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Numerical simulation of large-scale pillar-
layouts
J.A.L. Napier1 and D.F. Malan1

Synopsis
A number of shallow coal or hard rock mines employ pillar mining systems as a strategy for 
roof failure control. In certain platinum mine layouts, pillars are designed to ‘crush’ in a stable 
manner as they become loaded in the panel back area. The correct sizing of pillars demands 
some knowledge of the pillar strength and the overall layout stress distribution. It is particularly 
important to understand the impact of the layout geometry on the effective regional ‘stiffness’ 
of the rock mass around each pillar. An important design strategy is to model relatively detailed 
layout configurations which include a precise representation of the local pillar layout geometry 
and to analyse multiple mining scenarios and extraction sequences to select optimal pillar sizes 
and barrier pillar spacing. Although computational solution techniques are now impressive in 
terms of run time efficiency, a major difficulty is often encountered in assigning suitable material 
properties to the pillars and in devising an effective material description of the layered rock strata 
overlying the mine excavations. This paper outlines an efficient numerical strategy that can be 
used to assess large-scale pillar layout performance while retaining the ability to modify individual 
pillar constitutive behaviour. The proposed method is applied to selected layouts to compare 
estimated average pillar stress values against values determined by detailed modelling and against 
observed behaviour. 
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Introduction 
The displacement discontinuity boundary integral equation method has been applied successfully to 
the solution of tabular mine layout problems in South Africa for many decades (e.g. Plewman, Deist, 
and Ortlepp, 1969; Deist, Georgiadis, and Moris, 1972; Ryder and Napier, 1985). A particular class 
of applications relates to the solution of pillar layout problems which exhibit a number of multi-scale 
numerical features (Malan and Napier, 2006; Napier and Malan, 2021; Couto and Malan, 2022). Extensive 
mining operations can comprise thousands of individual pillars (Figure 1). The layout design demands an 
understanding of both the individual pillar deformations and failure mechanisms as well as assessment 
of the overall layout stability properties. which must be recognized to prevent large-scale pillar collapses. 
Individual pillar strength and failure response can be estimated using local fine-scale models of a single 
pillar employing either detailed displacement discontinuity simulations in which the pillar height effects are 
modelled indirectly, or finite element or finite difference models of the pillar height and a selected portion of 
the hangingwall and footwall in a limited volumetric region surrounding an individual pillar, (Esterhuizen, 
2014; Li et al., 2021). In the latter case the main difficulty is that some explicit assumptions have to be made 
about the loading conditions on the selected volume-bounding surfaces. A crucial analysis step is then 
required to infer how the individual detailed response is incorporated into the overall layout configuration 
which addresses regional issues such as the positioning of barrier pillars and, in certain cases, multiple seam 
extraction sequences.

The main advantage of the boundary element approach as opposed to finite element or finite difference 
analysis is the reduction of the numerical analysis space from three to two dimensions. However, even with 
this significant advantage it can be an arduous task to set up models of large-scale pillar layout problems 
comprising several thousand pillars and simultaneously requiring a sensitive response to individual pillar 
failure characteristics. For example, if a layout comprises 5000 pillars and if the allocated tributary unit 
cell area surrounding each pillar is tessellated using 20 × 20 = 400 elements, then the overall layout area is 
covered by two million elements. The use of finer grid sizes becomes progressively more prohibitive in total 
computational effort. In this paper we address this problem by proposing a numerical strategy to represent 
each pillar ‘cell’ as a single composite element equipped with an appropriate ‘effective stiffness’ constitutive 
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description. The composite element construction can allow the 
extraction ratio to be specified individually in each cell region, 
together with a specified pillar strength and residual strength which 
controls the pillar failure state. This approach yields a significant 
reduction in the problem specification detail by allowing the overall 
layout performance to be analysed in terms of the average load 
carried by each pillar and providing an indication of the overall 
pillar collapse potential. The detailed stress distribution and failure 
regions within individual pillars can be assessed by embedding sub-
models of selected local layout regions in a multi-scale simulation 
approach if required. This extension is not discussed in the present 
work.

