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Prediction of ground vibrations induced 
by bench blasting using the random forest 
algorithm
N. Dzimunya1, B. Besa2, and R. Nyirenda1

Synopsis
The accurate estimation of peak particle velocity (PPV) is crucial during the design of bench 
blasting operations in open pit mines, since the vibrations caused by blasting can significantly 
affect the integrity of nearby buildings and other structures. Conventional models used to predict 
blast-induced vibrations are not capable of capturing nonlinear relationships between the different 
blasting-related parameters. Soft computing techniques, i.e., techniques that are founded on the 
principles of artificial intelligence, effectively model these complexities. In this paper, we use the 
random forest (RF) algorithm to develop a model to predict blast-induced ground vibrations 
from bench blasting using 48 data records. The model was trained and tested using WEKA data-
mining software. To build this model, a feature selection process using several combinations of 
Attribute Evaluators and Search Methods under the WEKA Select Attributes tab was performed. 
The correlation coefficient of the actual data and RF model-predicted data was 0.95, and the 
weighted average of the relative absolute error (RAE) was 10.9%. The RF model performance was 
also compared to the equivalent-path-based (EPB) equation on the testing data-set, and it was seen 
that the RF model can effectively be used to predict PPV. The study also demonstrates that the EPB 
equation is a suitable empirical method for predicting PPV.  
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Introduction 
Blasting is the most common means of fragmenting rock in mining and construction projects. In some 
cases, blasting is performed in close proximity to buildings and other structures, where the vibrations 
caused can significantly affect the integrity of these structures. The peak particle velocity (PPV) is the most 
important parameter generally used to evaluate ground vibrations in blasting sites (Jiang et al., 2019).  
Accurately evaluating and predicting the PPV, and then optimizing the blast design, helps to minimize the 
damage caused by blasting vibrations (Longjun et al., 2011). 

The intensity of blast-induced ground vibrations is commonly evaluated by regression analysis using 
the Sadaovsk (Li, Ling, and Zhang, 2009), US Bureau of Mines (Duval and Fogelson, 1962), Langefors-
Kihlstrom (Langefors and Kihlstrom, 1963), and the Indian Standard (Bureau of Indian Standards, 1973) 
formulae. The general form of all these conventional methods is presented in Equation [1]:

[1]

where 
PPV is peak particle velocity (cm/s) 
Q is maximum explosive charge (kg)
R is the distance between the explosion source and the measuring point (m)
K, β, and α are site-specific constants that are related to the blasting conditions and rock characteristics. 

There are many factors that influence blast vibrations, and mathematical techniques do not accurately 
model all these factors. As a result, several other techniques have been developed to find a more efficient 
method for predicting blast-induced ground vibrations. Many researchers have employed soft computing 
for this purpose. Soft computing refers to a group of computational techniques that are founded on the 
principles of artificial intelligence. These methods can effectively handle the complexities that arise from the 
nonlinear relationships between the variables that influence blasting. Methods that have been explored to 
improve the study of PPV include: 
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➤  Artificial neural networks (ANNs) (Amnieh, Mozdianfard, 
and Siamaki, 2010; Amnieh, Siamaki, and Soltani, 2012; 
Azimi, Khoshrou, and Osanloo, 2019; Das, Sinha, and 
Ganguly, 2019; Jiang et al., 2019; Kamali and Ataei, 2010; Kosti 
et al., 2013; Ragam and Nimaje, 2019; Sayadi et al., 2013)

➤  Other machine-learning studies (Lawal, Olajuyi, and Kwon, 
2021; Longjun et al., 2011) 

➤  Numerical methods (Ducarne et al., 2018; Kumar et al., 2020; 
Nguyen and Gatmiri, 2007)

➤ Multivariate analysis (Hudaverdi, 2012) 
➤ Empirical analysis (Hu and Qu, 2018) 
➤ Bayesian approach (Aladejare, Lawal, and Onifade, 2022).

