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Prediction of silicon content of alloy in 
ferrochrome smelting using data-driven 
models
by A.V. Cherkaev1, M. Erwee1, Q.G. Reynolds2,3, and S. Swanepoel1

Synopsis
Ferrochrome (FeCr) is a vital ingredient in stainless steel production and is commonly produced 
by smelting chromite ores in submerged arc furnaces. Silicon (Si) is a componrnt of the FeCr alloy 
from the smelting process. Being both a contaminant and an indicator of the state of the process, 
its content needs to be kept within a narrow range. The complex chemistry of the smelting process 
and interactions between various factors make Si prediction by fundamental models infeasible. A 
data-driven approach offers an alternative by formulating the model based on historical data. This 
paper presents a systematic development of a data-driven model for predicting Si content. The 
model includes dimensionality reduction, regularized linear regression, and a  boosting method 
to reduce the variability of the linear model residuals. It shows a good performance on testing 
data (R2 = 0.63). The most significant predictors, as determined by linear model analysis and 
permutation testing, are previous Si content, carbon and titanium in the alloy, calcium oxide in 
the slag, resistance between electrodes, and electrode slips. Further analysis using thermodynamic 
data and models, links these predictors to electrode control and slag chemistry. This analysis lays 
the foundation for implementing Si content control on a ferrochrome smelter.
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Introduction
Ferrochrome (FeCr) is an alloy commonly used as raw material in the production of stainless steel and 
special steels requiring corrosion and creep resistance. The largest deposits of chromite ore occur in South 
Africa (Haldar, 2020). Most of the ferrochrome is produced by means of fluxed smelting of chromite ore 
using quartz and limestone in a submerged arc furnace (SAF). Typically, FeCr produced in this process 
contains about 50−53% Cr, 4−6% Si, and 6-8% C with the balance being Fe (Gasik, 2013).

The reduction of chromite with carbon in SAFs is quite complex, and has been documented in detail by 
several authors (Xiao, Yang, and Holappa, 2006; Hayes, 2004; Ringdalen and Eilertsen, 2001; Wedepohl and 
Barcza, 1983), but the overall reactions can be simplitied as follows:

[1]

[2]

[3]

Typically, slag is tapped at temperatures above 1700°C, with an average in-furnace temperature 
in the order of 1800°C. At these temperatures, the undesirable reduction of SiO2 (Equation [3]) is 
thermodynamically favourable and directly in competition with the first two chromite reduction reactions. 
The alloy thus becomes contaminated with Si. Aside from the quality issue, every 1% increase in Si content 
adds some 45 kWh per ton alloy to the specific energy requirement for smelting (Ringdalen, Rocha, and 
Figueiredo, 2015). In contrast, a low Si content in the alloy indicates a lack of active carbon for reduction 
reactions (Urquhart, 1972). It is for these reasons that understanding how to control Si in SAF smelting of 
chromite is important. 

A target Si content in the alloy of no more than 4.5% is desirable as per general customer specifications. 
The exact mechanisms that can lead to variation of Si in the alloy are quite complex, and beyond the scope 
of this paper. The reader is referred to the literature for more information on the topic (see Ranganathan et 
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al., 2005; Ranganathan and Godiwalla, 2011; Hockaday and Bisaka, 
2010; Geldenhuys, 2013; Erwee, Swanepoel, and Reynolds, 2021). A 
simplistic summary of these effects in SAF smelting of chromite is 
given in Figure 1. It is important to note that the diagram does not 
highlight all the interactions between the different causes; these are 
alluded to in the literature cited above. Due to the complexity of the 
process, machine learning methods can offer not only insight into 
the relative importance of the drivers for Si content of the alloy, but 
also a possible means of control by way of supporting decisions-
made by operators. 

Machine learning methods for process monitoring
Machine learning (ML) methods have been applied for process 
monitoring tasks in various industries for over a decade (McCoy 
and  Auret, 2019) to support decision-making by operators  and, 
where possible, to automate it. At a more technical level, ML 
models are used for such tasks as data cleaning, missing data 
imputation, and noise reduction (unsupervised methods that 
include dimensionality reduction and clustering), and soft sensing 
and forecasting (supervised methods that include regression 
and classification). Unsupervised methods are characterized by 
the absence of the output, or response, variable i.e., the target 
is unknown. Their aim is to simplify and condense the data. In 
contrast, supervised methods aim to infer or predict a particular 
response, e.g., temperature in a reactor, liquid level in a vessel, 
product composition, etc.

