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Cave mine pillar stability analysis using 
machine learning
by R.J. Quevedo1, Y.A. Sari1, and S.D. McKinnon1

Synopsis
The large scale of cave mines leads to many challenges, including operational logistics and 
geomechanics design. In current practice, pillar stability assessment relies almost exclusively 
on stress analysis. However, stability is also affected by other factors including those related 
to operational aspects of the mining method, the effects of which are difficult to account for 
during the design stages. In this paper we present a case study of the application of a machine 
learning approach to evaluate the influence of these operational factors on pillar stability at the 
Chuquicamata underground cave mine in northern Chile. 

Due to the likely multi-factorial damage process leading to collapses and considering the 
different pillar conditions, a tree-based machine learning method was used and analysed to 
improve the understanding of the relative importance of the various contributing factors. Unlike 
stress analysis methods, it does not require any a priori knowledge of failure mechanisms, nor the 
calibration of associated controlling parameters. The proposed random forest model predicted 
pillar collapses with 80% accuracy despite limited samples to model from. The main contributing 
factors to collapses were found to be related to available pillar volume, cave front geometry, and 
time under abutment stress conditions. The effects and interactions of such factors were also 
studied, showing that careful and improved control over operational conditions can significantly 
reduce the likelihood of pillar collapses. These conclusions could not have been obtained from 
stress analysis alone, illustrating the complementary nature of conventional stress analysis and 
machine learning approaches.
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Introduction
Cave mines represent the largest type of underground mines, and their scale leads to many challenges, 
including large capital investment requirements, operational logistics, and geomechanics design. This 
paper focuses on the latter, and on stability assessment of pillars. Their design, as with virtually all types of 
pillars, relies almost exclusively on stress analysis. However, there are other factors, including those related 
to operational aspects of the mining method, that affect stability and these can be difficult to quantify 
during the design stage. This paper outlines these challenges and presents a case in which machine learning 
was used to develop a better understanding of the various factors affecting stability so that they can be 
appropriately accounted for in both the design process and in mining operations.

The case under consideration is pillar stability at the Chuquicamata underground cave mine in northern 
Chile (Flores and Catalan, 2018). During mining of the first macroblock, severe damage to production 
level tunnels occurred, leading to pillar collapses. Since all collapses occurred behind the cave front, the 
collapse process was clearly not only stress-related. Due to the likely multi-factorial damage process, 
machine learning was selected as the analysis methodology as it had the potential to lead to an improved 
understanding of the relative importance of the various contributing factors, and does not require any a 
priori knowledge of failure mechanisms as does numerical modelling, nor the calibration of the associated 
controlling parameters.

This paper explores the impact that operational, geological, and geotechnical parameters have in pillar 
collapse development in a real caving scenario as part of an attempt to improve the understanding of this 
mode of rock mass failure. The traditional methods of pillar stability analysis, alongside machine learning 
(ML) methods and their characteristics, are discussed.  The collapse phenomenon is described, and a tree-
based ML modelling approach is applied using a set of features based on conjectured contributing factors 
inferred from detailed observations of the damage process in the mine. The results of the study and the 
insights gained from the model provide guidelines that can be used to aid operational practice in caving 
environments.
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Background

Mining context
The Chuquicamata underground mine is located in a massive 
copper porphyry deposit, and is designed to continue exploiting 
the orebody that has been historically mined by open pit. The 
underground operation is projected to recover 1760 Mt of copper 
ore at a grade of 0.7% and rate of 140 000 t/d after achieving full 
productive capacity, extending the mine life for another 40 years 
(Flores and Catalan, 2018). The mining method is block caving 
using a post-undercutting macroblock (MB) variant with multiple 
levels, located directly underneath the open pit as shown in  
Figure 1. 

Production to date has been principally from the central MB 
(shown in Figure 1), with MBs to the immediate north and south 
sequenced to commence production prior to completion of the 
central MB. Simultaneous extraction from multiple MBs enables 
the planned production rate to be achieved. Each MB is 280 m 
long and 128 m wide, and the production and undercut levels use 
the well-known El Teniente layout (Araneda and Sougarret, 2008), 
which consists of parallel main haulage tunnels with drawpoints 
and drawbells offset by 60°. Pillar dimensions are defined by the 32 
x 16 m extraction mesh (measured along the sides of pillars), with 
a height of 18 m between undercut and production levels as shown 
in Figure 2. The resulting pillar geometry, once the drawbells and 
production excavations are extracted, is complex.  

