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A critical comparison of interpolation 
techniques for digital terrain modelling in 
mining
by M.A. Raza1, A. Hassan2, M.U. Khan1, M.Z. Emad1, and S.A. Saki1

Synopsis
Digital modelling of a surface is crucial for Earth science and mining applications for many reasons. These 
days, high-tech digital representations are used to produce a high-fidelity topographic surface in the form of 
a digital terrain model (DTM). DTMs are created from 2D data-points collected by a variety of techniques 
such as traditional ground surveying, image processing, LiDAR, radar, and global positioning systems. At 
the points for which data is not available, the heights need to be interpolated or extrapolated from the points 
with measured elevations. There are several interpolation/extrapolation techniques available, which may be 
categorized based on criteria such as area size, accuracy or exactness of the surface, smoothness, continuity, 
and preciseness. In this paper we examine these DTM production methods and highlight their distinctive 
characteristics. Real data from a mine site is used, as a case study, to create DTMs using various interpolation 
techniques in Surfer® software. The significant variation in the resulting DTMs demonstrates that developing 
a DTM is not straightforward and it is important to choose the method carefully because the outcomes 
depend on the interpolation techniques used. In mining instances, where volume estimations are based on 
the produced DTM, this can have a significant impact. For our data-set, the natural neighbour interpolation 
method made the best predictions (R2 = 0.969, β = 0.98, P < 0.0001).
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Introduction
Representation of the Earth’s surface or terrain in an uncomplicated way and with high fidelity is crucial 
Earth scientists and engineers for many reasons. The representation of the Earth has evolved from simple 
paintings in ancient times to highly advanced digital representation in the form of digital terrain models 
(DTMs). A DTM is a representation of the topographic surface and is defined as the digital description 
of the terrain using a set of spot heights over a reference surface (Hirt, 2014). The concept of DTMs was 
first introduced during the late 1950s (Miller, 1958) and since then has come a long way. Photogrammetric 
techniques paved the way for producing DTMs (Thursston and Ball, 2007), which in turn have been 
extremely useful in geoscience applications since the 1950s and have become a major tool in geographical 
information processing (Weibel and Heller, 1991). DTMs are considered 2.5D models instead of fully 3D 
because they assign a unique height value to geodetic or planar coordinates, and thus topographic surfaces 
are usually shown as continuous surfaces or fields (Weibel and Heller, 1991; Hirt, 2014). 

Along with DTMs, terms like digital surface models (DSMs) and digital elevation models (DEMs) are 
also commonly used, which should be distinguished from each other. A DSM is a depiction of a surface with 
all of its natural and built/artificial features such as vegetation and buildings, whereas a DTM is a bare earth 
surface. A DTM shows the development of a geodesic surface that augments a DEM and includes features 
of the natural terrain such as waterways and ridges. So a DEM can be created by interpolating a DTM but 
the reverse is not possible (GEODETICS, 2022). DEM, meanwhile, is a generic term that is used for a DTM 
as well as a DSM. It is synonymous with DTM if surface features like vegetation and building heights are 
removed during surveying, and if not, it is the same as DSM (Hirt, 2014; Maune, 2007). Irrespective of the 
terminology, all these terrain models are based on surface data-points.

DTM data sources
Data acquisition is a crucial task for creation of accurate map and terrain models. This has prompted 
the development of methods that provide maximum detail with high precision and accuracy. The usual 
techniques for data acquisition include traditional ground surveying, image processing (photogrammetry), 
LiDAR, radar- (radar interferometry), and global positioning systems (GPS) (Hirt, 2014). 
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Generally, traditional ground surveys have been the most 
common and cost-effective data-acquisition methods for limited 
areas and small projects and are more common for mining 
projects. Optical instruments such as theodolites, tachometers, and 
surveyor’s levels have been utilized largely in the past; however, 
their use is decreasing because of their lower time efficiency and 
accuracy (Kennie and Petrie, 2010). Ground-based surveys are 
nowadays conducted with modern electronic equipment, which 
offers high-speed working and efficiency. The photogrammetric 
technique involves aerial or satellite images of the Earth’s surface. 
These imaging techniques have benefitted from recent technological 
improvements and choosing between the two can be challenging. 
However, in general, the resolution of aerial images is higher than 
that of satellite images available for public use.

LiDAR (light detection and ranging) systems utilize a laser 
scanner, an inertial measurement unit (IMU), and a global 
positioning system (GPS) coupled with a computer to ensure that 
all the measurements are synchronous with respect to time. The 
procedure for LiDAR is such that an aircraft or helicopter flies above 
the area of interest and laser scan it from side to side. This results 
in a set of points recorded which contain the location and elevation 
information. The spatial density of these points is generally 
within one metre (Réjean, Pierre, and Mohamed, 2009). Radar 
interferometry is another method used for DTM data acquisition. 
This method can be used over land, sea, and ice surfaces. These 
radars use the microwave region of the electromagnetic spectrum, 
the same as SAR (synthetic aperture radar) systems. In principle, 
they are very similar to LiDAR in that they also utilize the features 
of back-reflected waves to determine surface features (Bamler, 
1997). Wilson (2012) discusses the methods and data sources to 
generate DEMs using LiDAR and similar methods.