The rest of this subsection describes the process of ML model 
application to industrial data, starting with the terminology as this 
is quite specific to the ML field. 

Terminology
The data-set used for ML models is a table of entries consisting 
of M rows and N columns. Each column corresponds to a feature 
being measured. For example, hearth temperature, current through 
electrode, type of reductant, etc. A column is referred as a variable. 
A variable that is aimed to be inferred by an ML model is referred 
as a target, response, or output variable. Other variables are called 
predictors or features. The number of columns N determines the 
dimensionality of the data (target variables are usually excluded 
from it). Each row of the table corresponds to an individual 
observation and, thus, the term observation is used to denote a row 
(James et al., 2017).

Using a probabilistic view, each column is modelled as a 
random variable (RV). The values in the column provide concrete 
realizations of this variable. Hence, it is possible to use usual 
characteristics of RVs such as distribution functions, means, 
variances, etc. Furthermore, from this viewpoint ML is the same as 
statistical inference and aims at inferring probabilistic properties of 
the RVs.

Anatomy of the process monitoring data
Process monitoring data can be either numerical (temperature, 
flow rate, pressure, etc.) or categorical (e.g., type of feed). The latter, 
however, is rarer compared to numerical data. One common feature 
of all process monitoring data is that each variable is a time series, 
i.e. the order of observations matters. Therefore, ML models should 
not only consider present values of the variables, but also (in some 
form) their past values.

ML model framework
The following are common steps in a (supervised) ML model 
application:
➤  Data cleaning: removal of noise, imputing missing values, pre-

selection of the features (usually based on domain knowledge)
➤  Splitting of the data into training and testing data-sets
➤  Transformation of variable values (standardization)
➤  Feature engineering: addition or replacement of variables 

using statistical or fundamental principles
➤  Dimensionality reduction (data simplification): densification 

of information content in the data
➤  Application of a regression or classification model.

Depending on the task and context, some intermediate steps 
may be skipped. Below is a short description of what each of these 
steps may involve. Step 6 is discussed in more details in the next 
subsection.

Obvious outliers, resulting from malfunctioning sensors 
or clerical errors in the case of manual data input, can be and 
should be removed from the data as they can severely affect model 
performance. However, identification of such outliers for a complex 
nonstationary process is a challenge and no general reliable 
methods exist. Missing values are a common occurrence in process 
monitoring data, especially in historical data where a particular 
variable was not measured from the beginning of the recording 
period. Many ML methods cannot deal with missing values. Thus, 
it is desirable to replace them with some sensible numeric values. 
Although several methods of imputation are available (use overall 
mean, last value carried forward, use some regression model to 
estimate missing values), each method comes with serious trade-
offs and, thus, imputation is often skipped. There is a danger of 
information leakage during data cleaning. To avoid it, this step is 
sometimes performed after step 2.

The ML model is fitted to the data. However, the same data 
cannot be used to assess model predictive performance. Thus, the 
data is split into a training set and a testing set. The former is used 
in learning algorithms, whereas the model predictive powers are 
examined using the latter. In general, the observations are sampled 
randomly without replacement to either training or testing parts. 

Figure 1—Fishbone diagram  illustrating factors leading to excess Si in FeCr alloy produced via the SAF smelting route



Prediction of silicon content of alloy in ferrochrome smelting using data-driven models

69The Journal of the Southern African Institute of Mining and Metallurgy VOLUME 124 FEBRUARY 2024

However, in the case of time series data this is not possible since 
observations are not independent. In that case, observations are 
split at some time point T, with all the observations preceding 
T reporting to the training set and the rest to the testing set. As 
already mentioned, it is advisable to perform this split as early as 
possible to avoid information leakage.

Many ML methods involve linear combination of features. If the 
scales of values of variables differ, which is the case when variables 
correspond, for example, to temperatures, flow rates, or weights, it 
can mislead model training and skew the results. A few methods 
of scaling are available. Standardization refers to shifting the values 
such that their mean is zero and scaling to achieve a standard 
deviation of unity. Normalization linearly maps the original range of 
values to a [0,1] or [–1,1] interval. Normalization is useful if values 
have hard bottom and top values (for example, liquid levels in a 
tank).

