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Real-time underground route identification 
and route progress using simple on-board 
sensing and processing
by R.F. Meeser1 and N. Theron1

Synopsis
The global emphasis on conserving energy resources has led to the adoption of hybrid power systems in 
vehicles. Optimally applied, hybrid systems can save up to 40% on fuel costs. To optimally manage a hybrid 
vehicle's energy flow it is necessary to know, in real time, all the energy requirements to complete a given 
route. The energy consumption depends mainly on the vehicle mass, speed profile, and route topography. Of 
these, the topographic profile is the one factor that is only route-dependent and not influenced by the vehicle 
or driving styles. The heading vs. distance profile is also an example of a route characteristic not influenced 
by the vehicle or driving style. In this study the topographic and heading profiles are used to identify routes, 
and are easily measured by means of digital barometric pressure and compass sensors. Correlations between 
the current route and previously travelled/stored routes are performed based on their topographic and 
heading profiles in a point-by-point manner. Above-ground tests were first performed using a road vehicle 
and six  routes to evaluate the system. The system consistently and correctly identified a 20 km route within  
the first 4 km. It also proved to function correctly in underground tests through the implementation of an 
instrumented hand-held surveyor's wheel. This system finds direct practical application in optimizing the 
energy management of an underground hybrid locomotive used by the mining industry in South Africa, but 
can also be of benefit in applications where route identification is required and using GPS is not feasible.
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Introduction 
Recently an increasing emphasis has been placed on improving vehicle efficiency and reducing waste in 
all forms (Taghavipour et al., 2016). One such improvement is the use of hybrid drivetrains in vehicles. 
Many hybrid electric vehicles (HEVs) comprise a combination of a fossil fuel internal combustion engine 
(ICE), electric motor (EM), electric motor driver (power electronics that control the power to and from the 
electric motor), energy storage systems (ESSs), inverters (to facilitate the energy flow), and a vehicle control 
system to manage all of these. Hybrid vehicles are equipped with sophisticated control strategies that are 
applied to achieve higher efficiencies than normal ICE-driven vehicles by allowing the use of the electrical 
systems to store or recover energy that would otherwise be wasted as well as enabling the ICE to operate 
in a more efficient region of its operating range (Huang et al., 2017). When correctly applyied, hybrid 
technology can decrease fuel consumption by up to 40% (Tie and Tan, 2013). The vehicle that this project 
focuses on is an underground hybrid electric locomotive that is used in the mining sector in South Africa. 
The locomotive has a 30 kVA tier 4 diesel generator set that is used to charge a 460 V, 160 Ah lithium iron 
phosphate (LiFePo4) battery pack. The battery pack provides the electrical energy that is used to power the 
locomotive's two 17 kW direct current (DC) motors, which in turn are connected to the wheels via a chain 
drive (CMTi Group, 2021).

Successful optimization of the energy system of an HEV relies on knowing not only the current state 
of the onboard energy systems, including fuel level, battery state of charge etc., but also the future demands 
that the locomotive will encounter on its route. These demands depend on variables such as the vehicle, 
drivetrain, route speed profile, route topography, and vehicle mass, all as a function of the route's distance 
to completion. The topography of a route has a direct effect on the instantaneous energy requirements, 
as fuel consumption on a flat route can be 15–20% less than that on hilly terrain (Boriboonsomsin and 
Barth, 2009). The advantage of a hybrid system is also increased on hilly terrain as energy when going 
downhill can be regenerated by means of electric braking systems (Wang and Lukic, 2011; Lajunen, 2014; 
Johannesson et al., 2015). It can thus be of great benefit if the route being travelled can be identified in real 
time and its topography known to allow the vehicle control system to make better management decisions 
regarding energy usage. The energy usage can be altered in terms of the power source, power levels, speed 
profiles, and efficiency profiles to name a few.
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Vehicle location above ground can be easily and accurately 
pinpointed by means of a GPS, and route identification can then 
also easily be performed, but the vehicle used as the focal point for 
this study mainly operates underground, in the hostile environment 
of a mine. The objective of this paper is to present a method by 
which routes may be easily and cheaply identified undergound with 
sufficient accuracy, making use of easily obtainable environmental 
data and not requiring any transmitters or beacons to be placed on 
the routes in the mine. 

The novelty of this project lies in the use of magnetic heading 
and barometric altitude data, which are easily measureable 
environmental attributes that do not change as a function of driving 
style or the vehicle used. A three-axis magnetic heading sensor and 
a digital barometric pressure sensor were used together with a wheel 
rotation encoder to record patterns in the heading and altitude-
change data, both as a function of distance. A simplistic statistical 
comparison model was implemented that compares these values, 
measured in real time over standard distance increments, to those of 
saved routes, then sequential patterns in the results are evaluated to 
perform route identification.

The route identification strategy (RIS) proposed was first 
evaluated above ground using a normal road vehicle and six 
different routes of comparable length. The results showed that the 
RIS was able to correctly identify a route, usually within less than 
20% (4 km) of the route total length, with no prior knowledge of the 
location of the vehicle. The algorithm was set up such that the start 
point of the route is also not crucial, with a practical limitation that 
a route won't be identified if more than half of the route is already 
passed, as little optimization benefit will be achievable past that 
point. 

A compact hand-held test instrument was constructed and used 
to perform similar tests underground to verify whether the RIS 
was capable of functioning correctly when traversing underground. 
The first underground tests were performed in a basement parking 
lot, and after the system performed satisfactorily more tests were 
conducted inside a small decomissioned gold mine, where the 
strategy proved successful in identifying patterns in a route's data 
sampled there as well.