Recently, unmanned aerial vehicles (UAVs) and drones have 
become popular for topographic surveying and the creation of 
DTMs in mining and other fields. The success of these approaches 
hinges on their lower cost, flexibility, speed, and precision (Park 
and Choi, 2020; Yan, Zhou, and Li, 2012; Wajs, 2015). These 
devices use several downward-facing sensors and cameras to 
capture images during flight. The data is synchronized with a global 
information system (GIS) for accuracy. The gathered data is then 
processed using purpose-built modern software for DTM creation. 
In high-production open pit mining operations, such as strip 
mining, these techniques become especially useful as the volume 
computations can be done rapidly for accurate material excavation 
and overburden removal. 

Sampling
From the 1970s onward, much research work was carried out 
on surface modelling and contouring from DEM and many 
interpolation techniques were proposed (Li, Zhu, and Gold, 
2004). Methods such as different types of moving averages, height 
interpolation by finite element projective interpolation, kriging, and 
several triangulation methods were introduced. But with time it was 
realized that for a given topography, sampling is the critical factor 
(Li, Zhu, and Gold, 2004). As a result, attention shifted toward 
quality control and sampling methods.

Sampling has evolved into a whole new discipline and 
researchers have developed methods for the selection of suitable 
sampling techniques. Selective sampling, regular sampling patterns, 
and progressive and composite sampling are some of the popular 
photogrammetric sampling techniques. In selective sampling, 
commonly employed in field surveying, the points that are 

considered important are surveyed so as to have adequate coverage 
and required density. This method offers the advantage of high 
constancy with fewer points. The method is generally more useful 
for regions with major discontinuities and rugged terrain (Weibel 
and Heller, 1991). Regular sampling, also known as systematic 
sampling, as the name implies, uses a fixed distance between 
sampling points, which can be arranged as grids or profiles, square 
or rectangular. As the sampling interval is constant, it must be 
ensured that an adequate distance is selected in order to detect most 
of the discontinuities (Weibel and Heller, 1991; Li, Zhu, and Gold, 
2004). It is a simple method that can be used in an automatic mode, 
but is restricted to fairly low and homogeneous terrains. In regions 
where discontinuities are more marked and the terrain is rugged, 
this might result in insufficient points to generate a high-fidelity 
terrain model (Weibel and Heller, 1991). In progressive sampling, 
a low-density grid is sampled initially, and wherever necessary a 
repetitive densification of the grid is performed; the whole area is 
surveyed until the required accuracy is achieved (Weibel and Heller, 
1991, Li, Zhu, and Gold, 2004). 

DTM data is judged by its distribution, density, and the 
accuracy with which it is measured (Li, Zhu, and Gold, 2004). Data 
can be distributed in various patterns but a particular pattern must 
fit the specific terrain being investigated. Density of sampled data is 
represented as either sampling interval or the number of points per 
unit area. Accuracy of the sampled data depends on the surveying 
method, quality of instrumentation, techniques used and the skill 
level of the surveyor. Data acquired in dynamic mode is likely to be 
less accurate than in static mode. Generally, it is considered that the 
field survey method is the most accurate, but this depends on the 
quality of the instrumentation used (Li, Zhu, and Gold, 2004).

Surface modelling
Surface modelling or surface reconstruction is the process by which 
the representation of terrain is obtained (Li, Zhu, and Gold, 2004). 
This reconstructed surface is the DTM surface that is generated 
from the original raw data and structured through a few popular 
approaches such as triangular irregular networks (TINs) and grid-
based data structures (Li, Zhu, and Gold, 2004; Weibel and Heller, 
1991). 