Diverse parameters are used differently in building soft 
computing methods. Das, Sinha, and Ganguly (2019) developed 
an ANN model utilizing the following parameters: rock density, 
number of holes, hole diameter, hole depth, burden, spacing, charge 
length, stemming length, maximum explosive charge per delay, 
charge, distance of monitoring point from face, Young’s modulus, 
Poisson’s ratio, P-wave velocity, and density of explosive. Longjun et 
al. (2011) compared the performance of support vector machines 
and the random forest (RF) algorithm utilizing the following: 
maximum amount of charge at one time, total amount of charge, 
horizontal distance, elevation difference, front row resistance line, 
presplit penetration ratio, integrity coefficient, angle of minimum 
resistance line to measured point, and detonation velocity.

Mostly ANNs have been utilized in blast-induced vibration 
predictions, and it is critical to explore the performance of 
other machine-learning algorithms. This should be extended by 
investigating the performance of these algorithms using different 
blasting and rock mass parameters to effectively model blast-
induced ground vibrations. In this paper, the parameters modified 
by Hu and Qu (2018) in developing their equivalent-path-based 
(EPB) equation have been used to build a PPV prediction model 
using the RF algorithm. This method was chosen because Hu 
and Qu implemented a unique way of interpreting the distance 
between the blasting and vibration measurement points, along 
with the inclusion of pertinent properties such as those concerning 
explosive energy release and rock mass properties. To optimize 
the performance of the model, a feature selection procedure is 
also utilized to develop the best feature subset. The RF model 
performance is then compared to the results from the EPB equation. 

Literature review
A brief description of the EPB equation and RF is presented in this 
section. The underlying rationale of choosing to compare these 
two methods for predicting PPV was that unique parameters were 
introduced in deriving the EPB equation and thus it is fundamental 
to use these parameters in developing machine-learning models. 
This may improve the accuracy of PPV prediction. RF was chosen 
because it is a widely used algorithm, and the same data-set that was 
used to test the EPB equation was used to develop the RF model, as 
will be described later.   

EPB equation
The general form of the blast-induced ground vibration formula is 
illustrated in Equation [1]. To modify and improve the predictive 
power of this equation, Hu and Qu (2018) developed the EPB 
equation. Blast-induced ground vibrations arise from the energy 
released by the detonating explosives. Since the energy is related 
to the type of explosive, Hu and Qu concluded that the energy 
release properties of the explosive should be included in the final 

formula. The explosion heat of the explosive (Qv) was the parameter 
suggested to represent this relationship. Hu and Qu also proposed 
the use of an equivalent propagation path (i.e. a series of straight-
line segments P0P1, P1P2, P2P3, ..,PxPx+1 as indicated in Figure 1) of 
the seismic wave, as opposed to the horizontal distance previously 
used.

The concept of equivalent path seems reasonable as opposed to 
taking the distance travelled by the seismic wave as a straight line 
(as assumed in previous studies). If the measurements are taken 
on a flat surface, the idea of representing the path travelled by the 
seismic wave as a straight line is valid (Figure 2). 

However, the topography on an open pit mine (Figure 1) is 
more complex and it is very unlikely that the vibration waves will 
travel along a straight line to the geophones positioned on the slopes 
or anywhere outside the pit. The seismic wave will travel, within 
the ground, to the measuring points and it will never be propagated 
through the void above the pit floor and sides. Hu and Qu therefore 
assumed that the shortest possible path that the seismic wave 
travels beneath the ground can be utilized as the distance from 
detonation to measuring point. This shortest distance was then 
used to represent R in Equation [1]. This was termed the 'equivalent 
distance', and the procedures for determining this distance are given 
in Hu and Qu (2018). However, the interactions between blast-holes 
and their influence on the equivalent path was not considered. 

Impedance of the rock mass was also included in formulating 
the EPB equation. The impedance was defined by Hu and Qu (2018) 
as

                                                                                     [2]
where 
z is the impedance
ρ is the rock density (g/cm3)
 cm is the longitudinal wave propagation velocity of the rock mass 
(m/s) 
 η is the integrity factor of the rock mass [η=(cm⁄cr)2 and cr is the 
longitudinal wave propagation of the rock (m/s)]. 