In summary, the project set out to develop a system that is able 
to identify a route that an undergound locomotive is travelling on 
as well as the position on that route. By using simple and low-cost 
sensing equipment, route attributes rather than vehicle and/or 
driver attributes were stored and patterns in this data were evaluated 
and compared to previously recorded data. Routes were succesfully 
identified, proving the usability of this system.

Materials and methods

Hybrid vehicle systems
With the global energy crises it is of great importance to reduce all 
energy wastage as well as achieve the highest possible efficiencies for 
energy converters. One means of decreasing resource consumption 
is by applying hybrid drive systems to vehicles. Some hybrid vehicles 
are also able to be plugged into and charged off of mains grid power 
systems, potentially yielding even lower costs in vehicle operation. 
These vehicles are called plug-in hybrid electric vehicles (PHEVs).

Hybrid systems are able to run at power levels higher than those 
that an IC engine can deliver on its own. They are also capable of 
allowing the IC engine to run on average closer to its peak efficiency. 
A hybrid system allows operation of the vehicle with the IC engine 
turned off for short periods if becessary. It facilitates regenerative 

braking to recover some of the kinetic/potential energy and store it 
for later use by operating the electric motor as a generator to slow 
the vehicle on downgrades. Though beneficial on a flat road, simply 
running the engine in its peak efficiency still does not guarantee 
the most efficient operation (Phillips, Jankovic, and Bailey, 2000; 
Boyd and Nelson, 2008). Tie and Tan (2013) state that a fully 
hybrid electric vehicle with a high-capacity energy storage system 
can achieve a fuel saving of up to 40% without compromising 
performance. The true benefits of hybrid systems, however, can be 
realized only if the energy flow is optimized for the vehicle in real 
time. Hu et al. (2017) proposed a novel unified cost-optimal control 
scheme that considers all the contributing factors in HEV cost, 
able to yield a 28–40% cost reduction. They considered mains grid 
charging cost, power management during driving, fuel cost, and 
battery life models using rapid and efficient convex programming 
(CP). 

Route identification and currently applied methods
To optimally manage the energy usage of a hybrid vehicle it is 
necessary to account not just for the instantaneous power usage, 
but also strategize a plan for future consumption based on the route 
travelled, as this can yield significant advantages (Back et al., 2002; 
Yokoi et al., 2004; Taghavipour et al., 2016). This can only be done 
if detailed information is available about the route parameters, 
like topography, required speed profiles, vehicle mass, distances, 
charging station locations etc. 

The most general way of determining the location of an 
above-ground vehicle on a specific route is by making use of a 
global positioning system (GPS). A GPS in ideal conditions is 
able to state the absolute location of an object to within a couple 
of metres (<5 m), though this is not good enough for road grade/
incline measurement. In less than ideal conditions the GPS data 
may be substantially less reliable and sometimes even corrupted 
(Vahidi, Stefanopoulou, and Peng, 2005). Many of the current route 
identification studies make use of GPS data for their algorithm 
(Rezaei and Sengupta, 2007; Johannesson et al., 2015; Chen et al., 
2016). Some authors supplement GPS data by feeding additional 
information into the RIS. These additional parameters include 
inertial information obtained from accelerometers and gyroscopes, 
wheel speed sensors, steering angle, power demand levels, stop 
times, standard deviations for power demand, road slope, GPRS 
communication, laser displacement sensors to scan distances to 
objects, and magnetometers to measure heading for an indoor tour 
robot (Jeon et al., 2002; Lin et al., 2004; Rezaei and Sengupta, 2007; 
Alvarez-Santos et al., 2015; Chen et al., 2016; Song et al., 2018). 
Yokoi et al. (2004) found that velocity profiles vs. time are not very 
useful in route identification as there are too many factors that 
influence the time. Bender, Kaszynski, and Sawodny (2013) noted 
that the quality of the route prediction has a great effect on the fuel 
consumption of the vehicle. 

GPS is, however, not able to work underground, so a RIS 
making use of other sense-able data is required. From the references 
studied it was found that there are two route-specific variables that 
can be measured with relative ease and which are not dependent on 
the vehicle, driving style, or time. These are the magnetic heading 
and barometric altitude, both as a function of travel distance. To 
date no references have been found of route identification systems 
that make use of only this data.

Topography/incline data acquisition 
The real benefit of hybrid systems is realized when the vehicle is 
travelling over hilly terrain, where uphill and downhill sections are 
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frequent, or when accelerating and decelerating regularly (Wang 
and Lukic, 2011; Lajunen, 2014; Johannesson et al., 2015). Fuel 
consumption on flat routes can be 15–20% lower than on hilly 
routes for non-hybrid vehicles, showing that road grade plays a 
significant role in vehicle fuel consumption and emissions. There 
are, however, some optimization strategies that do not even take 
topography into account, in which case the solution to the problem 
is oversimplified. (Rogers and Trayford, 1984; Boriboonsomsin and 
Barth, 2009; Hellström, Åslund and Nielsen, 2010; Liu, Rodgers, 
and Guensker et al., 2018; Basso et al., 2019). Road grade data with 
a high enough resolution to be used in simulations is hard to find. 
Liu, Rodgers, and Guensker(2018) state that a barometric pressure 
sensor works better for incline estimation than accelerometers and 
other types of sensors, the data from which is overwhelmed by the 
noise caused by vibrations during driving, though they do note that 
barometric altitude is sensitive to weather. Boroujeni, Frey, and 
Sandhu (2013) showed that a distance increment of approximately 
0.1 mile (160 m) is an appropriate segment length for quantifying 
road grades as individual runs. 