In TINs, the points or vertices are chosen and joined together 
in a series to form a network of triangles and therefore the surface 
is represented in the form of contiguous, non-overlapping triangles 
(ESRI, 2017). TINs have an advantage over grid-based models in 
their ability to describe the surface at different resolutions because 
in certain cases higher triangle resolution is required, such as for 
mountain peaks. (ET Spatial Technologies, 2017). TINs are also 
capable of working with any data pattern and can incorporate 
features like break lines (Li, Zhu, and Gold, 2004). Several methods 
have been developed to create these triangles but the most widely 
adopted is Delaunay triangulation, used by ArcGIS. Delaunay 
triangulation is based on the principle that a circle drawn through 
three nodes will not contain any other node  This is known as the 
empty circumcircle principle (ESRI, 2017; ET Spatial Technologies, 
2017; Li, Zhu, and Gold, 2004, as illustrated in Figure 1. The major 
advantage that this triangulation method offers over the others 
is that it produces as many equiangular triangles as possible and 
significantly reduces the chances of long, skinny triangles (ESRI, 
2017;, ET Spatial Technologies, 2017). Moreover, there are certain 
interpolation techniques such as natural neighbour, which can only 
be applied to Delaunay-conforming triangles (ESRI, 2017). TIN 
is a frequently used vector data format for DEM and requires less 
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computer memory than the gridded elevation models. However, 
because of the irregularity of the TIN, the organization, storage, and 
application of data are more complicated than that of the regular 
grid DEM (Liang and Wang 2020).

The other widely used approach is grid-based surface modelling 
where points are joined in the form of matrices, either regular 
squares or rectangles (Weibel and Heller, 1991;, Li, Zhu, and Gold, 
2004). Handling of these matrices is simpler but a high point density 
is required to obtain a terrain of desired accuracy (Weibel and 
Heller, 1991). Grid-based modelling results in a series of contiguous 
bilinear surfaces (Li, Zhu, and Gold, 2004). Grid-based surface 
modelling is highly compatible with grid or progressive sampling 
techniques, and some software packages accept only gridded data 
(Li, Zhu, and Gold 2004). 

Interpolation of data
In digital terrain modelling, interpolation serves the purpose of 
calculating elevations at the points for which data is not available 
from the points which have known elevations. There is a need 
to form the missing links between the points for which data is 
acquired to cover the unobserved part; the data that is estimated 
using interpolation to create DTMs. Interpolation is extremely 
important in terrain modelling processes such as quality control, 
surface reconstruction, accuracy assessment, terrain analysis, and 
applications (Li, Zhu, and Gold, 2004). 

Visualization of DTMs
After collecting the data, and creating the surface and interpolation 
models, the DTM has to be visualized so that it can be understood 
in the best possible way. The approaches used include texture 
mapping, rendering, and animation (Li, Zhu, and Gold, 2004)). 
Technological advances have made  DTM visualization relatively 
easy and multiple tools and software are available for presenting the 
data in 3D and creating a DTM. GIS is the most commonly used.

Applications of DTMs
DTMs have wide-scale uses in various disciplines of science and 
engineering such as mapping, remote sensing, civil engineering, 
mining engineering, geology, geomorphology, military engineering, 
land planning, and communications (Li, Zhu, and Gold, 2004;, 
Catlow; 1986, Petrie and Kennie, 1987). DTMs have made a 
significant contribution in the mining industry since the first time 
they were employed. Initial land surveys, reserve estimation, mine 
planning and, when the mining starts, setting up the equipment 
and the scheduling of mine machinery, all involve the use of DTMs. 
but the foremost application is in reserve estimation. A complete 
knowledge of the topographic surface of the region is necessary in 
defining the extent of the region and for large volume calculations. 
DTMs can also be used for highwall face and tunnel design and to 
calculate the volume of earthworks required for the completion of 
these tasks.

Interpolation techniques and mathematical models
Interpolation is an integral part of constructing a digital terrain 
model as it approximates data in the regions where none exists. 
After creating a grid (surface modelling) to represent a surface, we 
are left with plenty of nodes for which data is necessary and which 
is estimated using several interpolation techniques. This is even 
required for LiDAR although the point density is very high, but 
here it is intended to stick with the methods used for traditional 
field survey techniques and to interpolate the data for creating 
DTMs. The interpolation techniques that will be considered are 
IDW (inverse distance weighted), natural neighbours, kriging, and 
splines. Different criteria for classifying interpolation techniques 
are applied across the globe in diverse fields. Some of them are 
discussed below.

There are many ways in which interpolation techniques can 
be classified, such as based on area size, accuracy or exactness 
of the surface, smoothness, continuity, and preciseness. Several 
interpolation techniques have been developed by mathematicians 
and researchers and to date, even after much work, no technique is 
considered as the general best (Weibel and Heller, 1991).