Step 4 augments the data with new features. There can be a 
physical basis for additional variables. For example, pump gain, 
defined as a ratio of flow rate to pressure produced, can be added 
to the data. Statistically based variables are often used to good 
effect. For example, high-frequency data can be replaced by lower-
frequency observations of the mean, variance, or higher order 
moments over a time window. Additionally, time-shifted values 
of existing variables can be incorporated as additional features to 
capture the process dynamics (time embedding; Marwan et al., 
2007). More precisely, for a time series variable Xt an additional set 
of variables [Xt-h, Xt-2h ,…, Xt-kh] is added in such a way that each 
(scalar) observation x(t) of Xt is replaced by a vector (x(t), x(t-h), 
x(t-2h) ,…, x(t-kh)) for some time shift step h and embedding 
dimensionality k. Such augmentation then naturally leads to auto-
regressive (AR) type models (Chatfield, 1996). If the embedding is 
used to capture the process dynamics, it results in each observation 
becoming independent from others. Thus, if it is done before the 
training-testing data split, the split can be performed by randomly 
sampling individual observations.

Dimensionality reduction (step 5) is a common preprocessing 
task in process monitoring as it helps to remove redundant variables 
from the data-set. Principal component analysis (PCA) is a standard 
technique for this due to its simplicity and robustness. PCA finds 
the set of latent variables, also known as principal components, 
that are linear combinations of the original variables in such a way 
that (i) each latent variable is uncorrelated from all others, and (ii) 
principal components are sorted in the descending order of their 
variability. Thus, it becomes possible, by selecting only a few first 
principal components, to account for most of the variability of the 
predictors. Other techniques for dimensionality reduction include 
independent component analysis (ICA) (Hyvärinen and Oja, 2000), 
linear discriminant analysis (LDA), empirical mode decomposition 
(EMD) (Boudraa and Cexus, 2007), and self-organizing maps 
(SOMs), to name a few. These methods are usually applied only 
if PCA fails to produce desirable outcomes or if there is a more 
specific objective, such as identification and separation of different 
sources in the signal (ICA) or identification of the clusters (LDA) 
(James et al., 2017). The main result of step 5 is densification of 
information content in the data-set, which helps to reduce the 
complexity of a subsequent regression or classification model (step 
6).

Linear and nonlinear regression models
In supervised learning there are two main objectives: either to 
predict a particular value of the target (such as Si content in alloy as 

in the present paper) or to classify a target into a particular group 
(e.g., alarm or no-alarm condition). A commonly used term for 
the former is regression, and for the latter, classification. Since the 
model developed in this paper is a regression model, the rest of this 
subsection is focused on regression.

Linear regression models are among the oldest in ML. Despite 
their simplicity, they can still produce satisfactory inferences or 
forecasts for processes that are tightly controlled. To improve model 
generalization capabilities, its flexibility is sometimes restricted by 
the method called regularization. LASSO (least absolute shrinkage 
operator) linear regression is a regularization method that restricts 
the magnitude of linear regression coefficients in such a way that the 
coefficients for the predictors that are only weakly correlated with 
the target are set to zero (James et al., 2017). Thus, it can be used 
not only to improve model performance, but also to assess variable 
importance.

Despite their robustness, linear methods can miss noninear 
effects and variable interactions. Tree-based methods with bagging 
(random forest) or boosting (gradient boosting) are among the 
most competitive methods for nonlinear inference and forecasting 
(Markidakis et al., 2022). A tree-based method uses training data 
to recursively partition the input space to regions in which the 
target variable is approximately constant. An individual tree-
based predictor is very sensitive to slight changes in the input data 
and tends to over-fit the model (James et al., 2017). Bagging and 
boosting are two methods that help to overcome this weakness 
by constructing multiple trees on different portions of data and 
then aggregating their results. They are known as ensemble 
methods. Such methods combine multiple weak learners to form 
a single strong learner. Although both bagging and boosting tend 
to perform similarly, recent studies are showing that boosting 
outperforming bagging on a variety of problems (Makridakis et 
al., 2022). AdaBoost, XGBoost, and LigthGBM are commonly 
used, freely available implementations of the boosting algorithms. 
Among them, recently-developed LightGBM provides much shorter 
training times (Luo and Chen, 2020).