A barometric pressure sensor was used in this study to obtain 
an estimate for the altitude, then using this data the topographic 
profile and inclines for sections of the route were determined. An 
inexpensive open-source GY87 module sensor board and software 
was implemented. The GY87 consists of a BMP085 barometric 
pressure sensor, a MPU6050 three-axis accelerometer, three-axis 
gyro, and a HMC5883L three-axis magnetometer. These module 
boards retail for about US$10 (R200). 

The BMP085 sensor is capable of measuring pressures ranging 
to a maximum of 10 000 hPa (1000 kPa, 10 bar), which equates to 
approximately 24 km below sea level, far more than any currently 
existing mines. In ultra-high resolution mode the barometric 
pressure sensor is capable of detecting a 0.03 hPa pressure change, 
equating to a 0.25 m altitude change, with the RMS noise of the 
signal being able to go down to 0.1 m (Sensortec, 2009). The 
barometric sensor's pressure reading is converted to an effective 
altitude by means of the international barometric formula (Equation 
[1]). 

 [1]

where P is the measured pressure, P0 is the pressure at sea level, 
and the altitude is then given in metres. In this equation, a pressure 
change of 1 hPa equates to a change in altitude of approximately  
8.4 m at sea level. 

To confirm the accuracy and suitability of the sensor for 
obtaining usable data for incline and topographic profile, three 
simple indoor tests were performed.

Test 1: Barometric altitude vs. time (to investigate drifting of 
the altitude values over time)
For test 1 the sensor was left stationary on a table and the data was 
recorded over a period of 24 hours. The resulting plot can be seen in 
Figure 1, top left. It is noticed that the absolute altitude varied by as 
much as 60 m over a 24 hour period. This means that the absolute 
value for barometric altitude is not suitable for determining inclines 
of normal road profiles. When viewing the barometric pressure over 
a shorter time-frame (Figure 1, top right) one can see that the effect 
of the drift is much less (typically around 0.1 m per minute). From 
this result it was decided to use the relative altitude between two 
adjacent points rather than the absolute altitude value. 

Test 2: Barometric altitude during an elevator ride (to verify 
the sensor's ability to smoothly detect small altitude changes)
The altitude was recorded when riding in an elevator from floor 
9 up to floor 15, down to floor 3, and back to 9 again (Figure 1, 
bottom left). The red line is the raw data and the black line is a 
digital low-pass filter applied to the data afterwards. It is noted 
that the noise in short time-frames for the low-pass filtered data 
amounts to less than 0.75 m. For a 100 m stretch the noise equates 
to an incline angle error of less than 0.5°. This shows that the 
barometric data is sufficiently sensitive to determine an approximate 
topographic profile for a route, as the ranges typically experienced 
are significantly larger than the sensor's resolution on barometric 
altitude. It is, however, noted that this sensor's minimum detectable 
height does place a limitation on the shortest distance increment for 
which it can be used to effectively determine incline.

Test 3: Maximum simulated depth (to verify that the sensor 
can work in a deep underground mine)
The whole testing device was installed in a sealed container and 
incrementally pressurized up to a maximum absolute pressure of 
1.5 bar. A pressure of 1.35 bar absolute equates to the pressure at 
the bottom of the deepest mine in the world at the time of this 
study, 2500 m below sea level, therefore slightly exceeding this 
deepest effective pressure would suffice to prove the device's ability 
to function as required (Mining Technology, 2019). The results 
for test 3 are shown in Figure 1, bottom right. It is seen that the 
sensor behaved in a predictable manner and gave the effective depth 
values as expected, returning back to the test location altitude again 
after the test, showing that no sensor damage occurred. This is a 
simple overpressure test to determine if the sensor can still yield 
sensible data at elevated pressures and is not intended as a detailed 
calibration test. 

The barometric pressure sensor could now be implemented on 
a roadgoing vehicle that has an optical encoder to measure wheel 
displacement. This data can be used to obtain an estimation for the 
topographic plot for a route and to perform route identification. 
To have an above-ground comparison for the barometric altitude 
topographic plot and verify its usability, a GPS sensor was used to 
log the GPS coordinates (latitude, longitude, and altitude) as well. 
It was, however, noted that the barometric altitude shows jumps 
of tens of metres in the data when the sensor is exposed to direct 
sunlight, so special care should be taken to avoid these sudden 
changes in sensor temperature.

Heading data acqusition
Alvarez-Santos et al. (2015) obtained an estimate for heading from 
a three-axis magnetic sensor. A magnetic sensor is a low-cost sensor 
that can give the orientation of a device. The drawback is that it is 
easily affected by external magnetic field disturbances like electric 
motors and metallic objects. Gallant and Marshall (2016) propose a 
wheel rotation encoder to enable the heading data to be recorded as 
a function of distance. 

The HMC5883L included on the GY-89 module board is a high-
resolution three-axis magneto resistive sensor that can determine 
heading accurately within 1° to 2° using its built-in 12-bit analog-to-
digital converter. The sensor has a maximum sampling rate of 160 
Hz, which allows for multiple samples to be taken consecutively to 
average/filter out higher frequency noise in the sensor. The sensor 
can also be used in a strong magnetic field environment and still 
yield good heading accuracy as long as compensation is performed 
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for the constant offsets (Honeywell International Inc., 2013). The 
heading noise of the raw data recorded by this sensor was found 
during testing to be approximately 0.5°.