Although establishment of the production levels and undercut 
excavations entails a high capital cost, caving methods have low 
operating costs per ton as high-draw columns cave and fragment 

under the combined actions of gravity and induced stresses around 
the cavity boundary. However, the same stress conditions that 
favour sustained cavity growth also result in high abutment stresses. 
Since drawbells are opened ahead of the advancing cave front in the 
post-undercut method, pillars are subjected to these high abutment 
stress conditions. 

To mitigate stress-related effects, operational guidelines have 
been established, known as ‘caving rules’, that derive from technical, 
operational, and empirical knowledge about cave mining (Cavieres 
and Rojas, 1993; Butcher, 1999). Through the application of these 
rules, the cave-back and cave-front geometries are monitored and 
controlled, along with numerous other aspects of the operation, 
to ensure the safety and stability of the mine by regulating the 
establishment, initiation, propagation, and breakthrough of the 
caving process (Cuello and Newcombe, 2018). The implementation 
of and compliance with these rules has a wide array of impacts on 
caving performance, ore production rates, and stability as well as 
construction costs and schedules. Aspects of mine development 
such as sequencing, undercutting rate, allowable lead-lags, drawbell 
opening rates, and extraction rates are addressed through these 
rules (Beard and Brannon, 2018), ultimately controlling the cave-
back geometry and growth (Cornejo, et al., 2016), on which the 
development of pillar collapse is considered to be highly dependent 
(Landeros 2012; Cornejo, 2014).

An important consideration for the Chuquicamata underground 
mine is that the central MB was the first to be caved. Despite over 
100 years of open pit operating experience, the caving process was 
new; the resulting stress environment and rock mass and excavation 
stability conditions being completely different from those of an 
open pit. Similarly, while general aspects of caving rules may apply 
to any orebody, many aspects of rock mass behaviour depend on 
specific characteristics of the local geological conditions and stress 
environment. Uncertainties in behaviour are therefore expected to 
be most pronounced during the early stages of mining, and this was 
found to be the case at Chuquicamata.  

Pillar damage and collapse process
As undercutting progressed over the footprint of the central 
MB, damage was observed in the sidewalls of the production 
level tunnels, initiating ahead of the advancing undercut, with 
deterioration continuing behind the cave front. The damage 
appeared to be associated with drawbell opening and the lead-lag of 
the cave front along adjacent undercut tunnels. Figure 3 shows two 
examples of this damage, consisting of moderate sidewall fracturing 
and bulking through to intense fracturing and deformation defined 
as the collapse state. These levels of deformation occurred over 
periods of days to weeks, i.e., they were not sudden events. The 
locations of pillars that had collapsed as of November 2020 are 
shown in Figure 4.

Figure 1—View of Chuquicamata underground mine beneath the open 
pit, showing the initial central macroblock with the extraction sequence 
progressing simultaneously to the north and south (image courtesy Codelco)

Figure 2—Details of pillar geometry showing perspective view of production 
level tunnels and drawbells (top) and pillar geometry (bottom) (image 
courtesy Codelco)

Figure 3—Damage on the production level, showing moderate damage (left) 
and collapse conditions (right) (images courtesy Codelco) 
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Collapse is a matter of definition. Previous studies (Pardo et al., 
2012)  have defined collapses as a gradual failure of the rock mass 
where deformation slowly develops across drifts, leading to the full 
closure of the cross-sections in worst-case scenarios. While this 
definition addresses collapse development and manifestation, it is 
also relevant to consider other definitions from the perspective of 
load-carrying capacity, operational function, and safety.

Owing to their complex geometry (Figure 2), pillars in cave 
mines have a relatively squat shape (high width to height ratio), 
such that ‘collapse’ may not involve a sudden catastrophic loss of 
load-bearing capacity. It has been well-known for some time that 
larger volume pillars may exhibit plastic or even strain hardening 
post-peak behaviour (Jager and Ryder, 1999), so loss of load-bearing 
capacity is not an adequate definition of failure in this case. 

Considering the level of deformation shown in Figure 3, a 
more general definition of failure, stated as ‘the inability of a system 
or component to perform its required functions within specific 
performance requirements’ (IEEE, 1990) is appropriate. For the 
design of pillars, the performance requirement limits are best 
expressed in terms of allowable deformation on the production 
level, which may be further linked to allowable support deformation 
limits for safety and infrastructure operational requirements. 