The PPV and impedance were said to be negatively correlated. 
Since impedance is the effective resistance of the rock mass to 
propagation of the waves, it follows that the higher the impedance of 
the rock mass the lower the PPV. Following this parametric analysis, 
the EPB equation (Equation [3]) was proposed (Hu and Qu, 2018) 
as:

Figure 1—The equivalent path (red line) on a bench-like surface (Hu and Qu, 
2018)

Figure 2—Schematic of blast vibration measurement on a flat surface
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 [3]

where 
i = 0, 1, 2, 3… 
PPV is peak particle velocity (cm/s)
Q is the maximum explosive charge fired per delay (kg) 
Qv is the explosion heat of the explosive at constant volume (kJ/kg) 
Ri is the equivalent distance (m)
θi is the intersection angle of the wave propagation direction to the 
ground surface at Pi (degrees)
ρi is the density of the rock on the equivalent path (g/cm3) 
ηi is the integrity coefficient of the rock mass. 

The general structure of the EPB equation is very similar to that 
of Equation [1]. However, the parameters in the EPB equation have 
been improved and modified to closely represent the phenomena. 
Of much importance is the representation of R in Equation [1] as 
the equivalent distance, Ri. The explosion heat of the explosive (Qv) 
has also been accommodated in the EPB equation. Site-specific 
rock mass chartacteristics that influence how seismic waves travel 
in rocks have also been included in the equation. These rock mass 
characteristics were chosen by Hu and Qu as the impedance and the 
density of the rock. A detailed analysis of the development of the 
EPB equation and how θi can be incorporated into the equation is 
presented in Hu and Qu (2018).  

RF algorithm
To easily comprehend the brief description of the RF algorithm, 
definitions of a few machine-learning technical terms that will 
feature in the narrative are presented here.
➤  Attributes/features/predictors – These are basically the columns 

of a data-set, and they represent a separate measurable 
characteristic of the parameter being investigated. In other 
words, these are a characteristic of an instance (individual 
rows in the data-set).

➤ Base learners – Individual models that constitute an ensemble.
➤  Bootstrap sampling – A statistical technique that involves 

random subsampling with replacements.
➤  Class – The parameter that is being predicted (in this case the 

PPV).
➤  Classifier – An algorithm that learns from the data and then 

makes predictions.
➤  Decision tree (DT) – A flow chart-like tree that displays the 

several outcomes from a sequence of decisions. It is used 
as a decision-making tool from given data. DTs have three 
main parts: a root node, internal nodes, and leaf nodes. The 
root node is the starting point of the tree, and it contains all 
the input data. An internal node can comprise two or more 
branches (arrows connecting nodes) and is related with a 
decision function. A leaf node represents the target/output 
of a given input vector and denotes a class label. Figure 3 is a 
simple example of a DT showing when it is possible to blast 
in an open pit (Yes) and when it is not possible to blast (No) 
given various weather combinations. 

➤  Ensemble – A group of different base models whose individual 
predictions are combined to produce one optimal predictive 
model.

➤  Entropy – A technique used in machine-learning to determine 
how a DT chooses to split data at nodes.  

➤  Gini impurity – Another technique which performs similar 
functions as entropy to build DTs.

➤  Overfitting – This is a challenge in machine-learning where 
an algorithm can fit the training data very well but fails to 
generalize to make predictions on new data. In DTs it is caused 
by developing too deep trees (trees with many internal nodes).

Thus, RF is a machine-learning algorithm that consists of 
growing an ensemble of DTs for accomplishing classification/
regression on a given data-set. Ensemble learning defines all the 
techniques that use numerous base learners (DT1, DT2, ..., DTk 
in Figure 4), then combines their individual outputs to produce 
a single classifier. The base learners combine their outputs by a 
majority vote technique in classification or through averaging in 
regression. The RF algorithm is described as an variation of bagging 
which creates a forest of de-correlated trees and averages their 
predictions (Breiman, 2001). DT models commonly suffer from 
overfitting (high variance) and thus averaging out predictions from 
multiple DTs leads to a decrease in overall variance. The practise of 
growing these DTs is centred on bagging (bootstrap aggregation), 
which is a procedure for decreasing the variance of an estimated 
prediction function. Here, bagging principally encompasses 
generating several data subsets from the training data by bootstrap 
sampling (random subsampling with replacement) and selecting 
random subsets of predictor variables. Each of these data subsets, of 
similar distribution, is then utilized to independently train a DT. 