Odometer
Initial testing was carried out using an instrumented road vehicle 
above ground and an instrumented handheld surveyor's wheel 
underground. These test platforms  were both fitted with an optical 
encoder to obtain displacements over the routes in real time. As 
the odometer processor is fitted with a high-speed clock it is able to 
yield velocity as a function of distance and time, which is useful in 
calculations relating to the route energy, but that is outside the scope 
of this paper. 

GPS as reference for odometer, velocity, and barometric 
altitude
To demonstate that the barometric pressure sensor is able to obtain 
an accurate topographic plot for a route and to be able to calibrate 
the odometer, the results must be verified using a good reference. As 
all of the initial tests of the RIS were performed above ground it was 
possible to use a GPS. The GPS module used is capable of obtaining 
a horizontal position accurately to less than 2.5 m and velocity with 
an error of less than 0.1 m/s. Boroujeni, Frey, and Sandhu (2013) 
found that GPS data is unreliable under bridges and overpasses, 
which was also found to be true during road tests in this study, 
especially when driving into a multi-level parking garage. 

It was now possible to gather the topographic data for a route 
travelled by a road vehicle and compare the results to a GPS 
reference. The patterns in this data could be used in conjunction 
with patterns in heading data for various routes to implement the 
proposed RIS.

Calculations, modelling of the route identification system

Data acquisition system
A pair of open-source Arduino prototyping boards were used to 
read and scale the data streamed from the sensors and in turn 
stream these values to a laptop that processed these values as input 
to the RIS (Arduino, 2005). One Arduino board was used as the 
master to facilitate serial communication between the sensors 

and the laptop, and the other was set up as a slave to serve as the 
odometer. Once the preset distance increment for sampling of 
the heading and altitude is reached it transmits the total recorded 
distance to the main Arduino board. It was found that a distance 
increment of 100 m yields good overall results. Upon receiving the 
distance value from the odometer board the main Arduino board 
requests the heading and barometric altitude 20 times consecutively 
in a very short time-frame from each of the sensors to form a 
more stable averaged value for each parameter respectively. It 
then streams the averaged heading, averaged barometric altitude, 
and distance to the laptop via serial communication as a string. 
The 20 samples were found to yield stable enough data for use in 
subsequent processing. The sampling rates for these two sensors are 
high enough to allow multiple samples to be taken consecutively 
without a significant calculation time penalty or distance travelled 
over the sampling time. Figure 2 shows a schematic layout of the 
operation of the data acquisition system. Operating the stream in 
this way has the advantage that the amount of data that needs to be 
processed is low enough for the route identification program to be 
run in real-time. 

Figure 3a shows the GPS -altitude vs. -distance and the 
barometric altitude vs. optical encoder distance. It should be noted 
that the barometric altitude and the GPS altitude were zeroed at 
the start of the run to align with each other; the barometric drift 
was explained in the section on topography. The barometric data 
lines up very well with the GPS data. Figure 3b shows the zeroed 
barometric altitude vs. distance for the same route driven on three 
separate days, demonstrating very good consistency between the 
three tests. 

The GPS data signal is not without fault, as there is a large jump 
at the end of the data, and many times missing data was observed 
when travelling underneath a bridge/overpass. The jump at the end 
of the data was caused by the vehicle entering a covered parking 
building, thus degrading the GPS signal. 

To alleviate the issue of zeroing the barometric altitude, which 
varies with weather conditions, and thus the absolute altitude 
accuracy, it makes sense to rather use the derivative of the function, 
i.e. the change in altitude over a predefined relatively short distance/
time increment. Altitude gain/loss over a small distance in a 
relatively short time will not noticeably suffer from weather and 

Figure 1—Barometric altitude sensor data
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other environmental effects, as was shown in Figure1. Figure 4a 
shows the raw incremental change in barometric altitude, which 
is termed the altitude gain, for three passes of the same route. The 
altitude gain also allows direct calculation of the incline of the route, 
which is beneficial for energy calculations performed in further 
studies.

The heading was also recorded for the three passes to 
demonstate good correlation between the data for the same route 
on different passes; this is shown in Figure 4b. It is noted that the 
heading data shows very good consistency for the three passes. 
Headings near magnetic north are the cause for the abrupt jumps 
in the data from 15 000 m to the end. As an example a heading of 1° 

is only 2° away from a heading of 359°, and though it isn't intuitive 
from observing the figure it is easily accounted for in a later step 
when the comparisons between routes are done in the Results 
section.

Above-ground tests
The aim was to develop a system capable of identifying the route 
that is being travelled based on patterns in heading and altitude 
change data. Once these parameters had been recorded above 
ground and found successful in route identification the system 
could be tested for underground use. An distance increment of  
100 m reduces the amount of data that requires processing 

Figure 2—Operational schematic of the Arduino data acquisition system

Figure 3—Topographic plot. (a) Barometric and GPS altitudes vs. distance. (b) Three passes of the same route

Figure 4—Route data for three passes of the same route. (a) Altitude gain, (b) heading
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compared to higher sampling rates and also reduces noise in the 
altitude gain data. The low sampling rate has one drawback; when 
the heading or altitude changes sharply, like on a residential winding 
road, it will degrade the ability to perform route identification as the 
exact location of the sample point around a bend is not the same 
from one pass of the route to the next, which will lead to significant 
differences in heading data. 