Effective pillar stiffness model
A large-scale pillar layout will generally assume a nominally regular 
rectangular mesh pattern, which may include the periodic use of 
barrier pillars to limit the potential for extensive pillar collapses. In 
this paper we assume that each pillar is located within a unit cell 
which includes both the intact pillar and an allocated surrounding 
mined area. The proposed numerical scheme seeks to approximate 
the response of the unit cell to reflect the average seam closure 
and the average load carried by the pillar. The layout is assumed 
to fall in an approximately horizontal x-y coordinate plane with 
the z-axis normal to the plane. The stope closure is represented 
by the z-component of the displacement discontinuity vector. 
Ride components are not considered in the present development. 
The average stress component  in each unit cell is determined 
implicitly by the following relationship:

 [1]

where  is the average closure in the cell and  is the cell element 
self-effect stiffness modulus.  represents the sum of the average 
field stress at the centre of the unit cell and all ‘external’ stress 
values that are induced by the remaining layout cells and by other 
displacement discontinuity elements. The superscript C is used to 
distinguish quantities that are properties of each pillar cell region. 
The influence functions that are used to calculate the induced stress 

values have been described in detail by Napier and Malan (2007). 
For the special case of a rectangular displacement discontinuity 
element centred at the origin and having edge lengths 2a and 2b in 
the x and y directions respectively, it can be shown that the induced 
seam-normal traction component at a point R(x, y) in the plane is 
given by

 [2]

where E is the rock mass Young's modulus, v is the Poisson's ratio, 
and  is the assumed constant closure value. The influence 
function Iz (x, y, a, b)is defined by

 [3]

The self-effect stiffness modulus of the element is given by

 [4]

In the special case where the unit cell is a square with side 
length gc = 2a = 2b this expression becomes

 [5]

The case of a plane strain geometry can be represented by taking 
the limit b→∞ in Equation [4] and setting gc = 2a. In this case 
Equation [4] assumes the form

 [6]

Let the unit cell area be Ac and assume that the intact pillar area 
within the cell is Ap. The unit cell extraction ratio ec is therefore 
given by

 [7]

For the case of a plane strain geometry of parallel-sided panels 
separated by intervening strip pillars, define the unit cell width to be  
gc and let the pillar width be W. In this case Ac = gc and AP = W.

If a particular unit cell average stress is , the average stress 
acting on the unmined pillar area within the cell must satisfy the 
stress balance relationship.

 [8]

It is assumed further that the average unit cell stress  is 
related to the average unit cell closure  by a relationship of the 
form

 [9]

where kc is defined to be the ‘effective stiffness modulus’ of the unit 
cell. The minus sign in Equation [9] reflects the assumption that 

Figure 1—An illustration of the large number of pillars that can be found 
in bord-and-pillar layouts. The overall size of the layout shown here is 
approximately 500 m × 500 m
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compressive stress values are deemed to be negative. Substituting 
Equation [9] into Equation [1] allows the average cell closure to be 
expressed as

 [10]

The effective stiffness modulus kc  depends on the extraction 
ratio and on the local geometry of the intact pillar within the 
unit cell. The value of kc can be determined analytically for the 
special case of a regular, infinite train of strip pillars but must in 
general be ‘calibrated’ using a numerical sub-model of the detailed 
layout of each pillar cell. Once the effective cell stiffness values are 
established the overall pillar layout can be solved by recursively 
solving Equation [10] at each defined pillar cell element. It should 
be noted that this approximate scheme allows each pillar cell to have 
a unique extraction ratio ec and can be combined with elements 
that represent additional mining regions or fault structures. The 
computational saving that can be achieved relies on the assumption 
that an effective stiffness modulus can be determined for a few 
characteristic types of cell geometry and is controlled mainly by the 
unit cell extraction ratio.