In the light of the perspectives from previous studies of the 
subject, the specific terminology used by the mining company to 
address these events and the more general definition of failure in 
terms of functionality of a component in a system, for this case 
study a ‘collapsed pillar’ refers to a pillar unit that has undergone 
deformation that resulted in the loss of functionality (i.e. no 
longer being able to fulfill its original purpose) due to the level of 
progression reached by the deformations and the complex sidewall 
fracturing.

In the collapsed pillars, in addition to sidewall fracturing and 
deformation, other characteristics of the failure process included 
the complete absence of floor heave, and almost total absence of 
roof damage. Most importantly, although damage initiated ahead 
of the cave front, generally within the abutment zone of influence, 
in every case the collapses occurred behind the cave front. This is 
particularly notable since loading of pillars by the draw column is 
believed to be significantly less than the peak (computed) stress 
magnitude experienced at the cavity abutment (Pierce, 2019). This 

observation implies that pillar damage was not purely related to the 
effects of stress. In this regard, previous studies have linked collapses 
to factors such as  
➤   Cave-front geometry 
➤  Relative cave-front position with respect to production level 

pillars
➤  Presence of remnant pillars in the undercut level associated 

with deficient blasting during undercutting
➤  Damage in the undercut level caused by increased abutment 

stress
➤  Reduction of the pillar dimensions in the undercut level by 

overbreak during construction 
➤  Unfavourable global cave-front geometry and extraction angle 

that conditions the overall cave-back geometry 
➤  Geological conditions (e.g. presence of major faults 

perpendicular to the direction of advancement of the caving). 
(Gomes, Rojas, and Ulloa, 2016; Cornejo  2014; Landeros, 2012). 
However, for this case study the factors involved, and their relative 
importance was not clear. 

Methods of pillar stability analysis
Pillar stability can be assessed using a variety of methods, among 
which empirical formulae and numerical modelling are the most 
frequently employed (Zhou, et al., 2015). The simplest approaches 
are empirical strength formulae (Salamon and Munro, 1967; Obert 
and Duvall, 1967; Lunder and Pakalnis, 1997; Martin and Maybee, 
2000; Esterhuizen, et al, 2011) that use simple parameters such as 
width, height, strength, plus calibration constants, and which are 
still widely used in early stages of design (Sinha and Walton, 2019; 
Kersten, 2019). While these approaches could oversimplify the 
stability assessment problem, they can be reliable provided they are 
calibrated using sufficiently large case databases, accounting for site 
variability by applying appropriate Factors of Safety. An advantage 
is that they do not require an understanding of failure mechanisms 
(Stacey and Wesseloo, 2022; Elmo, et al., 2021), although the factors 
incorporated in the formulae should be directly related to (or be 
proxies for) the most important elements controlling the failure 
process, which in this framework are based on experience and 
insight. 

Despite their widespread use, these formulae only apply to the 
pillar geometry, rock mass, and stress conditions for which they 
are calibrated. This precludes their application for cave mine pillar 
stability assessment for three principal reasons. Firstly, as shown in 
Figure 2, pillar geometry in cave mines is relatively complex. Subtle 
variations in this geometry may lead to different failure modes, 
which are not conducive to the development of case databases that 
are relevant for application at other mines (Stacey and Wesseloo, 
2022). Secondly, the stress conditions applied to pillars in cave 
mines are complex, depending on many factors including the 
geometry of the cavity at the time of pillar formation, lead-lag of the 
cave-front, timing of drawbell opening, and advance rate, to name 
just a few. These complexities in stress path are difficult to account 
for empirically. Thirdly, pillar failure has often taken place behind 
the cave front, suggesting that factors unrelated to stress are at play. 
These may include progressive deterioration of the rock mass of the 
pillars that is initially triggered during abutment loading, variability 
of loading conditions during the ore draw process, and also wear-
induced changes in the (pillar) geometry – leading to further 
changes in the internal stress conditions. Many of these factors are 
operationally induced, hard to anticipate and quantify, and difficult 
to account for in stability analysis. 