If the topographic plot of a certain route and the vehicle's 
location on that route are known, the hybrid vehicle control system 
is able to make better decisions regarding total energy management, 
a topic that is still under investigation by the authors. This study 
is based on an underground railway vehicle, so the route options 
are fairly limited compared to normal road vehicles which can do 
u-turns and take -side roads, thus greatly reducing the number 
of possible routes to search for. This limits the number of routes 
possible during route identification, and this will facilitate the 
development of an optimization system in future research. Figure 5 
shows a schematic diagram of how the route identification program 
works. The program is excecuted in real time on a standard laptop. 
The software used is open-source GNU Octave v.4.2.1. (GNU 
Octave, 2017). These steps are explained in the paragraphs to follow.

A real-time route comparison can be performed only if there 
is information available for, at the very least, one route previously 
travelled. The first route was saved from the data recorded for the 
feasibility study of the heading and altitude change data. This data 
was saved in two text files, one containing the heading and the 
other the altitude gain information. With the distance increment 
being constant at 100 m it allows the heading and altitude data to 
be saved without their distance reference, as each new line of saved 
data is by design stored at the corresponding distance increment for 
comparison to the real-time data streaming in. 

With each new heading and altitude data-point streamed in, 
the laptop in the vehicle is able to compare these new values to the 
recorded set of values for routes previously travelled and saved. The 
program makes use of a normal distribution function to yield a high 
value for good correlation and very low value for bad correlation. 
Each new data-point is compared to the data-points for all the 
previously saved routes on a point-by-point basis. Although this is a 

tedious process, computationally speaking it is easily accomplished 
before the next data-points are streamed in a couple of seconds 
later. There is an advantage of always comparing all of the points 
of all of the routes as this allows the route identification program 
to identify a route even if the starting points do not line up, or to 
distinguish between routes that may have the same or very similar 
portions. Points are compared by calculating the value of the 
probability density function at point X of the normal distribution 
with a mean of μ and a standard deviation of σ. The variable X is 
the incoming data-point, μ is the saved data-point's value, and σ 
is the standard deviation. The value for the standard deviation, σ, 
was assumed to be constant, which was demonstrated to work well 
during simulations of the RIS. The OCTAVE/MATLAB function 
that is used for this is normpdf(X,μ,σ). This is not a purely statistical 
method; however, the normpdf function is a very convenient 
method of comparing the correlation between data-points. It 
is normalized for each data-point to ensure that the maximum 
probability density function value given by the function cannot 
exceed 1.0 for an exact match. A sensitivity analysis was performed 
to determine the best values for σ based on route identification 
success rates. A low value for σ will make the route identification 
program stricter, up to a point where no routes are ever identified as 
very few points will have exactly the same heading and altitude gain 
values, and a high value has the opposite effect where routes would 
be identified incorrectly. For the simulations performed a value of σ 
= 8° was found to perform well for heading and a height change of σ 
= 3 m per 100 m performed well for the altitude gain. 

The altitude gain correlation value for a point streamed in is 
compared directly to all of the points in all of the saved routes. This 
will yield a N × M matrix which contains the correlation values, 
with N being in the direction of the data for the saved routes and 
M the data in the streamed-in route direction. The same point-for-
point method is performed for the heading data, but additional 
computations need to be carried out. For the heading correlation it 
is necessary to specifically account for headings close to north, as 
was shown earlier (Figure 4b). This correlation matrix is generated 
by taking the probability for each heading point streamed in to the 
saved routes' values, and then doing the same again but this time 

Figure 5—Schematic of the Octave program operation
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using a heading value of (heading – 360°). This will allow a 358° 
incoming point to also be calculated as –2°. A third scenario is also 
applied where (heading + 360°) is used so that a streamed heading 
value of 1° can be compared to a saved value close to, but less than, 
360°. The largest of these three heading correlation values for each 
point is stored in the heading correlation matrix and used in further 
calculation steps.

Now that a correlation value is determined for both the heading 
and altitude gain, point-for-point for all of the saved data-points, 
a resultant correlation matrix accounting for both heading and 
altitude gain at the same time is determined by simply multiplying 
the two correlation matrices, point-for-point. Thus, only if both 
the heading and the altitude gain data-points correspond well to 
the saved data-point does it register as a high correlation. These 
correlation values are recorded and saved in a 3D matrix, where 
one axis represents the number of routes evaluated, the second 
represents the streamed data, and the third axis the saved data. 

If the route being travelled correlates to one of the saved routes, 
there will be a high band in the route's plane in the 3D matrix. The 
streamed data and saved data will have to be in phase with each 
other and yield consistently high correlation values for a route to 
be identified. The route planes in the 3D matrix are evaluated by 
taking the averages of bands in these matrices, where the bands are 
identified as Matrix(a+X,a). The value for ‘a’ ranges from unity up to 
the shortest length of the plane and ‘X’ is varied from the negative of 
half of the shortest length to the positive of half of that length. This 
in effect determines the averages for lines parallel to the diagonal 
of the matrix. The reason for not going all the way to the end of the 
matrix will be explained in more detail later.