An interpolator is either global or local if it is based on the 
scope or area of the field (Li, Zhu, and Gold, 2004; Gentile, Courbin, 
and Meylan, 2013). Global interpolators are those which use all 
of the measured points or the whole sampled region to estimate 
values for the unknown points, whereas local interpolators 
use a patch or some points close to the targeted value (Gentile, 
Courbin, and Meylan, 2013). Burrough et al. (2015) suggest that 
global interpolators are suitable for describing the general trend 
of terrain, while local interpolators are preferable for variations 
over patches and utilizing spatial relationships between the data. 
Based on the interpolated value, they are either exact, where the 
interpolated value for an already sampled point will be the same 
as the measured, or approximate, where the interpolated value 
differs from the known measured value (Gentile, Courbin, and 
Meylan,, 2013). In other words, exact interpolators result in DTM 
surfaces that pass through every sampled point while approximate 
interpolators follow a trend instead and may not necessarily pass 
through all the original points (Maguya, Junttila, and Kauranne, 
2013). This is because of the fact that some methods incorporate 
certain smoothing functions just to smooth out the sharp changes 
that might be incorporated (Gentile, Courbin, and Meylan, 2013). 
All these interpolation techniques basically have a mathematical or 
statistical model designed to subsume different parameters which 
affect the interpolation results. Based on these models, interpolation 
techniques are either deterministic or stochastic. Stochastic or 
geostatistical methods are those that are capable of yielding the 
estimated value as well as the associated error whiledeterministic 
methods, on the other hand,  do not include any assessment of the 
error which could be associated with the estimated value (Gentile, 
Courbin, and Meylan, 2013). Interpolation methods are concerned 
with finding out if the values are interrelated, i.e. correlation and 
dependency (Childs, 2004). This correlation is then used to measure 
the similarity index within an area, the level, strength, and nature of 
interdependence between the variables (Childs, 2004). This section 
focuses on the mathematical or statistical models of the above 
techniques. 

Inverse distance weighting
Inverse distance weighting (IDW) is a local interpolation method 
that gives exact measurement values and utilizes a deterministic 
model. There are specific algorithms that can be used to achieve 

Figure 1—An invalid (a) and valid (b) Delaunay triangle
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smoothness (Gentile, Courbin, and Meylan, 2013). IDW assumes 
that the values which are closer to the point to be interpolated will 
be somewhat similar to those which are further away. Based on this 
assumption that the nearest points will influence the results greatly, 
IDW uses them to assign values for unmeasured locations. IDW is 
an example of a deterministic method, therefore the results will be 
same even if interpolation is repeated several times. According to its 
mathematical model, IDW is represented by Equation [1].

 
[1]

where Z(so) is the value that needs to be estimated at location so, N 
is the number of samples chosen in a particular search distance, λi 
is the weight assigned to each sampled point, and Z(si) is the known 
measured value at location si (Erdogan, 2009, Jones et al., 2003). 
The equation that is developed for calculating weights involves an 
inverse relation with exponents (x) of distance (d) between the 
known value and the point to be predicted. Equation [2] is used to 
calculate the assigned weights, λi.

[2]

The exponent parameter x indicates the degree of influence of 
the surrounding points on the estimated value (Priyakant, Rao, and 
Singh, 2003). The weights sum to unity, showing that the method is 
unbiased (Gentile, Courbin, and Meylan, 2013). It is evident from 
Equations [1] and [2] that an increase in  distance d will decrease 
the influence on the interpolated value (Burrough et al., 2015). 
It is also true that higher values of x will result in smaller weight 
values assigned for distant points, and lower values in larger weights 
(Erdogan, 2009, Aguilar et al., 2005). Therefore, the extreme values 
in the terrain will be sharper and it can be said that the parameter 
x controls the degree of smoothness in the IDW case. The value of 
x used typically varies between 1 and 4 with 2 the most commonly 
used, the reason why this technique is often referred to as inverse 
distance square (IDS) (Aguilar et al., 2005; Kravchenko and Bullock, 
1999; Gentile, Courbin, and Meylan, 2013). Different x values and 
their impact on interpolation estimate quality have been studied by 
many researchers and it has been found that the power factor can be 
of great significance, or in some cases (Aguilar et al., 2005) may not 
affect the results very much. 

The other very important factor associated with IDW is 
the minimum number of points to be taken into consideration 
(Kravchenko and Bullock, 1999; Gentile, Courbin, and Meylan, 
2013) as more points result in increased smoothing (Gentile, 
Courbin, and Meylan, 2013). Although the choice of x and N is 
tricky, methods such as cross-validation and jackknifing can be used 
to select the most appropriate values for these two most important 
parameters (Tomczak, 1998). The size and shape of the search radius 
are also very important and should be chosen very carefully. If 
there is no observable directional influence on the weights of data, 
the shape of the search radius should preferably be a circle, and if 
otherwise, it should be adjusted likewise (ESRI, 2017). Size is also 
an indication of the degree of influence the distant point has on the 
location to be interpolated.