Figure 4—Plan view of the central macroblock production level, showing 
locations of collapsed pillars with their respective order of occurrence and 
date of registry (image courtesy Codelco)
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In cave mines, the most extreme pillar loading condition 
exists in the immediate abutment zone of an advancing cave front  
(Pierce, 2019), which in conventional undercutting corresponds 
to the location where drawbells are blasted and the final pillar 
geometry is formed. Pillar stability is therefore strongly linked to 
the next (larger) scale of design (i.e. macrosequence) and requires 
the inclusion of sufficient detail at the panel, block, or mine scale 
such that stress conditions induced by the large-scale geometry 
are adequately considered. Empirical methods such as those used 
for the design of simpler pillars shapes in conventional room-and-
pillar mining cannot account for all these factors  (Maritz, 2014), 
hence the prevalence of numerical modelling in cave mine design 
(Hormazabal et al., 2018). 

Numerical modelling has many advantages in being able to 
represent the complex geometrical conditions in cave mining, 
but still has limitations. Due to the extensive range in scale that 
must be included in the models, resolution limits arise at the pillar 
scale, requiring the rock mass to be represented as an equivalent 
continuum material. This constrains the failure modes that can be 
represented even when using complex stress-strain constitutive 
relationships (e.g., strain softening). Therefore, while mapping at the 
tunnel scale may reveal a rock mass with various discontinuities and 
lithological inhomogeneities, these typically cannot be incorporated 
into numerical models, which must be sufficiently spatially 
extensive to capture the block- or panel- scale geometry and rock 
mass characteristics. Similarly, experienced miners know that 
operationally controllable factors such as cave-front advance rate, 
blasting practice, lead-lags of cave-front geometry, among others, 
can also affect stability (Ferguson et al., 2017). Having no known 
constitutive laws, these factors do not fit into this framework, which 
means that rock mass behaviour is not adequately represented at 
the pillar scale in numerical modelling, due to not only its implicit 
constrains, but also to it not accounting for other factors influencing 
the failure processes.

In this context ML provides a powerful and complementary 
analysis tool since it incorporates techniques that can be applied, 
provided sufficient ‘training’ cases exist. These methods are 
well-suited to finding relationships and patterns (correlations) 
between various factors and ranking their importance, which is 
fundamentally different from numerical modelling, which requires 
a priori inclusion of the constitutive behaviour controlling the 
failure process. Thus, the ML approach offers the possibility to 
identify which factors should be investigated and understood so 
that they may later be incorporated into deterministic methods of 
analysis based on failure mechanisms. 

Methodology 
Machine learning (ML) is a subfield of Artificial Intelligence 
(AI) composed of analysis methods that can automatically detect 
patterns in data and use them in behaviour prediction or decision-
making under uncertainty (Murphy, 2012). These tools make it 
possible to model functions that map a set of inputs to a given 
output value by using recorded observations (data-points), which 
in turn can be used to forecast outcomes and even their respective 
probabilities.

In general, ML does not require prior knowledge, statistical 
assumptions, or rule definitions to work with the data, unlike many 
statistical methods and expert systems (Lawal and Kwon, 2021). ML 
can handle input complexity and can work with data-sets composed 
of different variables while still being able to determine interactions 
between them, which is crucial for interpretation. Furthermore, 

certain model types can quantify the relative importance of the 
inputs based on how they affect their internal parameters

Owing to these advantages, ML methods have gained traction 
in many scientific fields leading to significant breakthroughs, due 
to their ability to handle and model complex problems, such as 
those encountered in rock mechanics (Jordan and Mitchell, 2015; 
Lawal and Kwon, 2021). Regarding pillar stability analysis, ML 
algorithms offer ways to capture complex nonlinear relationships 
between different parameters, numerical model representations, 
and observed rock mass phenomena, and subsequently conduct 
more precise sensitivity analyses of the model’s inputs to ensure 
the mechanics are being captured (Morgenroth, Khan, and Perras, 
2019). These methods are being used in geomechanics-related 
problems such as rockbursts, tunnel deformation, rock mass 
classification, determination of strength properties, and stress-strain 
behaviour modelling, but there are few documented examples of 
applications to pillar collapse phenomena (Quevedo et al., 2019). 
However, these applications do not focus on the contribution of 
design and operational factors to the development of this type of 
rock mass failure, which is further explored in this paper.