Figure 6a shows the resultant correlation matrix plotted for 
a case when the data of the route travelled is compared to itself. 
Figure 6b shows the travelled route compared to a different route 
stored. No pattern is apparent for the mismatched route, which is 
exactly what we expected. The bands are only evaluated in a positive 
direction in both the saved and streamed data axis as we are not 
evaluating travelling the route backwards at this stage. A band 
that has a consistently high correlation indicates a good chance of 
travelling on the specific saved route to which it is being compared. 
Not only the central band, but also bands parallel to that, need to be 
evaluated as the exact start points for the saved and streamed routes 
do not have to match.  tt is importand to evaluate the parallel bands 
as this will allow route identification even when the starting points 
of the routes are not the same, or when there are slight distance 
discrepancies between the saved and current test streams. There 
is, however, a limit to the minimum distance that a route needs 
to correlate with before it is claimed as identified. This restriction 
is necessary to neglect the false positive route identifications that 
arise  if only a couple of consecutive points line up close to the start 
or end. If the program was not able to establish a good correlation 
between the travelled route and any of the saved routes, it was set 
up to then save this route as a new route, the data for which will be 
used in the route identification steps in future passes. 

It is of benefit if the RIS is somewhat lenient in terms of the 
exact band that correlates to a route. For example, if a set of data 
is offset by 50 m relative to the saved route it might cause the high 
band values to float between two adjacent bands, depending on the 
exact point being considered, which will cause the band's average 
value to drop drastically, even though the same route is being 
travelled. This situation can occur due to wheel slippage, or slight 
offsets in the starting points. The strategy implemented to make 
route identification more forgiving and robust is to make use of a 

smoothing filter on the route's correlation matrix, which means that 
a route can be identified even if there does not exist a single band 
with high correlation values. A Gaussian filter was implemented 
for this purpose. This filter will also pull up local low points that 
might have been caused by a local error, for example when travelling 
around a sharp corner and the two data-points which are being 
compared don't line up perfectly around the corner, yielding almost 
zero correlation for that local point due to the heading correlation 
value being far off.

The smoothed data is shown in Figures 6c and 6d, for the same 
and another route respectively. This smoothing strategy reduces the 
effect of starting value differences, small amounts of wheel slip, and 
other factors that cause the exact distance correlations to deviate 
from the single high band. A point to note, however, is that this 
smoothing filter also reduces the maximum probability value for a 
route point which correspond 100%, due to the neighbouring ones 
that draw it down slightly. Figures 6e and 6f shows plan views of 
the smoothed probabilities for the same route (e) and another route 
(f). A high correlation band is clear for the similar route (e) and 
no high bands are visible for the other route (f). A potential issue 
with evaluating the bands based only on the highest average value 
could be that a band with a consistent medium probability might 
be outweighed by a diagonal with generally low probability and 

Figure 6—Probability matrices processing steps. Left: Same route, right: 
different route
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some local high probabilities, or some consistently low route may 
even end up being the highest average probability and incorrectly 
identified as a route, simply because it happened to be the highest 
probability of the data available. To avoid this potential error in 
averaging of correlation values a threshold value to the probabilistic 
matrix was applied, causing the probability for a point to simply 
be considered as either zero (no correlation) or unity (sufficient 
match), based on some experimentally determined constant 
threshold cut-off value. This process is illustrated in Figures 6g and 
6h. Now the band values can be compared and if found to exceed a 
preset value it can be assumed a positively identified route.

To avoid erroneous route identifications based on the average 
band approach it is important to stay in the central region of the 
matrix, and not to calculate the averages for the extreme end 
points. For example, if a distance travelled equal to the final point 
of the route is considered, in the real-time program no further 
information regarding the route will be available yet, and thus the 
diagonal average value for the end point of the matrix, with a length 
of one cell, might have an average = 1, which is the maximum value 
and thus the route will be ‘confidently’ identified based on a single 
data-point. This will lead to many incorrect route identifications and 
make the whole system unstable. To alleviate this problem not all of 
the bands are considered, but only those in the central region. For 
the purpose of the tests it was found that using half of the matrix 
width in either direction for the bands mostly solved this problem of 
incorrect/erratic route identification. In general, route identification 
more than halfway through the route would not be very beneficial 
in an optimization strategy in any way. If, by the end of a route no 
routes were identified the system automatically saves this route 
as a new route that will be used in future passes to perform route 
identification.

Eight routes were used to evaluate the effectiveness of the RIS. 
Most of the routes were back and forth between points A and B 
(Figure 7). These routes were plotted from the GPS data recorded 
during testing. It should be noted that the routes overlap close to 
the start and end points, so initial identification of a route may be 
incorrect as it is impossible to tell where you are going to turn off 
and continue with the planned route. It is important to remember 
this when the route optimization is performed later on as it directly 
influences the route optimization that needs to be performed and 
can be detrimental to optimizing if the incorrect route is optimized 
for initially. Most of these routes are tarmac public roads. Route 

R5 is a table-top test, where the distance travelled is theoretically 
simulated, although no real movement took place. The advantage of 
using the constant valued route R5 is that it facilitated fault-finding 
and refinement of the program during tests/simulations performed 
without physical testing on the road. The trip distances of the routes 
between A to B are stated in Table I. Route 2 was an around-the-
block route to verify sensor data and was not travelled for route 
identification purposes.

A sensitivity analysis was performed through simulations and 
the most usable and safe values for accurate route identification are 
as follows: σAltitude gain = 3 m per 100 m, σHeading = 8°, and threshold 
cut-off value = 0.2. These values were then used to perform above-
ground real-time route identification for the eight routes. The results 
are presented in the Results and discussion section.