Additionally, for each tree, only a random subset of predictors/
features is used for developing the decision model. For each tree 
thus created, a predictor is selected to accomplish a decision-split 
at a particular node. This is generally performed based on either 
the information gain/entropy or the Gini impurity that selects 
the best predictor for that node. This procedure is iterated at each 
node in a DT and consequently several trees are trained. Ultimate 
prediction decisions are reached based on averaging (for regression) 
or majority voting (for classification) of individual tree predictions. 

Figure 3—Flow chat of a DT structure

Figure 4—Structure of an RF algorithm for regression
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Since data subsampling and predictor subsampling for each tree is 
carried out randomly on a forest of trees, this algorithm is termed 
RF. Figure 4 is an example of the structure of an RF algorithm for 
regression.

Data-set
The data-set utilized to evaluate the usefulness of the RF algorithm 
in predicting blast-induced ground vibrations was developed from 
the seismic monitoring measurements carried out by Hu and Qu 
(2018) at Si-Jia-Ying iron ore mine in China. This mine is a large-
scale open pit operation which uses multi-hole millisecond delay 
bench blasting. The features of the data-set and their corresponding 
notations are listed in Table I. In this case the PPV is the class 
attribute. This data-set was chosen for the current study because it 
is the same as that used to develop and test the EPB equation. This 
consistency will ensure that the comparisons undertaken between 
the EPB equation and the RF model will be reasonable and reliable.

A total of 48 instances/data-points forms the data-set, as 
indicated in Table ll. 

Table II

Data-set
Q_Em

(kg)
Q_ANFO

(kg)
Qv_Em
(kJ/kg)

Qv_ANFO
(kJ/kg)

Ri 
(m)

cm
(m/s)

cr
(m/s)

ρ
(g/cm3)

η
(-)

PPV
(cm/s)

540 360 3200 3840 289.24 3.980 5.17 3.052 0.593 1.09
540 360 3200 3840 382.14 3.980 5.17 3.052 0.593 0.58
540 360 3200 3840 634.58 3.980 5.17 3.052 0.593 0.29

0 750 0 3840 149.86 3.945 5.01 2.577 0.620 2.74
0 750 0 3840 220.59 3.945 5.01 2.577 0.620 1.61
0 750 0 3840 648.85 3.702 5.16 3.188 0.515 0.13

450 0 3200 0 357.12 3.537 5.07 3.019 0.487 0.60
450 0 3200 0 289.47 3.537 5.07 3.019 0.487 0.97
450 0 3200 0 298.45 3.702 5.16 3.188 0.515 0.80
270 450 3200 3840 553.66 3.945 5.01 2.577 0.620 0.43
270 450 3200 3840 553.66 3.945 5.01 2.577 0.620 0.49
270 450 3200 3840 741.59 3.945 5.01 2.577 0.620 0.25

0 450 0 3840 115.87 3.980 5.17 3.052 0.593 3.15
0 450 0 3840 115.87 3.980 5.17 3.052 0.593 3.15
0 450 0 3840 453.41 3.702 5.16 3.188 0.515 0.20
0 450 0 3840 525.28 3.702 5.16 3.188 0.515 0.22

400 0 3200 0 211.49 3.702 5.16 3.188 0.515 1.03
400 0 3200 0 104.76 3.537 5.07 3.019 0.487 4.81
400 0 3200 0 221.05 3.537 5.07 3.019 0.487 1.47
400 0 3200 0 268.41 3.537 5.07 3.019 0.487 1.44

0 480 0 3840 470.39 3.702 5.16 3.188 0.515 0.34
0 480 0 3840 447.12 3.702 5.16 3.188 0.515 0.42
0 480 0 3840 376.82 3.702 5.16 3.188 0.515 0.70
0 480 0 3840 354.03 3.702 5.16 3.188 0.515 0.66
0 480 0 3840 337.21 3.537 5.07 3.019 0.487 0.63
0 480 0 3840 262.48 3.537 5.07 3.019 0.487 1.57
0 480 0 3840 147.77 3.537 5.07 3.019 0.487 4.01
0 480 0 3840 517.29 3.702 5.16 3.188 0.515 0.17