Supervised learning
Supervised learning (SL) is a branch of ML that aims to model and 
predict the value of an outcome measure based on a set of given 
input measures (Zhou, Li, and Mitri, 2015)  either as regression 
of a continuous value or classification in discrete categories. In a 
classification problem, the output y is defined as y∈{1,…,C} where 
C is the number of classes. Then, the problem can be expressed in 
terms of function approximation, where some unknown function f 
represents the relationship between the inputs and the outputs:

Using the labelled training set, SL algorithmically models the 
function f such that predictions can be made using ŷ = f^(x), where 
ŷ is the estimate of the output and f^ is the estimate of the function f. 
It is crucial that f^ estimates the outputs well, not just for the training 
observations but also for unseen instances, which means that when  
f^ is obtained after training, f^ should be able to generalize to unseen 
instances that were not included during the training process. This is 
a key concept in ML; it ensures that an underlying process is being 
captured, and it is different from just ‘memorizing’ the input-output 
pairs in the training set, which would be a case of overfitting. For 
this reason, the available data-set is typically divided into different 
portions, one for training and another for testing purposes. Then, 
the performance of f^as an estimation of f would be evaluated over 
the instances that compose the latter by having been trained on the 
former.

Tree ensemble methods
Tree-based methods are a subset of ML models that rely on 
decision- ree algorithms, meaning they essentially split observations 
based on rules learned from their structure in a data-set. They 
offer flexibility, high predictive power, and have the capacity to 
detect interactions and nonlinearities contained in the data. They 
constitute a great baseline approach since they are nonparametric, 
giving them the advantage of not relying on prior statistical 
assumptions and not being hypersensitive to outliers or unbalanced 
data. These characteristics make them popular in many different 
research fields since they can handle multifaceted data (Carvalho 
et al., 2018). Tree ensemble methods are built as conglomerates 
of decision tree algorithms inheriting their properties, that 
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is, they separate data into subsets by minimizing an impurity 
function, creating splits on the data-set that aim to isolate the 
most homogeneous instances contained in the most different 
sets (Breiman et al., 2017; Hastie, et al., 2009). The conglomerate 
is composed of simple decision trees that purposely behave as 
weak function approximators individually, and poorly capture the 
behaviour of the data by themselves but collectively compensate and 
help each other, ultimately acting as a robust and powerful function 
approximator, significantly improving the final performance, in 
contrast to a model composed of a single base learner (Rincy and 
Gupta, 2020).  This is the basic concept of Ensemble Learning 
(EL), which can be intuitively understood as averaging different 
hypotheses and therefore reducing the risk of choosing an incorrect 
one (Sagi and Rokach, 2018).

For this case study the problem is tackled as a class prediction 
problem where the goal is to predict whether a pillar collapse will 
take place given a set of attributes (X), indicated as a value of 1 
in case of a collapses and 0 otherwise. The number of classes is 
two, thus constituting a binary classification problem where f (X) 
is estimated by learning f^ (X) through the minimization of a cost 
function C. For decision trees, the minimization of C leads to splits 
which ultimately separate data-points, organizing portions of the 
data-set into similar groups, where C takes the shape of

Here C represents the average cost of a tree having a set of 
observations mt being split into groups m1 and m2 according to an 
impurity metric I (typically Gini or entropy). By using the values 
of the features contained in X as thresholds, splits are evaluated at 
every data-point. In this way a feature value is selected as a split if at 
that threshold the value of C is minimal.

Random forest (RF) is an EL tree-based approach that 
implements the above splitting strategy across collections of 
decision trees. It samples several instances from a data-set through 
a procedure known as bootstrap aggregation, building a tree on 
each separate set of randomized bootstrapped instances, making 
them completely independent from each other. This whole set 
of trees is called a forest. In addition to the random sampling of 
instances, random feature sampling can also be incorporated for 
the bootstrapping process, thus increasing randomness across the 
trees in the forest by having each tree randomly biased. Since the 

forest output is built by averaging outputs from every single tree that 
composes it (Figure 5), such biases are averaged out and potential 
overfitting issues are reduced (Breiman, 2001). 

Through bootstrapping, some observations of the data-set 
will not be sampled when building the model even if they are 
incorporated in the training set. Therefore, this technique provides a 
set of unsampled instances referred to as out-of-bag (OOB) samples 
that can be used to estimate the final performance of the RF, similar 
to having an extra test set. Furthermore, RF models, like other tree-
based methods, make it possible to obtain relative metrics of the 
importance of the input features based on their contribution to the 
impurity reduction process of the learning algorithm.

