant control. Lastly, 
no correlation was found between the purity of the gypsum product 
and the TBM. This indicates that impurities with crystal moisture 
were not present in significant amounts. Based on the simulation 
set of the first sampling campaign, the logsig-purelin configuration 
with the highest R-value provided the best performance. This 
model is sufficient to use as a control guideline since the coefficient 
of correlation is greater than 90%. The strength of the model is 
indicated by R2 (86%) 

Even though the TBM could be correlated to the gypsum 
phases, a more in-depth study is required. It is suggested that this 
study would look more at how the different phases impact product 
quality. For example, to what extent does gypsum anhydrite impact 
the setting time of the product? From this information, an optimum 

Table V

Best-performing artificial neural networks

1 15 1.23 0.38 301 17 15 1.33 0.6 301 1 5 0.90 0.58 101
9 5 17.70 0.91 81 9 5 17.70 0.93 81 13 10 2.83 0.89 201
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compositional range for each phase should be determined. This can 
then be used to calculate the desired TBM.

A more complex ANN topology and training structure should 
be investigated. Concerning the topology, different transfer 
function configurations should be investigated. The logsig-logsig 
configuration provided better results for the additional data, 
whereas the logsig-purelin configuration provided better results 
for the original data. It would be worthwhile to investigate the 
performance of different configurations, such as a tansig-logsig 
configuration. Furthermore, regarding the training structure, it is 
suggested that the performance of an optimized training algorithm, 
such as shuffling between each epoch, be investigated. In addition, 
the arbitrary decision of a 70:30 division between the training and 
simulation data could also be investigated. Lastly, a larger data-set 
would be beneficial to ensure sufficient data is available to obtain 
satisfactory training and simulation results.
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