Table I

Features comprising the data-set
Feature Description Units

Q_Em Maximum explosive charge fired per delay for 
emulsion

kg

Q_ANFO Maximum explosive charge fired per delay for 
ANFO

kg

Qv_Em Explosion heat of explosive at constant volume 
for emulsion

kJ/kg

Qv_ANFO Explosion heat of explosive at constant volume 
for ANFO

kJ/kg

Ri Equivalent distance from point of detonation to 
measuring point

m

cm Longitudinal wave velocity of the rock mass m/s
cr Longitudinal wave velocity of the rock m/s
r Density of the rock g/cm3

h Integrity coefficient of the rock mass  
(η = (cm/cr)2)

-

PPV Peak particle velocity cm/s
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RF model formulation
The PPV prediction model was developed using Waikato 
Environment for Knowledge Analysis (WEKA) software (Hall et 
al., 2009). WEKA is a handy and powerful machine-learning and 
data-mining software application that can assist users to understand 
acquired data better. The software incorporates powerful data 
analysis tools that can be used to extract useful information from 
large sums of data and develop machine-learning models.

Feature selection 
Raw machine-learning data-sets consist of a mixture of features/
attributes, some of which are irrelevant to making accurate 

Q_Em
(kg)

Q_ANFO
(kg)

Qv_Em
(kJ/kg)

Qv_ANFO
(kJ/kg)

Ri 
(m)

cm
(m/s)

cr
(m/s)

ρ
(g/cm3)

η
(-)

PPV
(cm/s)

0 480 0 3840 423.72 3.702 5.16 3.188 0.515 0.31
0 480 0 3840 400.92 3.537 5.16 3.188 0.470 0.39
0 480 0 3840 309.38 3.702 5.16 3.188 0.515 0.59
0 480 0 3840 122.32 3.980 5.17 3.188 0.593 4.34
0 480 0 3840 61.31 3.537 5.07 3.019 0.487 9.89
0 480 0 3840 119.24 3.537 5.16 3.188 0.470 4.16

700 0 3200 0 56.21 3.980 5.17 3.052 0.593 14.65
400 0 3200 0 394.89 3.702 5.16 3.188 0.515 0.28
400 0 3200 0 413.52 3.702 5.16 3.188 0.515 0.19
400 0 3200 0 430.51 3.702 5.16 3.188 0.515 0.15
400 0 3200 0 483.05 3.702 5.16 3.188 0.515 0.13

0 450 0 3840 102.20 3.980 5.17 3.052 0.593 4.82
0 450 0 3840 133.71 3.980 5.17 3.052 0.593 2.23
0 450 0 3840 285.21 3.980 5.17 3.052 0.593 0.46
0 450 0 3840 301.00 3.980 5.17 3.052 0.593 0.43
0 450 0 3840 321.78 3.980 5.17 3.052 0.593 0.44
0 450 0 3840 232.92 3.702 5.16 3.188 0.515 0.46
0 420 0 3840 153.24 3.702 5.16 3.188 0.515 3.40
0 420 0 3840 171.88 3.702 5.16 3.188 0.515 3.42
0 420 0 3840 216.99 3.702 5.16 3.188 0.515 1.92

predictions. Thus, one of the most important exercises in building 
machine-learning models is to identify the most influential 
attributes to include in the model. The process of selecting relevant 
features from the data is called feature selection. In the WEKA 
software platform this procedure is performed under the Select 
Attribute tab in WEKA Explorer. Figure 5 is a screenshot of the 
WEKA home screen with the Explorer tab marked in red. 

When the Explorer tab is selected the dialog indicated in Figure 
6 is displayed. The Preprocess tab is used to load the data-set into 
the software, the Classify tab is available to the user to enable the 
construction of different machine-learning models for prediction 
and classification tasks and the Select Attributes tab is used for 

Figure 5—Screenshot of WEKA home screen

Table II (continued)

Data-set
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feature selection. The Select Attributes tab hosts all the techniques 
necessary to accomplish feature selection. Figure 7 shows the dialog 
that's displayed to the user when the Select Attributes tab is selected. 
The Choose tabs (circled in red) enable the user to select different 
combinations of Attribute Evaluators and Search Methods and with 
the data-set preloaded into the software, the best feature subset is 
displayed in the Attribute Selection Output window.  