The case of a plane strain horizontal layout comprising an 
infinite sequence of pillars of width W with pillar centre spacing gc 
was solved by Salamon (1968). Using Salamon's solution it can be 
inferred (see Napier, 1991) that the average closure in each pillar cell 
is given by

 [11]

where Qz is the vertical field stress at the excavation horizon. (The 
field stress is negative for compressive stress values.) The average 
pillar cell stress in the case of an infinite sequence of similar 
pillars is equal to the vertical field stress and consequently  = 
Qz. Employing Equations [9] and [11], the effective cell stiffness 
modulus is therefore deduced to be

 [12]

It is useful to scale the effective stiffness modulus by the unit 
cell self-effect modulus and to define the scaled effective stiffness 
modulus  by

 [13]

Hence, combining Equations [6] and [12],

 [14]

Calibration of effective pillar stiffness
In order to demonstrate the proposed calibration procedure, 
consider the case of a 5 × 5 pillar sub-layout in which each pillar cell 
has a side dimension of 17 m. The composite unit cell is illustrated 
for the central pillar and the associated mined region in Figure 2. 
The overall layout dimensions are 85.0 m × 85.0 m and the layout 
is assumed to be tessellated by a fine grid of square displacement 
discontinuity elements with grid size 1/3 m. In this case, each unit 
cell in the layout shown in Figure 2 has 51 × 51 square elements 
and the overall layout is covered by 65 025 square elements. This 
problem was analysed with five different intact pillar sizes having 
widths of 5, 7, 9, 11, and 13 m respectively. The corresponding cell 
extraction ratios and effective stiffness values are summarized in 
Table I. The assumed rock mass modulus was E = 7200 MPa and 
Poisson's ratio v = 0.2. The field stress Qz at the excavation horizon 
was assumed to be –9.0 MPa. It should be noted, however, that the 
calibration test run is not dependent on the explicit field stress value 
in the case where no failure of the intact pillar region occurs.

The unit cell self-effect stiffness modulus given by Equation [5] 
is equal to 198.6 MPa/m for the assumed elastic parameters. The last 
column in Table I expresses the scaled effective stiffness values that 
are calculated using Equation [13].

Figure 2—Test layout configuration to illustrate effective pillar cell stiffness 
estimation. The centre cell is used to calibrate the effective cell stiffness 
magnitude with different intact pillar dimensions

Table I

Numerical calibration results for the effective stiffness modulus in the central unit 
cell of the 5 × 5 pillar layout shown in Figure 2
Pillar width 

(m)
Extraction ratio  

ec 
Effective stiffness 

modulus kc (MPa/m)
Scaled effective stiffness  

modulus    

5 0.9135 121.48 0.612
7 0.8304 228.39 1.150
9 0.7197 425.86 2.144

11 0.5813 851.81 4.289
13 0.4155 2055.2 10.349
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Figure 3 shows a plot of the scaled pillar cell stiffness values, 
 as a function of the extraction ratio ec together with 

the corresponding values that arise for the regular strip pillar layout 
given by Equation [14]. It should be noted that kc = 0 in the limiting 
case ec →1 as no intact pillar is present in the fully mined unit cell. 
The planar layout values reported in Table I and depicted in Figure 3 
can be seen to follow a remarkably similar trend to the plane strain 
results of Equation [14] but are lower than the plane strain case 
when the extraction ratio exceeds 0.5.

Figure 4 is a plot of the scaled effective stiffness modulus values 
that arise in each unit cell of the 5 × 5 pillar calibration layout 
when the extraction ratio is equal to 0.7197 (pillar width = 9.0 m). 
This indicates that the edge unit cells are somewhat stiffer than the 
central cells, which have nearly uniform values. The differential 
stiffness arises from the fact that no mining is included outside the  
5 × 5 pillar cluster depicted in Figure 2. This suggests that the 
stiffness calibration should include a modest ‘pad’ region around a 
unit cell of specific interest.