Model analysis: mutual information and variable 
importance
Typical regression model performance metrics include root mean 
square error (RMSE)

mean absolute error (MAE)

and coefficient of determination R2

Here, yi is the observed target value, y− is the average target 
value, and ŷi is the inferred (predicted) target value. These metrics 
give an overall summary of how good the model inference is. 
However, there are some details that they cannot capture. For 
example, although they can tell whether model predictions are of 
‘good’ or ‘bad’ quality, they cannot tell if the model can be improved 
(using current data).
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Mutual information (MI) is a useful tool to assess the 
information content of predictors with respect to the response. MI 
between two random variables X and Y, I[X,Y], is defined as follows:

where integration is performed over the range of values of X and 
Y and pX, pY, and pXY are probability density functions of X, Y, and 
their joint distribution respectively (Paninski, 2003). If variables X 
and Y are independent, it follows that I[X,Y] 0, since pXY = pX pY 
and the logarithm argument becomes unity. MI reaches a maximum 
when there is a purely functional relationship between the variables: 
by observing X one can precisely deduce Y. MI can be used to pre-
select the predictors or examine how important is the contribution 
of an individual predictor.

To facilitate the comparison between MI that corresponds to 
different predictors, it is useful to rescale MI and introduce relative 
MI, RMI, as follows (Cherkaev et al., 2022):

which ranges from 0 to 1 (or 0% to 100%). Thus, if RMIs between 
the response and all the predictors are low, it is not expected of any 
model to provide a useful inference of the response (‘garbage in—
garbage out’).

Study objectives
This study aims to predict Si content in the tapped FeCr alloy 
using the data available up to the point when the tap starts. The 
methodology is similar to that of (Jonsson and Ingason (1998), but 
it extends the approach in the following ways:
➤ Si content is predicted per tap, not per day
➤  A wide range of predictors is used. Regularization methods 

are used to identify important predictors
➤ A nonlinear model is used to improve linear model results
➤ Variable importance is assessed.

The rest of the paper is structured as follows. An overview of 
the data used for the study is followed by a description of the steps 
taken for data preparation (steps 1–4 of the ML model framework). 
Dimensionality reduction and regression model development are 
sthen shown, followed by an assessment of the model performance 
and variable importance. Analysis of residuals assesses the 
possibility of improving the model. Finally, a general discussion and 
conclusions are presented.

Process monitoring data in FeCr smelting
Furnace process monitoring data comprises three distinct aspects: 
regular process monitoring data (named here tag data), tap data, 
and recipe and KPI (key performance indicator) data.

The outputs of temperature and electrical signal sensors are 
recorded at high frequency to tag data. Here ‘high frequency’ means 
that data is recorded most often. In many operations such data is 
recorded manually on an hourly basis. In this study, tag data was 
recorded automatically and sampled every 2 minutes. The recorded 
data includes hearth and shell temperatures, electrode currents, 
electrode holder positions, and power attributed to each electrode. 
Due to malfunction of some of the sensors, the data-set contains 
a considerable number of missing entries. Overall, it contains 130 
variables and 2 412 000 observations.

The results of the analysis of the chemical compositions of 
tapped slag and alloy are recorded in tap data. Tap data is considered 
‘medium frequency’ in this study as it is recorded on average every 
3.2 hours. Since the analysis requires some time to perform, this 
data is not recorded online. The tap data contains 70 variables and 
11 648 observations.

Recipeand KPI data (recipes data for short) is recorded daily 
and summarizes, among other indicators, the amounts and sources 
of different raw materials (reductant, flux, and ore) used. Since 
there are many sources and categories of, for example, reductant, 
recipe data is sparse: 57% of all entries are zero. The recipe data-set 
contains 156 variables and 1556 observations.

Data-set preparation

Embedding
Given the long processing times of a typical SAF, it is expected 
that not only most recently observed feature values, but also 
past values of features and the target, will influence future target 
value. To account for this influence, time embedding (see ML 
model framework subsection for more details) on the data-set 
was performed. It requires choosing the time shift step (delay 
interval) h and dimensionality k of the embedding. Although there 
are statistical methods to determine these parameters, they rely 

Figure 2—Pair plot of the selection of the variables

Figure 3—Time series plot of Si and C content in metal
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heavily on stationarity of the time series. Technical data in the 
processing industry is rarely stationary in the statistical sense, and 
these methods often fail. A more reliable way to determine these 
parameters is to use domain-specific knowledge. For example, it 
cannot be expected to see the effects of recipe changes past two 
days. As for the tap data, a study on ferromanganese smelting 
(Cherkaev et al., 2022) showed that it is not necessary to choose the 
dimensionality k > 2.