In WEKA, feature selection is basically divided into two parts 
(Attribute Evaluator and Search Method). Each of these two sections 
presents several techniques for accomplishing the feature selection 
process. Attribute Evaluator is the technique by which each attribute 
(also called a column or feature) in a data-set is weighed in the 
context of the output variable (also known as the class). Search 
Method, on the other hand, navigates several combinations of 
features in the data-set to arrive at a short list of selected features. 
Each Attribute Evaluator technique should be used together with a 
Search Method, and some Attribute Evaluator techniques require the 
use of specific Search Methods.

The techniques used to perform feature selection in this study 
are described in Tables lll and IV.

Table V indicates the combination of techniques used to select the best 
features for the RF model. 

Based on the outcomes in Table V and from analysis of variables 
as they are used in empirical formulae, the RF model was trained 
and tested using the following features: Ri, Q_Em, Q_ANFO, Qv_
ANFO, Qv_Em and cm. Explosives properties, distance to measuring 
point, and rock mass characteristics influence PPV. From Table V, ρ, 
Qv_Em and cr have been rendered redundant. Therefore, the feature 
to represent rock mass characteristics was concluded to be cm. This 
is because η, though present in Table V, was not included because 
it is dependent on cm (already included) and cr (redundant feature). 
Thus, the inclusion of η into the feature set will not add any value 
to the model performance. Qv_Em was included mainly because 
Qv_ANFO is present in Table V and thus a balanced representation 
of all the explosive types used was assumed reasonable. 

RF model
In supervised learning, the performance of a classifier needs to be 
measured on a given data-set before using it to predict the class 
of a new project (Zhou, Xibing, and Hani, 2015). To satisfy this 
criterion, the original data-set is randomly split into two subsets: a 
training set and a testing set. The training set is used to construct 
the model and to set the model parameters, while the testing set is 
used as an independent validation set for assessing the performance 

Figure 6—WEKA Explorer dialog

Figure 7—Select Attributes screenshot



Prediction of ground vibrations induced by bench blasting using the random forest algorithm

129The Journal of the Southern African Institute of Mining and Metallurgy VOLUME 123 MARCH 2023

Table III

Search methods used for feature selection
Search method Description

GeneticSearch Performs a search using the simple genetic algorithm. Genetic algorithm is a search-based optimization method 
that is based on the principles of genetics and natural selection.

BestFirst Searches the space of attribute subsets using a method called greedy hill climbing. Hill climbing involves either 
adding or removing of a feature from the data-set at a time. BestFirst may start with the empty set of attributes 
and add attributes (forward search) or start with the full set of attributes and remove attributes (backward search). 
If the addition or deletion of a feature does not change the predictive performance of the model, that feature is 
assumed redundant. 

ExhaustiveSearch Achieves a comprehensive search through the space of attribute subsets, beginning with an empty set of attributes. 
It registers the best subset found.

GreedyStepwise Executes a greedy forward or backward search through the space of attribute subsets. May start with no/all features 
or from an arbitrary point in the attribute space. Breaks when the addition/deletion of any remaining features 
results in a decrease in evaluation. 

Ranker Ranks features according to their individual assessments.

Table IV

Attribute evaluators used for feature selection
Attribute evaluator Description

WrapperSubsetEval Assesses sets of attributes by utilizing 
a learning scheme. Cross-validation is 
exploited to approximate the accuracy of 
the learning scheme for a set of attributes.

CorrelationAttributeEval Evaluates the worth of a feature by 
determining its correlation with the class 
variable.

and predictive power of the model. In this study, the data-set was 
split into 70% training set and the remaining 30% was used as the 
testing set. 