IDW is widely used because of its simplicity, lower 
computational time, and its ability to work with scattered data 
(Gentile, Courbin, and Meylan, 2013), but there are also some 
drawbacks associated with it. These are the selection of interpolation 
parameters, exact interpolation which refers to no smoothing, its 
deterministic nature as it doesn’t possess the ability to incorporate 

errors, and above all, IDW is highly sensitive to outliers and 
clustered data which can result in biased results, because of which 
IDW interpolated surfaces consist of features such as peaks and 
dips (Gentile, Courbin, and Meylan, 2013). Although IDW itself 
is an exact interpolator, some algorithms have been developed to 
incorporate a smoothing factor and the equation can also be written 
as Equation [3] (Gentile, Courbin, and Meylan, 2013; Garnero and 
Godone, 2013). Typically, a value between 1 and 5 is taken for s and 
it reduces the influence of any one sample for interpolated value (Li, 
Liu, and Chen, 2011).

[3]

Splines
Splines are basically polynomials of degree k which are fitted 
between each point to define the surface completely (Gentile, 
Courbin, and Meylan, 2013, Li and Heap, 2011). The places where 
two separate polynomials meet are called ‘knots’ and these knots 
can have a huge impact on the interpolation results (Li and Heap, 
2011). The challenge is always to gradually smooth out the surface 
at these knots, and the method revolves around making the 
polynomial function, its first-, and in some cases, the second-order 
derivative, continuous at these arbitrarily chosen knots (Gentile, 
Courbin, and Meylan, 2013). However, this piecewise polynomial 
reference is different from that in raster interpolation where it refers 
to radial basis functions (Skytt, Barrowclough, and Dokken, 2015), 
which will be the area of focus here.

Splines is the method that estimates the values using 
mathematical functions which smooth the surface and minimize the 
curvature of the surface (Childs, 2004). Splines have many variates 
and they produce surfaces which pass through all the sampled 
points and smooth the rest of it (Childs, 2004; Garnero and Godone, 
2013). It is often referred to as a bending sheet (Childs, 2004) which 
is shaped to pass through all the sampled points and results in a 
smooth surface. Splines are global; they result in approximately 
estimated values and the model used is deterministic (Gentile, 
Courbin, and Meylan, 2013). 

Splines have a basic form similar to IDW, in which weights are 
assigned according to the distance between known and unknown 
points (Garnero and Godone, 2013) as given by Equation [4].

[4]
where Φ(r) represents the interpolation function and r shows the 
Euclidean distance between the known point si and the unknown 
point so which is represented as || si - so (Garnero and Godone, 
2013). Although this is considered as standard, other types of 
distance function can also be utilized (Gentile, Courbin, and 
Meylan, 2013). The weights must be assigned in a manner such 
that the function chosen gives the exact measured value as this 
type of interpolation is supposed to be passing through all the 
known points (Garnero and Godone, 2013). This leads to n number 
of equations with n number of unknowns, which can be worked 
to acquire a unique solution (Garnero and Godone, 2013; ESRI, 
2017). There are many spline functions that have been developed 
to improve the method further and make it adjustable for given 
conditions (Gentile, Courbin, and Meylan, 2013; Garnero and 
Godone, 2013).

In the above-stated mathematical expressions r is the Euclidean 
distance, σ is the tension parameter, E1 is the exponential integral 
function, CE is defined as the Eulero constant which has a value 
of 0.577215, and K0 is termed the modified Bessel function 
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(Gentile, Courbin, and Meylan, 2013). The tension parameter, σ, 
controls the smoothness of a function. The higher its value the 
better the smoothing, which can have adverse effects in a sense 
that the depiction of the data may not show the actual variation 
of the data (ESRI, 2017). This, however, is not true for the inverse 
multiquadratic method where the reverse is considered true (ESRI, 
2017; Garnero and Godone, 2013). Keeping in view the challenge 
at hand of choosing an appropriate value for the smoothing factor, 
the same techniques of cross-validation and jack-knifing or trial and 
error are used. In ArcGIS, these functions are listed under radial 
basis functions, and a function can also be selected using cross-
validation (ESRI, 2017). Many consider multi-quadratic to be the 
best function (Yang et al., 2004).

Splines offer some advantages over the other techniques in that 
the roughness of the terrain can be smoothed out efficiently and it 
is also capable of capturing broad and detailed features (Gentile, 
Courbin, and Meylan, 2013). The availability of many functions 
makes this method somewhat more flexible and adjustable to the 
data. This method works best for the terrains which have gentle 
slope variation and where the changes occur gradually over 
considerable horizontal distances (ESRI, 2017). It is also suitable for 
handling large data-sets (ESRI, 2017). A feature of this method that 
it can under- and over-estimate the given data for unknown points 
to make it a better fit for hills and smooth slopes. Splines can also 
be used along with other interpolation techniques to smooth an 
already created surface (Erdogan, 2009). Although splines outweigh 
other techniques in many respects, they do have their fair share of 
disadvantages. These include considerable variations in elevation 
within a short horizontal distance (ESRI, 2017), inability to give an 
account of errors because of their deterministic nature (Gentile, 
Courbin, and Meylan, 2013), empirical choice of the function and 
parameters selected (Gentile, Courbin, and Meylan, 2013), and their 
handling of clustered and isolated data swiftly (Gentile, Courbin, 
and Meylan, 2013). Furthermore, overall smoothing may still be too 
high (Gentile, Courbin, and Meylan, 2013) if the chosen values of 
parameters are not optimal.