Tag data is not embedded in this study since tag data represents 
immediate furnace conditions that have only a short-term effect. 
Tap data is embedded with n = 2, i.e., two previous taps are 
considered with the current tap entry. Similarly, recipe data is 
embedded with dimensionality n = 2.

One notable consequence of embedding is the considerable 
increase in the number of variables. Both, tap data and recipe data 
increased the number of variables three times for n = 2.

Synchronization
Working with three separate data-sets is not convenient. Thus, 
the data-sets were combined to form a single set. Tap data was 
used as the base. Since there are many observations in tag data 
corresponding to a single entry in tap data, i.e., there are many 
observations from the previous tap start to the current tap start, 
these were replaced by a mean value. Furthermore, to account 
for tag data variability, an additional variable was introduced: the 
standard deviation of the original variable between the taps. To 
summarize, each tag variable X with values xn, xn+1 ,…, xn+k between 
the tap opening times is replaced by two variables:

and

each containing a single observation per tap. Recipe data was 
extended with zero-hold (last value carried forward) to provide one 
entry per tap.

Finally, current day recipe and current tap entries were excluded 
from the set of features since they cannot act as predictors for the 
current tap: they are available either at the end of the day or after the 
current tap is complete.

As a result of synchronization, dropping the variables that 
contain too many missing values and dropping the rows with 
missing tap data, the combined data-set contains 745 variables and 
11 511 observations.

Training, testing, and validation data
The combined data-set was split into training, testing, and final 
validation sets. Thanks to time embedding performed on tap and 
recipe data, each entry in the data-set is independent of previous 
entries. Thus, training and testing samples can be drawn randomly 
from the data. For the final assessment of the model performance it 
is, however, more instructive to draw a continuous sample.

First, 200 contiguous observations were drawn from the middle 
of the data-set for the final validation data; 70% of the rest of the 
observations were randomly chosen for training, and the remainder 
were assigned for testing. This resulted in training and testing data 
having 8057 and 3254 observations respectively.

Standardization
The training data-set was used to calculate the mean and variance 
for each variable. These values were used to standardize all data-sets 
– training, testing, and validation.

Model development
This section presents the development of the data-driven model to 
predict Si content. All the development is done using the training 
data-set.

Dimensionality reduction
The high dimensionality of the data is a serious issue as it causes 
the variable-space to be only sparsely populated by observations. 
Furthermore, it is likely that the data contains many correlated 
variables. PCA was performed on the training set. Since PCA 
cannot process missing values directly, observations that contain 
them were removed from the data-set. The dimensionality reduction 
was performed by retaining the first 124 components that account 
for 90% of the total variance.

Linear model
Linear models have two attractive properties: they are cheap to train 
and easy to interpret. Thus, if there is a linear relationship between 
predictors and the response (Si content), it is advisable to extract it 
using a specialized linear model instead of relying on more general 
nonparametric models.

Similarly to PCA, linear models such as ordinary linear least 
squares (OLS), regularized OLS, or partial least squares (PLS) 
cannot handle missing values directly. The same approach as for 
PCA was followed: only the observations without missing values 
were used for training. LASSO linear regression was chosen as a 
linear model since it produces a sparse model (reduces the number 
of predictors), which helps model interpretation. The shrinkage 
parameter was automatically tuned during the learning procedure. 
The LASSO model was able to reduce the number of predictors 
from 124 to 84.

The LASSO model was able to reduce the variance of Si content 
on the training data-set from 1 (in standardized form) to 0.49. 
The distribution of residuals for the training data-set is shown in 
Figure 4. There is still a significant variability of residuals, which 
it is desirable to reduce. For this a nonlinear model needs to be 
employed.

Gradient boosting
It is assumed that the model is additive:

Figure 4—Histograms of Si content, linear model residuals, and final model 
residuals for the training data
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where residuals contain variability that was not explained by a linear 
model. These residuals are modelled using a gradient boosting (GB) 
method as implemented by the LightGBM package. GB involves 
a number of hyperparameters such as depth of individual trees, 
learning rate, and regularization parameters. A grid search was 
employed with 5-fold cross-validation to fine-tune these parameters. 
The final model was trained on the full training data-set with the 
fine-tuned hyperparameters.