In WEKA, hyperparameter tuning is very important when 
building a model. Hyperparameters, in machine-learning, are a 
set of parameters that control the behaviour of a model, and these 
parameters are set/tuned before the training of a model starts. The 
tuning of these parameters is important because it determines how 
well a model is going to learn from the training data, thus enabling 
best performances to be achieved. The key hyperparameter for RF 
is the number of attributes to consider at each split point. In WEKA 
this parameter is controlled by the numFeatures attribute. In the 
previous feature selection exercise, six features were selected and 

Table V

Feature selection combinations and feature subsets
Attribute evaluator Search method Set of attributes

WrapperSubsetEval

GeneticSearch Ri, Q_Em
BestFirst Ri

ExhaustiveSearch Q_ANFO, Ri, cm, η
GreedyStepwise Ri

CorrelationAttributeEval Ranker Ri, Q_Em, Qv_ANFO, 
Q_ANFO, η, cm

Figure 8—RF model performance on the testing set

thus the best model involved using all these parameters. Therefore, 
numFeatures hyperparameter was set to 6 as it yielded the highest 
correlation coefficient. The other hyperparameters were left on 
default settings.

The RF model performance was then compared to the EPB 
equation to evaluate its predictive power and possibility of future 
use when employing the parameters from the EPB equation as data-
set features. 

Results and discussion
The aim of this investigation was to utilize the parameters 
that constitute the EPB equation and develop and evaluate the 
performance of the RF algorithm from a data-set formulated from 
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these parameters. These parameters are equivalent distance (Ri), 
maximum explosive charge per delay (Q), explosion heat of the 
explosive (Qv), and longitudinal wave velocity of the rock mass (cm).

The correlation coefficient of the RF model was 0.95, indicating 
that this model is suitable for predicting blast-induced ground 
vibrations using equivalent distance (Ri), maximum explosive 
charge per delay (Q), explosion heat of the explosive (Qv), 
and longitudinal wave velocity of the rock mass (cm) as model 
parameters. The model-predicted PPVs are plotted against the 
actual values in Figure 8. The agreement is excellent, demonstrating 
that the RF model is fitted well on the training data-set. As 
previously highlighted, the model was built by splitting the data into 
70% training set and the remaining 30% as the testing set. Thus, 14 
data-points were available to test the model.

WEKA also gives a summary of the predictive errors of the 
model, including mean absolute error (MAE), root mean squared 
error (RMSE), and relative absolute error (RAE). If the RMSE and 
MAE are zero, then the model will be perfect, i.e., both values 
should be minimized. The RF model and the EPB equation results 
were compared on the test set as indicated in Table VI. Instead of 
the arithmetic mean, the overall RAE for each set of predictions was 
computed using the weighted average (Equation [4]) because this 
approach is reasonably appropriate for regression problems where 
statistical dispersion is expected between data-points. 

 [4]

It can be seen from Table VI that the predicted values and actual 
values obtained from RF model are of relatively low comparative 
error. The overall RAE for the RF model was 10.9%, indicating 
that the model is sufficiently capable of predicting blast-induced 
vibrations within a reasonable range of errors.

The RF model has better prediction capabilities than the EPB 
equation. This is indicated by an overall RAE of 10.9% for the RF 
model against 14.8% for the EPB equation. The RF model performs 
better because it is a soft computing technique and can capture 
nonlinear relationships between the various blasting-related 
parameters. The slightly lower prediction performance of the EPB 
equation can be attributed to the inability of mathematical methods 
to capture the nonlinear relationships between multiple influencing 
parameters.

The EPB equation has demonstrated that it can produce 
results that are not far out of range. Good corelation, in general, is 
indicated by errors of 10% or lower. The 10.9% RAE achieved by the 
RF model is reasonably close to 10% and the slightly higher margin 
could be attributed to the relatively small data-set used to train and 
test the model. It would be of great value to combine the data-set 
used here with similar data from Zimbabwe and neighbouring 
regions in order to undertake further studies. This would have the 
potential to improve the prediction of PPV using the RF algorithm.

To visualize the comparison more clearly, values of PPV for both 
models were plotted as shown in Figure 9. The result proves that 
the established RF model is reasonable and reliable in predicting 
PPV for bench blasting using equivalent distance (Ri), maximum 
explosive charge per delay (Q), explosion heat of the explosive (Qv), 
and longitudinal wave velocity of the rock mass (cm) as predictor 
variables. Figure 9 shows that the RF model gives a better prediction 
of the PPV on the test data-set.