It should be noted that the extraction ratio ec is used in Equation 
[8] to determine the pillar average stress  in the layout solution. 
If the average pillar stress exceeds a specified failure strength Smax, 
the pillar stress is assumed to fall to a specified residual stress level 
Sf. This assumption is conservative in the sense that no post-failure 
compression softening slope of the pillar is assumed in the current 
analysis. It is noted also that the post-failure pillar compression 
within the unit cell is ultimately limited by the failed pillar volume. 

The maximum allowed closure of the failed unit cell is therefore 
bounded according to

 [15]

where H is the pre-failure pillar height. If this closure restriction 
arises, the corresponding pillar cell stress is determined from 
Equation [1] in the iterative solution procedure with the imposed 
boundary condition . The overall iterative scheme 
includes a cell status flag indicating whether the pillar is ‘intact’ or 
‘failed’. The status flags are revised at the end of each mining step 
cycle depending on the transition from ‘intact’ to ‘failed’ status 
that is determined for each cell. Experience to date suggests that 
updating each cell status at the end of each mining step cycle 
generally precludes the possibility of encountering pathological 
cyclic oscillations between cell intact/failed states.

A final consistency test run of the 5 × 5 pillar calibration layout 
was carried out using the coarse unit cell layout having only 5 × 5 = 
25 elements with element edge length 17.0 m and with each element 
assigned an effective stiffness value of 425.86 MPa/m corresponding 
to an extraction ratio of 0.7197 (see Table I). Figure 5 is a plot of the 
coarse cell layout average pillar stress values across the centreline y = 
0, compared to the average values calculated in the fine scale layout 
simulation comprising 65 025 elements. The average pillar cell 
stress can be seen to compare favourably with the detailed layout 
results, indicating overall consistency of the results despite the 
massive reduction of the problem size to only 25 elements. In order 
to reduce grid size errors, it may be noted that the calibration could 
be carried out in two steps using element mesh grid sizes g1 and g2 
= g1 /2 respectively and then using an extrapolative technique, such 
as outlined by Napier and Malan (2011) to estimate the asymptotic 
unit cell stiffness modulus values as g → 0.

Large-scale layout simulations
The use of the effective stiffness algorithm for a large-scale layout 
is illustrated by considering a hypothetical pillar layout comprising 
six mining panels separated by five barrier pillars as shown in 
Figure 6. The overall layout covers an area of 1615 m by 1275 m and 
comprises 95 × 75 = 7125 pillar cells with a cell grid size of 17.0 m. 
The test layout comprises six pillar panels separated by five barrier 
pillars. In the illustrative cases presented here it is assumed that 
the extraction ratio of the panel pillars is 0.7197 with an effective 
stiffness of 425.86 MPa/m (see Table I). The barrier pillars are 
simulated as pillar cells with an extraction ratio of 0.4155 and an 

Figure 3—Estimated pillar cell stiffness scaled by the pillar cell element self-
effect

Figure 4—Distribution of the test layout scaled cell stiffness values

Figure 5—Comparison of fine grid average pillar cell stress to coarse solution 
of 5 × 5 pillar cell elements with an extraction ratio of 0.7197 and using a 
corresponding effective stiffness value of 425.86 MPa/m. The fine grid solution 
comprises 65 025 elements with 2601 elements per pillar cell
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effective cell stiffness of 2055.2 MPa/m. This ad hoc choice for the 
barrier pillar description can, however,- be amended.

The initial effective width of the barrier pillar cell was set to 
one element (17.0 m) and the absolute field stress magnitude was 
assumed to be 9.0 MPa at the excavation horizon. The rock mass 
modulus and Poisson's ratio were chosen to be 7200 MPa and 0.2 
respectively. Figure 7 illustrates the distribution of the calculated 
average absolute pillar stress values across the pillars centred on the 
layout centreline (y-coordinate = 637.5 m; see Figure 6). No failure 
is permitted to occur in this case and the peak panel pillar stress was 
approximately equal to 31.8 MPa. (The theoretical tributary area 
stress in this case is 32.11 MPa.)