In this case study, pillar damage is predicted by using a RF 
model incorporating historical information through the following 
steps: 
➤  Data preprocessing and feature selection to determine the 

input attributes
➤  Portioning the data-set into training and test sets 
➤  Training a RF and measuring its generalization performance 

on the test set 
➤  Analysing the feature effects and interactions.

Case study

Feature selection
For every pillar, a series of features related to its operational 
conditions, geological architecture, local rock mass strength 
properties, and stress environment was collected. These included 
operational- and design-related conditions listed in the caving rules, 
such as the number of drawbells that were opened in its vicinity, 
maximum lead-lag, time under abutment stress conditions, among 
others.

A preliminary feature selection process was carried out aiming 
to keep most conceptually representative and unbiased features and 
to remove non-informative, correlated, and redundant features. 
In general, feature selection helps ML algorithms by improving 
learning efficiency and model performance while also simplifying 
learning results (Cai et al., 2018). In this case, features were analysed 
with the Spearman correlation, which is a good proxy for feature 
redundancy in tree-based models since it detects monotonic 
relationships that would not be conducive when using this ML 
model architecture.

Figure 5—Ensemble of decision trees forming a random forest architecture
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The final set of input features after the feature selection process 
is shown along with their description in Table I.

Modelling
Following the SL approach described earlier, the training and 
testing sets were obtained considering the sequence of events and 
information sufficiency of the labelled instances, giving rise to the 
split shown in Figure 6.

Using this instance separation, the collapse ratios in the sets 
were 39%, 69%, and 55% for the training set, test set, and the 

complete data-set respectively. Since these ratios differ significantly, 
the possibility of the model learning a naive approach that mainly 
reproduces the ratio of collapses was suppressed, thus success 
in modelling could be reasonably attributed to the information 
contained in the selected features and not simply to the replication 
of an average behaviour. The pillar coordinates (x,y,z) were not 
included alongside the rest of the features to avoid fitting the 
model directly to spatial information, instead forcing focus on 
generalizable parameters of rock mass conditions and operational 
parameter history. 

Figure 6—Visualization of the data-set conformed by the centroids of the production level pillars and their state (red: collapsed, green: stable) plus the subsequent 
training test set selection

  Table I

  Features used to characterize pillars in the analysis, with ranges of values
  Feature Acronym Domain Unit Range Description

  Pillar area PA Operational factor m2 211–245 Pillar area projected in plan view as a proxy for  
     the total pillar volume
  Abutment time AT Operational factor months 2–6 Time that a pillar is under abutment stress condition 
  Open drawpoints OD Operational factor – 3–7 Average number of open drawpoints surrounding a pillar  
     before the cave front reaches its position
  Inactive drawbell time IDT Operational factor days 6–126 Time between drawbell opening and its incorporation in   
     extraction activities under the caving line
  Column height CH Operational factor m 75–325 Extraction column height
  Stress component Y SY Local stress/strength MPa 21.2–26.5 Compressive stress Y-axis component extracted from  
     numerical model information
  Uniaxial compressive strength UCS Local stress/strength MPa 22.6–96.5 Uniaxial compressive strength of pillar
  Fracture frequency FF Local stress/strength – 5–20 Average mapped fracture frequency observed on rock mass
  UCS/FF ratio UCS/FF Local stress/strength – 1.1–13.5 Ratio between UCS and FF values
  Maximum lead-lag MLL Cave-front geometry m 12–34 Maximum lead-lag
  Cave-front Curvature CVC Cave-front geometry m 17.8–60.0 Local curvature of a smoothed projection of the CF in plan  
     view as a measure of concavity or convexity 
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Results
The expected accuracy of the model was estimated using the OOB 
score that the RF architecture provides, which reached a value of 
81% accuracy, indicating a sufficiently good model. The real test 
set accuracy was measured at 78%, which is close to the expected 
accuracy obtained from the OOB score and shows consistency in 
the modelling process. Considering these results and the sampling 
approach, the model generalization was visualized across the 
footprint and an adequate representation of the phenomena in the 
test set was observed, as shown in Figure 7. 

Evaluating the modelling results as acceptable and spatially 
representative of the collapse distribution in the footprint, model 
analysis was carried out to understand how the selected input 
features affect the modelled collapse response.