Underground tests
Gathering of vehicular test data in an operating underground mine 
was not possible due to security and safety concerns. The best 
alternative was to build a small handheld device that could be used 
to record heading vs. distance and altitude vs. distance data in an 
underground environment to prove that these parameters can be 
effectively measured underground and form patterns that yield 
the same RIS success as was obtained above ground. The handheld 
device used for the underground tests was an instrumented 
surveyor's wheel fitted with an optical encoder, magnetometer, 
and barometric pressure sensor, but in this case the real-time 
data was recorded on a SD card and processing afterwards due to 
space and practical reasons. Figure 8 shows the handheld device. 
At the bottom of the device, just above the wheel, is the battery. 
The battery needed to be placed far away from the magnetometer 
as it was found that close proximity causes a catastrophic offset 
in the heading data, rendering the whole test unusable unless the 
magnetometer was specifically recalibrated for this offset. The 
magnetometer/barometer were mounted on top of a skeletonized 
soft foam suspension block to reduce accelerations on the sensor, 
which were found to increase data noise in the barometric pressure 
sensor. The surveyor's wheel has a factory-calibrated distance 
readout, which made calibration and quality checking of the 
recorded data much easier. For the above-ground tests the distance 
increment was set to 100 m, but in the tests with the handheld 
device the distance increment was reduced to 5 m, as walking many 
kilometers underground is not very practical. It was recognized 
that the altitude data will now yield noisy incline data due to the 
minimum elevation accuracy mentioned in the topography section. 

Figure 7—Above-ground routes travelled

Table I

Test route lengths
Route Distance (km)

R1 20.62

R2   2.6 (point A - point A)

R3 21.3

R4 22.1

R5 N/A

R6 19.5

R7 21.2

R8 22.6
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It had already been proven that the heading and altitude gain 
strategy works above ground, so in-detail underground tests were 
not deemed essential, rather, simply to prove the device’s ability to 
detect appropriate heading and barometric values underground so 
that route identification can be performed.

Basement parking lot test
The first underground tests were performed in the basement 
parking of the Engineering 3 building, at the University of Pretoria's 
main campus, on level P1, two levels below ground level. The 
building is a steel-reinforced concrete structure with no external 
steel structural members. Mentioning this is important as it could 
have an effect on the magnetic data. A circuit on level 1 was walked 
four times with the device reset at approximately the same point 
on each pass. The circuit started on a flat section, proceded down a 
slope, back up the slope again and on the flat to the start point of the 
route. The results for route identification in the basement tests are 
included in the Results and discussion section.

Gold mine underground testing
The testing of the device to determine if it functions in an actual 
gold mine was performed at Gold Reef City, an amusement park 
located in Johannesburg, South Africa. There is a decommissioned 
small gold mine on site, which is now only used for tourist and 
educational visits. The purpose of performing a test in a real mine, 
though it is very small compared to the commercially active mines, 
was to verify that the sensors yield information that can be used 
to successfully perform route identification. The same surveyor's 
wheel set-up that was used for the basement test was used for 
the underground mine test. The mine's tourist level is located 
approximately 76 m below the surface. Only two passes were granted 
for testing purposes. The results for the route identification performed 
in the Gold Reef City mine are presented in the next section.

Results and discussion

Above-ground route identification
Eight different routes were evaluated. Route 2 was just a short test 
route to evaluate sensor function and the data being streamed. 
Route 5 was a theoretically generated constant route to allow finer 
testing of the system. In Figure 9 the route correlation values are 
plotted against distance for all of the saved routes when travelling 
on route 1. It is noted from Figure 7 that routes 1, 3, and 6 all have 
the same initial portions, which is why it makes sense that routes 3 
and 6 both also had increasing correlations up to the point where 
they deviate from route 1. This proves that the RIS was able to 
correctly identify the route travelled with high confidence by 4.6 
km, equating to less than 20% of the total route length, and with 
moderate confidence by 2.5km. 

Route identification tests were performed multiple times 
for every real route to evaluate the ability of the RIS to perform 
satisfactorily. Table II summarizes the results, showing the route 
travelled, the route identified, along with the distance where it was 
identified and the number of times each route was tested. 

From the test results shown in Table II it is seen that the RIS 
was able to identify the correct route in every test performed, in real 
time, with small errors occationally found in the initial parts of the 
routes. In the case of route 7, route 5 was twice identified initially for 
short parts of the route due to similarities between the routes' data, 
though this error was corrected within 400 m and the correct route 
was maintained until the end. 

The reason why the identification correlation value starts at 
zero is due to the program being set up such that it starts at zero 
for all routes so as not to favour any route above another without 
proper knowledge of the route being travelled. With it using an 
averaging program the initial zero correlation gradually grows as the 
correlation of the route with a stored one increases over distance. 
The routes are usually more winding at the start and towards the 
destination due to parking lot driving and sharp corners followed in 
residential areas, where the under-sampling of the route data at 100 
mr increments reduces the ability of the RIS to lock onto a route. 

The ability of this system to run in real -time allows the RIS 
to not only identify the route being travelled but also to know the 
location of the vehicle on that route (route progress), which will 
be essential when optimizing the energy management of a hybrid 
locomotive in further studies.

Basement test results
The heading and altitude data for these passes can be seen in Figures 
10a and 10b respectively. Good consistency is seen in the data for 
the four passes. It should be noted that, being obtaines by hand, this 
data will not be as consistent as that obtained by a vehicle driving 
on a public road with lane directions clearly indicated and closely 
adhered to, and even less than what a rail-bound locomotive will 
see. 