Assuming that the nominal pillar strength is 40.0 MPa, it was 
found that if the nominal barrier pillar width was equal to 17.0 m 
the entire layout would collapse if the centre element in panel 3 
were to fail. Figure 8 shows the equivalent centreline plot to Figure 
7 when the barrier pillar width was increased from 17.0 m to 51.0 m 
and when no pillar failure occurs. In this case the peak pillar stress 
decreases nominally to 31.68 MPa. Figure 9 shows the centreline 
pillar stress status if the centre pillar cell in panel 3 fails and using 
a nominal pillar strength of 40.0 MPa. It can be seen in this case 
that all the pillars in panel 3 collapse but the wider barrier pillars 
prevent this collapse from spreading to the adjacent panels. These 
hypothetical examples illustrate the potential use of the model to 
explore rapidly various layout configurations that comprise large 
numbers of pillars.

Case study to illustrate the application of the proposed 
model
The proposed model has been applied to the simulation of a 
platinum mine in the western Bushveld Complex. The mine uses 
a bord-and-pillar layout to exploit the Merensky Reef. A detailed 
portion of the mine layout is illustrated in Figure 10, showing the 
pillars that were established in a square grid pattern with a nominal 
pillar centre spacing of 12 m. The designed pillar size was 6 m ×  
6 m, yielding a nominal extraction ratio of 0.75.  The average 
mining height is 2.3 m. The typical condition of the pillars is shown 
in Figure 11.

Figure 6—Test pillar layout configuration

Figure 7—Average pillar stress for a barrier pillar width of 17.0 m

Figure 8—Average pillar stress for a barrier pillar width of 51.0 m (no failure)

Figure 9—Average pillar stress for a barrier pillar width of 51.0 m with inner 
panel failure (failure in panel 3)

Figure 10—Section of a bord-and-pillar layout used for the case study
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A simplified diagram of the mine layout is illustrated in Figure 
12, showing the 294 pillars that were established in a square grid 
pattern in the area of interest. A modelling exercise was undertaken 
initially to obtain an accurate estimate of the load carried by each 
individual pillar without using the effective stiffness model. The 
detailed model was constructed using triangular displacement 
discontinuity elements to facilitate the representation of local 
irregularities in the pillar shapes and the surrounding borders of 
the mined region. The model comprised 49 380 triangular elements. 
Only the pillars of interest were discretized. The dip of the reef 
is small in this area and it was simulated to be 0° to simplify the 
modelling. The depth of the area was approximately 637 m. The 
overburden density was estimated to be 3000 kg/m3 and the vertical 
virgin stress magnitude is therefore 19.11 MPa for the assumed 
depth. The modelling parameters are summarized in Table II. 

The total simulated layout area was 49 679 m2 and this included 
a total pillar area of 10 568 m2. It should be noted that these areas 
imply an overall extraction ratio for the simulated mine layout of 
approximately 0.7873. The average pillar stress values that were 
calculated for the highlighted row of pillars shown in Figure 12 
are illustrated in Figure 13. The assumed field stress at the mining 
horizon of 19.11 MPa implies an overall layout tributary stress of 
89.83 MPa for each pillar. The simulated pillar stress values for 
some of these pillars were higher than this tributary pillar stress 
as the pillar cutting is poor and some pillars are smaller than the 
dimensions specified for the layout design. It should be noted as 
well that two pillars (P167 and P179) adjacent to the abutments in 
the model have lower average stress values. 