Kriging
Kriging is an extensively used method (Meyer, 2004) that is 
favoured by many authors.  Bailey (1994, p. 32) maintains that 
‘there is an argument for kriging to be adopted as a basic method 
of surface interpolation in geographic information systems (GIS) 
as opposed to the standard deterministic tessellation techniques 
that currently prevail and which can produce artificially smoothed 
surfaces’.

Kriging, unlike the other methods under discussion, is a 
family of geostatistical or stochastic methods (Gentile, Courbin, 
and Meylan, 2013; ESRI, 2017). Kriging tries to identify the 
spatial correlation between the data, in order to come to a better 
conclusion. This suggests that all the points around an unknown 
point may not necessarily influence it in the same manner. 
Therefore, this correlation is modelled as a function of the distance 
(Burrough et al., 2015). The value at any location is assumed to 
incorporate a certain component of the trend and a random variable 
following a special distribution (Clark, 1979).

Kriging is a method in which the value at an unknown point is 
estimated in two steps, i.e., calculating weights and then estimating 
the value. Determination of weights utilizes a function named the 
semivariogram γ(h) (sometimes referred to as just variogram), and 
the process as variogram modelling, and is represented by Equation 
[5] (Clark, 1979), where ‘n’ denotes the number of paired samples. 

[5]

Variogram modelling is completed by constructing an 
‘experimental variogram’ γ^(h), and then fitting an ‘authorized 
variogram’ γ(h), model against it (Gentile, Courbin, and Meylan, 
2013). An experimental variogram (sometimes referred to as an 
empirical variogram) is subjected to the conditions and is calculated 
from the sample data rather than being theoretical (Clark, 1979). 
An authorized variogram, on the other hand, is any one of a few 
standard variogram models that have been developed theoretically 
(Gentile, Courbin, and Meylan, 2013; Clark, 1979). Semivariograms 
enable understanding the trend in data to further use it for defining 
two very important features – sill and range.

Kriging has many forms but Equation [6] can be considered the 
basis for all of them (Li and Heap, 2011). Here, μ is the stationary 
mean which is supposed to be constant over the whole domain and 
is calculated as the average of the data (Li and Heap, 2011). λi is the 
kriging weight, n denotes the number of known points used for the 
estimation of the unknown in a particular search window, and μ(so) 
is the mean of the samples within the search window (Li and Heap, 
2011). 

[6]

Among all the variants, ordinary kriging (OK) is the most 
widely used (Gentile, Courbin, and Meylan, 2013). Although many 
kriging methods are approximate, OK is an exact method and 
estimates the values locally (Gentile, Courbin, and Meylan, 2013). 
OK, based on its geostatistical properties, assumes the model as 
Equation [7]. 

[7]

where, μ is the constant because of the intrinsic stationarity, also 
known as a deterministic trend (Erdogan, 2009), but is unknown 
(Gentile, Courbin, and Meylan, 2013; ESRI, 2017), while ε(s) is a 
random quantity drawn from the probability distribution
(Gentile, Courbin, and Meylan, 2013), ε(s) is also called auto-
correlated errors (Erdogan, 2009).

Kriging is sometimes referred to as BLUE (best linear unbiased 
estimator) (Gentile, Courbin, and Meylan, 2013). Kriging is the 
best method if there is a directional bias or spatial autocorrelation 
is present in the data (Childs, 2004). In kriging, unlike IDW, the 
estimated values can be greater than the sample values and the 
surface does not necessarily pass through all those sample points 
(Childs, 2004). Kriging is also capable of giving a quantifiable 
account of interpolation errors in kriging variance (Gentile, 
Courbin, and Meylan, 2013). Although kriging is highly favourable 
in plenty of conditions, it is an overall complex method which 
requires extreme care when spatial correlation structures are being 
modelled (Gentile, Courbin, and Meylan, 2013). 

Comparison of interpolation techniques
Methodology
For a comparison of interpolation techniques, we used a real 
data-set from a large mining site. The data was collected using 
traditional and GPS-based surveying techniques. Using this data, 
several topographic surfaces were created using SURFER® 9 utilizing 
various interpolation techniques.