Model performance

Model performance on training data
Although it is not possible to judge model performance when 
the model is applied to training data, it provides the base for 
comparison when applied to the testing data. Furthermore, it can 
give an idea of how effective model training was.

The coefficient of determination R2, MAE, and RMSE for both 
the linear model and the combined model are shown in Table I. 
Figure 4 compares the distributions of Si content, the linear model 
residuals, and the combined model residuals. It is evident that each 
model provides a considerable reduction in residuals variability. 
This is especially true for the addition of the GB model.

Model performance on testing data
Performance on the testing data is shown in Table II and Figure 5. 
The performance indicators of the linear model on the testing data 
are similar to those on the training data. In contrast, the combined 
model shows much less variability reduction compared to the 
training data. Nonetheless, there is still considerable reduction in 
variability by both linear and nonlinear models.

Validation on contiguous data
The result of the model applied to the contiguous data is shown in 
Figure 6. It is evident that although some variability in measured 
Si content is missed, model predictions provide an improved and 
reliable estimate compared to mean value (zero).

Importance of variables
For the purpose of Si content control, it is not enough to only 
predict it, but it is necessary to identify factors that affect it. While 
it is possible to point out several physical factors that control Si 
content, it is difficult to identify a particular factor that drives it 
up or down. Machine learning models provide a few techniques to 

identify the most important predictors of the model output. Linear 
models, including regularized models such as LASSO, offer a direct 
way for this by inspecting the model coefficients. GB models offer 
variable importance ranking as a part of the learning algorithm. 
However, for the current study this method is suboptimal since a 
GB model is used to improve the linear model results. A more direct 
approach for ranking variable importance is to use a permutation 
method, by which the observations of each variable are shuffled and 
the reduction in model accuracy is assessed.

Features selected by the LASSO linear regression model
Since the LASSO model was applied to the result of PCA 
transformation, they need to be considered together. PCA 
transformation can be represented as follows:

where X  M×N is the data matrix with M observations of N 
variables, R  N×N is the full (orthogonal) rotation matrix, and  
P M×N is the matrix of principal components. The LASSO 
model has the form

where Y is the response (Si content), Pj is the j-th column of P, βj 
are non-zero coefficients of the LASSO model, and the ellipsis is 
used to show that other components were omitted. Combining this 
equation with PCA transformation gives:

where Ri is the i-th column of matrix R. Since all the variables in 
matrix X have zero mean and variance unity (after standardization), 
their contribution can be assessed by the magnitude of the entries of 
the vector

  Table I

  Model accuracy on training data
  Metric Linear model Combined linear and GB model

  R2 0.50 0.77
  MAE 0.38 0.27
  RMSE 0.70 0.47

  Table II

  Model accuracy on testing data
  Metric Linear model Combined linear and GB model

  R2 0.53 0.63
  MAE 0.38 0.32
  RMSE 0.64 0.57

Figure 6—Comparison of the model predictions and true Si content on the 
contiguous validation data-set

Figure 5—Histograms of Si content, linear model residuals, and full model 
residuals for testing data



Prediction of silicon content of alloy in ferrochrome smelting using data-driven models

73The Journal of the Southern African Institute of Mining and Metallurgy VOLUME 124 FEBRUARY 2024

The first four largest entries of vector C correspond to Si content 
in the last two taps and average Si content in the last two days. This 
shows the strong autoregressive nature of the model. Other strong 
predictors include carbon and titanium content in metal in the 
previous tap, CaO content in the slag, and slag basicity.

Variables importance of the full model
The top importance predictors that were identified by the 
permutation importance method include past Si content values, 
carbon content in the previous tap (the second most important), 
electrode resistance, and electrode slip.

Analysis of residuals

Normality test
The Shapiro-Wilk normality test indicates that the combined model 
residuals are not Gaussian (p-value is 1.25×10–25). Therefore, it 
is likely that there are a small number of factors that can further 
reduce their variability and, thus, improve the model.

Mutual information
Mutual information analysis was performed on the testing data-set 
to determine if there are predictors in the current data-set that can 
have a functional relationship with residuals. Predictors with more 
than 50% of missing values in the testing data-set were excluded 
from this analysis.