Four passes of the same route were used for the test. The first 
one was saved as the reference, with all four routes compared to this 
stored route. Comparing the route to itself is handy for consistency 
checking. Figure 12a shows the correlation as a function of the 
distance (5 m increment). It is seen that the route that was walked 
four  times yields data that is usable for the RIS proposed. The noise 
introduced due to manual operation did reduce the smoothness 
of the correlation graphs, as is expected. The reason why a 100% 
probability is not achieved with route 1 compared to itself is due 
to the Gaussian filter, as was explained in the above-ground tests 
section.

Figure 8—Surveyor's wheel for underground testing

Figure 9—Correlation vs. distance when travelling route 1
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It could now be concluded that the RIS yields satisfactory 
results for an underground basement test using the handheld 
data logging device. The next step was to perform tests in a mine, 
located at greater depths and in the typical rocks that mines are 
excavated in to confirm applicability of this system in underground 
environments. 

Gold Reef City underground test results
Only two passes were granted in a small underground gold mine 
on the tourist level to determine whether the heading and altitude 
data can be used to identify a route being travelled. In the top of 
Figure 11 the sensor data can be seen for a trip from the surface, 
twice through the mine's underground visitor's loop, and back to 
the surface. It is noted that the initial change in heading was as we 
approached the elevator shaft, and the jump on the vertical black 
line is due to us walking out of the elevator in the opposite direction 
with the test data for the first pass starting directly after that. There 
is also a jump in the altitude data as the elevator descended . The 
data is then split into the two individual passes plotted over each 
other. The progress stages are indicated by the three vertical lines 

in the top of figure. The altitude is shown in this case instead of 
the altitude gain as the noise is too great on the small distance 
increments used, making it difficulte to see any patterns. 

In the bottom left of Figure 11 it can be seen that the heading 
data is very closely correlated between the two passes. The altitude 
data shows good correlation as well, although the data is much 
more noisy when one zooms into the local values. The noise in the 
data amounted to around 0.5 m, which corresponds to the accuracy 
stated previously. The route identification algorithm can be set up 
to allow for higher noise in the barometric data by using less strict 
statistical parameters (larger σ value). Though it is noisy this does 
still enable comparison of patterns in the data. 

The correlation vs. distance plots for the underground gold mine 
tests are given in Figure 12b. Pass 1 is compared to itself and then to 
the second pass. The correlation is not 100% all the way through due 
to the Gaussian filter, as discussed previously. It can be seen that the 
RIS very quickly identifies pass 2 as the same route as pass 1, taking 
only around four samples, which equates to a distance of 20 m, or 
less than 10% of the loop distance, and consistently identifyes the 
route from there onwards with high confidence. 

Figure 10—Basement parking level 1 test. (a) Heading-, (b) barometric altitude vs. distance

Table II

Summary of route identification results using σalt gain = 3 m per 100 m, σheading = 8°
Route no. Route identified and distance to successful identification Number of hits

1 R3@800 m, R1@8.5 km 
R1@800 m 
R1@4.2 km

3

3 R6@4.4 km, R3@8.5 km,  
R1@4.6 km, 6.8 km R3, 
R3@700 m,  
R6@4.3 km, R1@4.4 km, R3@8.4 km to the end

4

4 R4@500 m 
R4@500 m 
R4@800 m 
R4@1.1 km

4

6 R6@4.6 km 
R6@3.4 km

2

7 R5@4.0 km, R7@4.1 km 
R7@3.5 km 
R7@3.5 km 
R7@1.7km (R5 from 2.8 km - 3.2 km), R7@ 3.3km to end 
R5@3.0 km, R7@3.4 km to end

5

8 R8@500 m 
R8@3.1 km 
R8@800 m

3
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Conclusion, recomendations, and future work
A novel method of identifying routes underground and finding the 
location on a route has been presented. This method makes use of 
easily and affordably obtained magnetic heading and barometric 
altitude values measured as a function of distance while driving the 
route. This automatically also yields a topographic profile for the 
route, which can be used in later processing for route optimization. 
A pattern recognition program was developed that is able to 
compare patterns in data for a route being driven to a set of routes 
that were driven previously and which is stored into a simple 
small text file in memory. This strategy was able to successfully 
identify a route being travelled by a vehicle, as well as the location 
of the vehicle on that route, for a total of six real-life route options 
investigated. The location on the route is known simply by the 
most recent data-point streamed in, once the route is identified If 
the route is not known to the system it is automatically saved as a 
new route to the small text file, which will then be used for route 
identification comparisons in future driving cycles. The system 
proved to function both above ground and underground, where 
GPS signals are not available. A sensitivity analysis was able to 

identify the optimal parameters for which the route identification 
strategy yielded the best results. The route identification strategy 
was able to always converge to the correct route within a short 
distance, typically within the first 20% of the route travelled. 

For future work the standard deviation value for each point 
of the route can be updated based on the stability of the streamed 
data for that that portion of the route, and through averaging the 
data for many passes of the same section. This has the potential to 
improve the route identification accuracy and responsiveness. If 
the system is implemented in an actual deep underground mine 
the absolute pressure obtained by the barometric pressure sensor 
can also be used to rule out certain routes from the stored set for 
that mine, as mine levels are usually many metres apart, which will 
lead to reduced calculation times. When using a route identification 
strategy to optimize route energy management it is crucial to take 
into account the fact that the initial parts of some routes are similar 
and thus optimizing for a specific route can be detremental to the 
efficient completion of another which the vehicle could potentially 
be travelling at that time, and one can only fully optimize when 
enough certainty on route uniqueness is obtained.

Figure 11—Underground gold mine test correlation

Figure 12—Underground RIS results. (a) Basement tests, (b) gold mine tests
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