SURFER® 9 has multiple built-in interpolation techniques that 
make it easier to create surfaces using one method with a simple 
one-click operation, which makes it possible to handle and tinker 
with the methods under consideration. 
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The data
The raw data used for this analysis is presented in Figure 2. The 
points show little scatter and are confined in a positively sloping 
trend within a bigger arbitrary rectangular region roughly 500 ×  
500 m in areal extent. We used this data to create a rectangular 
region using extrapolation. This will help in understanding the 
differences encountered while extrapolating the surface for the 
rectangular region using these points. Although the differences in 
elevations are not enormous, there are drops and rises in elevations 
within the data, with the difference between the maximum and 
the minimum elevation being around 30 m, which will help in 
identifying the key features related to each method.

Keeping in view the distribution of the data in Figure 2, the 
interpolated and the extrapolated regions can be analysed separately. 
Although extrapolated regions cannot be trusted for their accuracy 
because of data scarcity, they will help in understanding the key 
features of these techniques. 

The inverse distance weighted to power (IDW) technique is 
worked by using the values 1, 2, and 4 for power parameter x. It is 
alredy understood that x refers to the weight that is to be given to 
the near and far points.

Results and discussion
The surfaces created using various interpolation techniques are 
presented in this section.
Interpolation using inverse distance weighting
The surfaces created using inverse distance weighting with power 
factors (x) of 1, 2, and 3 are presented in Figure 3. The parameter x 
controls the smoothing (Gentile, Courbin, and Meylan, 2013) and 
this is clearly visible in the interpolated region. The created surface 
is smoother where the degree of roughness increases with the power 
factor x. It can also be seen that with increasing values of x, sharp 
features such as pits become evident within the same region. 

Moving towards the extrapolation region, the degree of 
smoothness behaves differently to that in the interpolated regions. 
This is due to the fact that IDW, with higher power values, assigns 
lower weights to the more distant points. Therefore, as the data 
becomes more distant, the surface starts to behave smoothly even 
for sharp changes in elevation. This observation is consistent with 
both sides of the sampled data.

Another important parameter involved in IDW is the search 
radius, which in this case seems to have little effect on the generated 
surface, due primarily to the fact that the data is abundant for the 
region where it exists. However, if the search radius is too low, this 
can have an impact on the extrapolated surface such that the results 
may not be obtained for regions such as corners that might become 
offshore to a certain search radius limit. One such example is shown 
in Figure 4, where the power factor is kept as 2 while the search 
radius is taken as 150 yards instead of 342 for Figure 3 .

Interpolation using splines
Compared to IDW, splines show inconsistent behaviour between the 
different variants such as multiquadratic, inverse multiquadratic, 
and thin plate splines as shown in Figure 5. SURFER® 9 does not 
provide the option of using splines with tensions and completely 
regularized splines. This inconsistent behaviour culminates in the 
extrapolated region where there are large differences in elevation 
within a very short horizontal distance. In the interpolated region, 
however, the three kernel functions performed similarly. 

A key feature associated with splines is their ability to over- and 
under-estimate the sampled points for an unknown point. The 
minimum and maximum elevation values among all the data-points 
are 450.02 and 483.33 yards respectively. Thin plate splines have 
been estimated as less as 375 yards and as high as 495, which is 
the greatest among the three variants utilized. The multiquadratic 
function also exhibited the same feature but only to a small extent, 
which seems more practical compared to thin plate splines where 

Figure 2—Spread of the data projected on a horizontal plane

Figure 3—Plan view of 3D surfaces formed by IDW with different values of power factor x. (a) x = 1, (b) x = 2, and (c) x = 3
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the difference is too great to be considered practical, especially in 
the extrapolated region. It needs to be noted, however, that inverse 
multiquadratic did not exhibit the same feature. The multiquadratic 
function tested for twice the initial value of R2, i.e. R2 = 54 (Figure 
5d) yielded minimum and maximum values of 436 and 490 
respectively, compared with 446 and 484 for R2 = 27 (Figure 5a).

Interpolation using kriging
In interpolating with kriging, the most important factor to consider 
is the selection of an appropriate variogram model. Kravchenko 
and Bullock (1999) observed better soil parameter estimates 
with kriging and noted that kriging produced more accurate 
estimates compared to IDW when the variogram and number of 
neighbouring points were selected carefully. With the given set 
of points, the linear model proved to be the best fit while others 
(exponential and spherical) failed to predict the trend completely. 
Figures 6a and 6b represent the modelled surfaces using a spherical 
and an exponential variogram respectively. Kriging produced a 
smoother surface with slight underestimation of the interpolated 
values. Even in the extrapolated region, surfaces are smoother than 
those with splines, and to some extent with IDW. The smoothness 
of the surface in this case for kriging is due to the fact that the data-
points are closely spaced and kriging treats the clustered location 
more like a single point. These points are sampled because of the 
changes in their elevations, which kriging fails to pinpoint clearly. 
Figure 6c shows a surface produced using the best fit variogram 
linear model. The linear model is shown in Figure 7.