Model and feature effect analysis
Explainability of ML models becomes difficult when implementing 
flexible but complex architectures such as ensemble methods. This 
aspect is usually considered as a trade-off and is an active area of 
research that has resulted in different approaches to interpret the 
inner workings of ML models (Agarwal and Das. 2020; Goldstein 
et al., 2015). By using these approaches, feature importance, effects, 
and interactions were studied.

The feature impacts were first studied via the MDI metric, 
which represents each feature’s contribution to the generation of 
splits during the learning algorithm’s process when trees are built in 
the forest. It is calculated by computing the total loss reduction that 
a given feature contributes across all the splits generated through it 
(Li et al., 2019). The feature rankings according to the MDI metric 
are presented in Figure 8.

The highest ranked features correlate well with those initially 
hypothesized as being the main drivers of collapses according 
to expert assessment and previous studies of this type of failure 
(Landeros, 2012; Cornejo, 2014)  where parameters such as pillar 
area, cave front geometry, and time under abutment stress are 
highlighted.

Nevertheless, although the MDI metric is commonly used in 
tree-based models, it is important to complement this feature-
importance approach with other techniques since MDI can 
misrepresent the actual contribution of certain features, for 
example, by overemphasizing continuous and/or discrete categorical 
features with high cardinality (Strobl et al., 2007). Moreover, MDI 
does not provide an explanation of how the values of certain 
features can affect the output of the model.

To gain a quantitative appreciation of how these features 
contribute to pillar collapse, their individual and combined effects 
were analysed through partial dependence (PD) with individual 
conditional expectation plots (ICE) (Friedman, 2001).

The PD function of a model describes the expected effect of 
certain features after marginalizing out the effects of all others by 
taking their average value. Thus, a PD plot (PDP) shows the change 
in the average predicted value of a model as the selected features 
vary over their marginal distributions. A PDP helps visualize the 
average partial relationship between the predicted response and one 
or more features (Molnar et al., 2021; Elith, et al., 2008; Goldstein 
et al., 2015). It is important to note that these visualizations do not 
perfectly represent the effects of each feature in the model but are 
a useful basis for interpreting their impact when there are strong 
effects caused by a feature or a combination of them. Also, by 
disaggregating the PDPs by plotting individual conditional curves 
that form the average, a series of ICE plots can be obtained to 
visualize variabilities in the conditional relationships (Goldstein et 
al., 2015).

The visualizing tool for this exercise was PDPbox (Jianchung, 
2018), which allows plotting of ICEs and PDPs simultaneously. The 
pillar area and time under abutment stress were selected for this 
analysis since intuitively the best condition for a pillar would be to 
have a well-preserved volume exposed to adverse conditions for 
short periods. The individual effects of these parameters are shown 
in Figure 9. Both features exhibit a behaviour in which they start 
to significantly affect the model output after they cross a certain 
threshold, and their combined effect can be appreciated through the 
PDP interaction visualization shown in Figure 10.

Based on the behaviour of the main features under analysis 
displayed in Figures 9 and 10, it is observed that low values of ‘pillar 
area’ significantly increase the probability of a pillar being classified 
as collapsed, as do high values of ‘time in abutment’.

Figure 9 shows that ‘pillar area’ has a critical influence over the 
output and a distinct threshold at the 225 (m2) mark can be seen. 
Values above that threshold significantly diminish the probability  

Figure 7—Visualization of predicted probabilities of collapse assigned by the output of the trained model over the pillars of the production level that compose the test 
set for this case study

Figure 8—Relative importance of features in contributing to pillars identified 
as being in a collapsed state
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of a pillar being categorized as collapsed. Keeping areas above  
230 [m2] can reduce that probability by more than 30%, which 
can be achieved with careful operational control over drilling and 
blasting activities during tunnel construction and drawbell opening. 
On the other hand, high values of ‘time in abutment’ contribute 
positively to drive the target response to a collapse. The effect 
accentuates starting from the 3rd month mark and can increase to 
15% at the 5th month mark.

Figure 10 shows a region where high ‘pillar area’ values and 
low ‘time in abutment’ values coexist, and collapse probability is 
very well restrained. This implies that even when accounting for 
the other various effects that the mean values of the remaining 
features have on the model, it should still be possible to mitigate 
the development of collapses by exerting control over only these 
two features. Moreover, the individual feature threshold of ‘pillar 
area’ detected in Figure 9 is also present in Figure 10, showing that 
under the 225 (m2) threshold it is no longer possible to regulate 
the outcome by controlling the ‘time in abutment’, as the outcome 
becomes insensitive to it.