The approximate pillar cell model using the effective stiffness 
concept was formulated utilizing the individual pillar areas from 
the detailed model to calculate each individual pillar cell extraction 
ratio ec as defined by Equation [7]. Using these values, the scaled 
effective stiffness values  within each pillar cell can be inferred by 
using an empirical polynomial function to interpolate the square 
element point values shown in Figure 3 and in the last column of 
Table I. The interpolation function is given by

 [16]

Equation [16] yields a value of  = 0 when ec = 1 and provides 
a smooth representation of the stiffness values between each 
point reported in Table I and in Figure 3 when ec ≥ 0.4. (This 
relationship should, however, not be used if ec < 0.4.) The effective 

stiffness modulus of each cell is found by combining Equation [5] 
and Equation [13] to yield

 [17]

Two effective stiffness models were constructed to simulate the 
detailed layout shown in Figure 12. In the first case a square element 
grid was solved with a pillar cell grid size of 12.0 m superimposed 
over the 294 pillars depicted in Figure 12. The individual pillar cell 
effective stiffness modulus was calculated from Equation [17] with 
gc = 12.0m and using the interpolated value of  relevant to each 
pillar together with the elastic property values E = 70 000.0 MPa 
and v = 0.2. Figure 14 shows a comparison between the simulated 
average pillar stress values (square-shaped points) and the detailed 
fine grid results (diamond-shaped points). The approximate cell 
values can be seen to fall below the detailed model results but do 
follow the individual pillar stress fluctuations qualitatively.

The underestimation of the approximate average pillar stress 
values evidently arises since the total area of the pillar cell elements 
is 294 × 144 = 42336 m2, which is significantly lower than the area 
of 49 679 m2 that is used in the detailed layout simulation. This 
discrepancy can be reconciled by allocating a nominal average 
area of 49679/294 (168.98 m2) to each pillar cell element. The 
approximate solution was re-computed by adjusting the extraction 
ratio in each pillar cell using the actual pillar areas and an amended 
cell area of 169.0 m2. The effective stiffness modulus values were 
re-computed using the adjusted pillar cell extraction ratios  and 
using gc = 13.0 in Equation [17]. The simulation results are plotted 
in Figure 14 and show a remarkably good agreement between 
the approximate pillar cell average stress values (triangular point 
markers) and the detailed model average pillar stress values for the 
selected line of pillars.

It should be re-iterated that the original problem comprising 
49 380 elements has been reduced significantly to a problem 
comprising only 294 element cells (Figure 15). The effective pillar 
stiffness concept therefore appears to have considerable merit in 
providing a rapid means to assess the overall behaviour of large-
scale pillar layout problems. At the same time it must be emphasized 
that local mining regions can still be assessed in detail if necessary. 
In this case, the approximate pillar cell scheme can be adapted 
to provide an excellent approximation to the background stress 
values that are induced by the overall layout configuration within 
a local region of interest which can be modelled in finer detail. 

Figure 11—Typical condition of the pillars in the mine selected for the case study
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The reduction of the problem size also allows for the possibility of 
analysing multiple seam problems and the effective stiffness values 
can, in principle, be adjusted as well to simulate time-dependent 
pillar strength decay and pillar edge scaling behaviour. 

Conclusions
A simple pillar cell stiffness concept has been proposed to facilitate 
the assessment of the stability of large-scale pillar layout problems. 
The approximate scheme allows for individual variations of pillar 
extraction ratio within each pillar cell to be specified. The effective 
stiffness of a representative pillar cell can be established numerically 
for planar layout problems. Comparisons between the proposed 
scheme and detailed simulations of an actual pillar layout indicate 
encouraging agreement. It is noted that the overall mined area and 
overall extraction ratio should be represented accurately in order to 
obtain correctly scaled average pillar stress values.

Table II

Modelling parameters for the pillar layout illustrated in  
Figure 12
Parameter Value

Young’s modulus 70 GPa

k-ratio 1

Average overburden density 3000 kg/m3

Poisson’s ratio 0.25

Depth 637 m

Dip of the reef 0°

Average element size Approx. 0.83 m2

Figure 12—Geometry simulated. The pillars numbered in red were studied in detail

Figure 13—Simulated average pillar stress (APS) for a number of pillars in the layout shown in Figure 12
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The effective cell stiffness scheme provides a tool for the rapid 
assessment of large-scale pillar layout performance with selected 
pillar extraction ratios. The new pillar cell feature can be combined 
with any existing layout configurations and can be incorporated as 
well in multi-scale simulations.
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