The relationships of the four parameters selected for the model 
with PPV are briefly described as follows. 
➤  The prime factor is the equivalent distance (Ri). There is a 

direct relationship between equivalent distance and the PPV 
as it appeared in all the methods used for feature selection. 
However, this parameter had an individual correlation 

Table VI

Actual data compared to RF model and EPB equation predictions

No. Actual PPV
EPB equation RF model

Predicted PPV RAE (%) Predicted PPV RAE (%)

1 0.46 0.58 26.1 0.60 30.4

2 0.58 0.76 31.0 0.34 41.4

3 0.70 0.45 35.7 0.49 30.0

4 0.97 0.64 34.0 0.90 7.2

5 0.49 0.46 6.1 0.34 30.6

6 1.47 1.41 4.1 1.42 3.4

7 1.92 1.42 26.0 1.61 16.2

8 0.20 0.27 35.0 0.28 40.0

9 2.23 2.34 4.9 2.08 6.7

10 0.43 0.53 23.3 0.58 34.9

11 4.16 3.58 13.9 4.08 1.9

12 3.40 3.66 7.6 3.36 1.2

13 0.44 0.47 6.8 0.60 36.4

14 0.43 0.46 7.0 0.30 30.2

Overall, RAE -- 14.8% 10.9%
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coefficient of -0.66 with PPV. Logically, this is because the 
magnitude of the vibration naturally decreases away from the 
detonation point. 

➤  The second factor is maximum explosive charge per delay 
(Q). The magnitude of PPV is directly proportional to Q. An 
increase in the quantity of explosives used during blasting 
results in stronger ground vibrations being caused. 

➤  The vibrations also depend on the energy properties of the 
individual explosives used, expressed as the explosion heat 
of the explosive (Qv). The greater the energy contained in 
an explosive, the more likely it is to cause stronger ground 
vibrations.

➤  Finally, the site-specific characteristics of the rock mass play a 
key role. This is represented by the longitudinal wave velocity 
of the rock mass (cm). This parameter, plus the density of the 
rock (ρ), influences the impedance of the rock mass and the 
PPV is inversely proportional to ground impedance.

A complex relationship among predictor variables can 
complicate the prediction of PPV in blasting activities. Therefore, 
selecting a robust method to develop a PPV prediction model 
that can cover all the inherent complexity of the problem is very 
important. RF for regression, in most cases, shows lower average 
errors and superior predictive performance compared to the other 
advanced regression algorithms. In this study, RF has proved to be 
an accurate predictor of PPV in bench blasting scenarios, based on 
the features chosen for evaluation. However, this should be further 
verified by integrating other local data-sets with the one used in this 
study.

Conclusions
Very accurate estimation of PPV is crucial for the design of 
appropriate bench blasting practices in open pit mining projects, 
since the vibrations caused by blasting can significantly affect the 
integrity of nearby buildings and other structures. Conventional 
methods have been used to predict these blast-induced vibrations. 
Artificial neural networks (ANNs) have also been developed, 
resulting in more accurate predictions. To fully understand this 
phenomenon, it is critical to explore different machine-learning 
algorithms and evaluate their performances using different sets 
of predictors (model input parameters). A random forest (RF) 

Figure 9—Comparison of measured and predicted data for the EPB equation and RF model

model was developed using equivalent distance (Ri), maximum 
explosive charge per delay (Q), explosion heat of the explosive (Qv), 
and longitudinal wave velocity of the rock mass (cm) as predictor 
variables. The RF model was found to consistently predict PPV 
to within a reliable range of accuracies. The model displayed a 
correlation coefficient, between actual and predicted PPV values, 
on the test set of 0.95 and an overall relative absolute error (RAE) 
of 10.9%. The performance of the RF model was compared to 
that of the equivalent-path-based (EPB) equation. The EPB 
equation yielded an overall RAE of 14.8%, and thus RF model 
displayed better prediction capabilities. This study also confirms 
the usefulness of the EPB equation, as well as the effectiveness of 
the parameters used in the EPB equation, in formulating more 
comprehensive data-sets for future use with various algorithms. 

The outcomes of this study can be applicable to open pit 
mines in Zimbabwe and the neighbouring regions. This can be 
done by integrating local databases into the data-set and using a 
similar approach as described in this study. This may improve the 
performance of the RF model. Further studies are necessary to 
confirm this proposition.
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