Discussion
Since ML and complex model architectures can be effective at 
modelling phenomena without a deep understanding of the inner 
workings of the data or their algorithms, it is not wise to deploy 
them without addressing aspect such as input feature selection, 
interpretation versus complexity trade-offs, and result analysis 
(Rudinm 2019; Lawal and Kwon, 2021; McGaughey, 2020). 
Considering the sampling approach, the model accuracy, and the 
information extracted from the interpretation approaches alongside 

their coherence with expert evaluation, it is possible to state that 
the selected features contain sufficient information to adequately 
model the phenomena. It also confirms the validity of concepts 
contained in the ‘rules of caving’ as being significant parameters that 
can control overall stability in this caving scenario, which further 
validates the feature selection. The results also show that even if the 
loads should not be enough to cause rock mass failure according 
to stress criteria alone, operational elements do have a significant 
influence on pillar stability. 

In physical terms, the results indicate that a collapse is more 
likely to develop when pillars are subjected to high loads for 
long periods. The reduction in rock strength when loaded for 
long time periods (static fatigue) has been known for some time 
(Lajtai and Schmidtke, 1986). It has been studied in connection 
with the underground storage of nuclear waste (Damjanac and 
Fairhurst, 2010) and is the subject of ongoing investigation 
(Shirani Faradonbeh, et al., 2022); however, it has not to date 
been incorporated into the ‘rules of caving’ Although it has been 
identified as a critical factor in pillar degradation and stability, 
it cannot yet be strictly generalized as it is dependent on the 
characteristics of the rock mass in which mining is taking place. 

In practical terms, the presence of the threshold at 225 [m2] in 
‘pillar area’ shows the dominance of this feature over the general 
outcome. Since it is an operational parameter, the vulnerability 
to time-dependent degradation effects can be mitigated through 
good practices that ensure proper pillar volume preservation. It 
should be noted that ‘cave front curvature’, which is a cave-back 
geometry proxy that also controls collapse potential (Pardo et al., 
2012; Landeros, 2012; Gomes, et al., 2016), is implicitly related to 
‘time in abutment’ as a concept of the overall advancement rate of 
the cave front in terms of production rate and therefore can also be 
controlled. In general, the analysis shows that operational-related 
features have the highest importance for modelling collapse events, 
in this case particularly the ‘pillar area’ feature.

Conclusion
The machine learning approach presented enables a diverse range 
of factors to be evaluated for their effect on pillar stability and their 
contribution to the collapse process to be ranked. It was possible 
to incorporate both geomechanical and non-conventional factors, 
such as those related to mining operations and time, that are not 
accounted for when employing conventional stability analysis 
methods such as numerical modelling or empirical formulae. It 
was shown how those factors contributed significantly to the pillar 
collapse process. This suggests that, at least for this case study, 
stress analysis alone does not present a feasible way to capture the 
full complexity of the rock mass damage and failure process, and 
ML approaches offer a useful and complementary methodology. 

Figure 9—Partial dependency plots (PDPs) showing the contribution of pillar area and time in abutment stress conditions to pillar collapse. Negative numbers indicate 
that increases in pillar area suppress likelihood of pillar collapse, and positive numbers that increasing time in abutment loading increases likelihood of pillar collapse

Figure 10—Combined PDP of time in abutment stress loading and pillar area
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Regarding the results obtained from the case study, specific points 
are as follows.
➤  Operational and design factors exert significant control over 

the development of collapses in the production level, which 
can be regulated through careful engineering and operational 
control, thus reducing the probability of generating this type 
of instability.

➤  The elements that were accounted for and incorporated 
as features correlate highly with aspects about caving 
methods design and implementation that have been widely 
acknowledged through experience and condensed in the 
format of ‘rules of caving’.

➤  This work constitutes a first approach to understanding how 
the elements present in the ‘rules of caving’ affect the outcome 
of collapses in relative and quantitative terms and can help 
guide and improve future mine design based on the measured 
effects the elements have on stability.

➤  The model interpretation methods constitute a framework 
to support decision-making when two operational or design 
aspects are locally incompatible by providing a relative 
measurement of the effect of each of the feature on the 
probability of collapse.
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