Compared to a fully deterministic model (i.e., residuals vs. 
residuals) taken as 100% MI, the largest MI between the residuals 
and predictors is 0.7%, corresponding to the active power standard 
deviation between the last and the current taps. For comparison, the 
top relative MI between the predictors and Si content is 7.5%. Low 
values of MI between the predictors for model residuals indicate 
that it is unlikely that the current model can be improved using the 
same predictors.

Discussion

Effect of recipe
One curious outcome of the features importance analysis is the 
absence of any recipe-related variables. The most likely explanation 
for this is that the recipe is correctly designed for the process. 
Indeed, recipe adjustments are made to control, among other 
parameters, Si content in the metal. Therefore, for the learning 
procedure, changes in the recipe appear to have no effect on Si 
content. The best way to pick up the recipe effect would be to 
randomly change the recipe, or at least to forgo Si content control in 
the recipe calculation. This, however, is impractical.

Selected features and thermodynamics
The features from the model, specifically the carbon and titanium 
contents of the alloy in the previous tap, the CaO content and 
basicity of the slag, and electrode parameters reflect what 
fundamentally drives many reduction reactions in pyrometallurgical 
processes, i.e. the relative effects of chemistry and temperature.

Consider the main reaction for SiO2 reduction in the furnace, 
repeated here for convenience:

[4]

The equilibrium constant for the reaction is:

[5]

The effect of temperature on the equilibrium constant for 
the reaction is given in Figure 7a. Although a simplistic view of a 
complex process, the temperature at which SiO2 reduction with 
carbon occurs has been shown to be almost overriding in SAF 
smelting of chromite (Haldar, 2020; Hayes, 2004) and largely due to 
improper heat input due to poor electrode control (James, Witten, 
Hastie, and Tibshirani, 2017) , i.e. if the resistance of the burden 
is such that the electrode tips sit high up in the furnace, a greater 
amount of energy is spent on a small volume of material, readily 
increasing the Si content of the alloy. Once Si is produced in a SAF 
process, the alloy droplets trickle to the bottom of the furnace. Very 
little can be done to refine the metal further, unlike, for example in 
open-bath chromite smelting processes (Hyvärinen, and Oja, 2000), 
where the alloy can still be refined by addition of highly basic oxides 
such as CaO.

This said, there is still a sound basis for the addition of basic 
oxides (e.g. CaO) to compensate for high Si contents of the alloy – if 
a mini-melt of high basicity slag forms close to the reaction sites for 
SiO2-C reaction, the activity of SiO2 in the melt can be suppressed 
to some degree by having a more basic slag, as shown in Figure 7b, 
limiting the extent to which the SiO2-C reaction is driven. 

Reducible oxides in the slag, e.g. TiOx and VOx, naturally 
compete with CrOx and SiO2 in the slag for carbon. It is therefore 
not surprising that some of the minor elements in the alloy such 
as Ti come out as predictors for Si. Interaction between the alloy 
components can be described thermodynamically; however, the 
complexity and nonequilibrium nature of the SAF smelting process 
make it more difficult to do so. It is for this reason that a machine 
learning approach becomes invaluable. The effect of temperature 
(driven by electrical energy input from the electrodes) and 
chemistry effects are neatly combined into a practical model that 
can be used on the plant.

Figure 7—(a) Effect of temperature on the equilibrium constant for the SiO2-C reaction and (b) effect of slag basicity on the activity of SiO2 in a MgO-Al2O3-CaO-SiO2 
slag in SAF FeCr smelting at 1700°C. B3 = (%CaO+%MgO)/(%SiO2). Calculations done in FactSage 8.0, using the FTOxid database
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Conclusions
This study aimed to develop a data-driven Si content model and 
identify important drivers of Si content in FeCr smelting. The 
model, based on time-embedding, PCA, LASSO regression, and 
gradient boosting regression tree methods showed good predictive 
capabilities. The Si, C, and Ti contents in the metal and CaO 
content in the slag from the previous taps are among the strongest 
predictors of the Si content at he next tap. The importance of these 
predictors can be explained by the ‘inertia’ of a SAF (previous Si 
content) and chemical properties of the ore, reductant, and flux 
mixture. The absence of recipe-related variables as important 
features is probably due to the recipe being correctly designed. 
Analysis of residuals shows that it is unlikely that the current model 
can be improved any further (given the same data-set). Overall, 
this model can give an early warning sign to the operator if the Si 
content is moving away from the target. 
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