Interpolation using natural neighbour technique
Natural neighbour interpolation (NNI) performs fairly well apart 
from in the extrapolated region where there are no results at all. 
Figure 8 represents the surface created utilizing NNI, which is 

Figure 4—IDW interpolated surface with shortened search 
radius

Figure 5a— Surface created using multiquadratic spline (R2 = 27) Figure 5b—Surface created using inverse multiquadratic spline 

Figure 5c—Surface created using thin plate spline Figure 5d—Surface created using multiquadratic spline (R2 = 54)
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smooth compared with IDW and splines. NNI was also capable 
of estimating small changes in elevation and still producing a 
smoother surface. As expected, it did not over- or underestimate the 
data at all. Because of the simple procedure, the computational time 
for this method was much less. One of the possible reasons for the 
surface being smooth may be the small horizontal distance between 
the data-points. NNI handles the scattered data well because it 
creates polygons and when data-points are too close to each other, 
there might be some numerical instability and errors in rounding 
off.

Predicting best fit through regression modelling
To determine which interpolation method predicted/estimated 
the original heights/elevations (Z values) the best, we conducted a 
stepwise regression analysis by including the Z value estimates using 
inverse distance weighting (EST_IDW1, EST_IDW2, EST_IDW3 
with weights 1, 2, and 3 respectively), kriging (EST_KRG), and 
natural neighbour (EST_NNI). The analysis (Table I) indicated 
EST_NNI as the best predictor for the original Z values (R2 = 0.969, 
β = 0.98, P < 0.0001). This may be because of the fact that the data-

Figure 6a—Surface produced using exponential variogram model Figure 6b—Surface produced using spherical variogram model

Figure 6c—Kriging modelled surface (linear variogram)

Figure 7—Linear variogram modelling
Figure 8—Surface created using natural neighbour interpolation
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vary based on the choice of interpolation method and the data-set. 
This can have a huge impact in mining situations where volume 
calculations are based on the DTM created. The selected method 
must also incorporate both data interpolation and extrapolation. 
Although the IDW methods are most commonly employed for 
DTM creations in mining, this study shows that the results are 
strongly influenced by the search radius and the power factor of 
IDW. In general, kriging and natural neighbour produced better 
results for extrapolation, as these techniques do not overestimate or 
underestimate the data-points. The selection of any method must 
take into account various interpolation techniques and then gauge 
their benefits before finalizing a specific interpolation method for 
DTM creation. For our data-set, the natural neighbour interpolation 
method produced the best estimates. 

For future research, the authors plan to compare the findings 
with a high-resolution satellite image or through field visits for 
higher fidelity. This, along with detailed statistical analysis and 
simulations, will help further refine the technique. These findings 
should help field mining and exploration engineers to produce 
better resource and volume estimates.

set was large and closely spaced enough to provide the best estimate. 
All the interpolation methods produced very close estimates of the 
Z values.

As inverse distance weighting is a popular interpolation method 
for DTMs created for mining purposes because of its simplicity 
to comprehend and use, we compared the three inverse distance 
weighted estimates (EST_IDW1, EST_IDW2, and EST_IDW3). 
Among these, the inverse distance squared method (EST_IDW2) 
proved to be the best estimator for the given set of data (R2 = 0.530, 
β = 0.728, P < 0.0001) (Table II).

Conclusions
An overview of the common interpolation techniques used for 
creating digital terrain models (DTMs) in mining was presented. 
Asample data-set from an actual mine site was interpolated and 
extrapolated using inverse distance weighting (IDW), splines, 
kriging, and natural neighbour techniques in Surfer® 9. The results 
showed that the creation of a DTM is not a straightforward exercise, 
and one must be careful in selecting the method, as the results 

  Coefficientsa

   Model                                               Unstandardized coefficients  Standardized coefficients t Sig. 
 B Std. error Beta  

   1 (Constant) -13.142 3.422  -3.841 0.000
      EST_NNI 1.028 0.007 0.984 143.151 0.000

aDependent variable: Z_actual

   Table I

   Stepwise regression analysis predicting Z for five interpolation methods

   Model summary 
   Model R R2 Adjusted R2 Std. error of the estimate

   1 0.984a 0.969 0.969 0.97133

aPredictors: (Constant), EST_NNI

  Coefficientsa

   Model                                               Unstandardized coefficients  Standardized coefficients t Sig. 
 B Std. Error Beta  

   1 (Constant) 37.324 15.851  2.355 .019
      EST_IDW2 .921 .033 .728 27.700 .000

aDependent variable: Z_actual

   Table II

   Stepwise regression analysis predicting Z for inverse distance weighting interpolation methods

   Model summaryb 
   Model R R square Adjusted R square Std. error of the estimate

   1 0.728a 0.530 0.529 4.03066

aPredictors: (Constant), EST_NNI 
bDependent variable: Z_actual
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