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Pragmatism in industrial modelling: An 
application to ladle lifetime in the steel 
industry
by S.T. Johansen1, B.T. Løvfall1, T. Rodriguez Duran1, and J. Zoric1

Synopsis
A methodology for building pragmatic physics-based models is here adapted to predict the erosion 
of ladle linings in the steel industry, in order to support operators when deciding whether the 
lining can be used safely for another heat. A defective lining may allow 140 t of molten steel to spill, 
with disastrous consequences for workers and plant. The adopted work flow for the development, 
challenges faced, and some model results are presented. One key learning outcome is that model 
development should allow time for maturing the process understanding, as well as for many 
iterations by ‘questions-responses and actions’ at various stages in the model development. Good 
interaction between the development team and industry case owner is an important success 
factor.  Combining or extending the model with the use of machine learning and cognition-related 
methods, such as knowledge graphs and self-adaptive algorithms, is discussed.
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Introduction
Many industrial processes involve complex physical and chemical systems. In addition, the observability 
(Wikipedia, 2022a) may be very poor and accordingly process control becomes difficult. In high-
temperature processes, including the metallurgical industry, we find many representative cases. One 
example is aluminium reduction cells (the Hall-Héroult process), where the alumina concentration in the 
cell is measured by manual sampling once a day at a fixed location. This is the most important control 
parameter for a cell. Another example is from the ferro-alloy industry, where electric furnaces may have an 
installed power of around 40 MW. Due to the high temperatures of the charge (up to 2000°C:  Jayakumari 
and Henning, 2020) there are no sensors capable of monitoring the interior state of the furnace. Sensors 
may be available in specific cases, but these are generally extremely expensive to purchase and maintain. 
Physics-based models can provide an alternative method for predicting the internal states of the process, if 
based on a realistic set of assumptions and simplifications. The amount of data in these types of processes 
is limited, and some of the data may have significant issues as a result of operational challenges. The 
operations are not automated, and sometimes fast decisions must be made without time to check if the 
change in operation impacts the data collection. In response to these challenges we have been developing 
a generic methodology  (Johansen et al., 2017; Johansen and Ringdalen, 2018; Zoric et al., 2015a, 2015b), 
termed ‘pragmatism in industrial modelling’, for the development of industry-applicable physics-based 
models. 

Earlier work on pragmatism (Johansen et al., 2017; Zoric et al., 2015a, 2015b) addressed solutions to 
various industrial tasks and problems. Here the best approaches were proposed and discussed, by assuming 
no limitations in human expertise and resources. A generic scheme  for our pragmatic development 
approach is shown in Figure 1. 

The use of the pragmatic modelling paradigm is aimed at handling the complexity of a hybrid modelling 
approach (a combination of data-based and physics-based modelling techniques in the same work flow) by: 
1.  Structuring the exchange of data and information between sub-models (often at different levels of 

abstraction)
2.  Structuring the modelling and analytic work flows
3.  Providing good interfaces to include some machine learning (ML) or artificial intelligence (AI) 

prediction tools (also in cases where the analytical or computational physics models are more tightly 
integrated with AI/ML tools)

4.  Connecting these various tools to the relevant decision support tools and processes. 
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The inclusion of modelling and simulation frameworks 
in industrial processes and decision support systems requires 
significant structure and standardization, which we hope to 
contribute to by this work.

Pragmatic modelling starts always with a given industrial 
application, by defining an industrial use case (i.e. problem to solve) 
(Wikipedia, 2022b). The pragmatic model is the simplest model 
that can give fast and sufficiently accurate answers. There could be 
a short step from a pragmatic model to online process control and 
operation support tools. A pragmatic model starts with the simplest 
possible model that has a value for the user.  The main steps of the 
pragmatic work flow are shown in Figure 1:
1. Problem and context identification
2. Analytical strategy and plan
3. Architecture of the analytical framework
4.  Execution (coordination of analyses, simulations, and 

experiments)
5. Evaluation of the solution
6. Conclusion and communication.

A key element in this work is the appointment of the system 
architects team (Zoric et al., 2015a, 2015b; Wikipedia, 2022c;  
2022d), as the capabilities of this team will be a critical factor for a 
successful outcome of the work.

The methodology, which the system architects team has to 
orchestrate, is not limited to any specific techniques (steps 2-4), and 
the palette of tools may contain elements that involve mathematical 
methods, such as statistical methods, singular value decomposition 
(Wikipedia, 2022e), and reduced order methods  (Wikipedia, 2022f) 
as well as numerical continuum physics, numerical particle physics, 
and molecular and quantum mechanics. In practice the system 
architects team will learn to apply and orchestrate the methods 
that are at hand for the development team (methods applicable to 
the reality of the industrial process, and related decision support 
systems and routines), and AI should already be included in the 

abovementioned methods. The pragmatism-based methodology 
will use available sensor data and assess the validity of the data. 
However, development of new sensors, even if critical, is not dealt 
with by the methodology. 

In this paper we aim to present a simplified pragmatism-based 
approach for the development of a prediction model for steel ladle 
refractory erosion and lifespan. A particular challenge is that the 
total development team is small (2–3 people) and multiple trade-offs 
must be made to develop a useful model in a limited time.

Context of the COGNITWIN project
This work, as a part of the Horizon 2020 project (COGNITWIN, 
2022), is aiming at accelerating the digital transformation and 
introducing Industry 4.0 to the European process industries. The 
project is focused on six industrial pilots, ranging from aluminium, 
silicon, and steel production to engineering. Here we address 
the pilot for the Sidenor1 steel company, where we analyse how 
to increase the ladle refractory lifespan, and how the digital twin 
concept can contribute. 

Sidenor ladle case description
Steel production in the melting shop process is based on three main 
steps. The first involves the production of liquid steel by smelting 
iron ore in a blast furnace (BF) or melting scrap in an electric arc 
furnace (EAF) or induction furnace. The second step – secondary 
metallurgy (SM) – is necessary for refining the liquid steel, and 
the last one solidifies the steel during ingot or continuous casting 
processes.

Typically, a ladle can contain from tens to hundreds of tons of 
liquid steel (Figure 2). Most ladles have a porous plug at the bottom. 
Gas (Ar of N) is injected through the plug to stir the liquid steel. 

Figure 1—Proposed work flow for a pragmatism-based development (Zoric et al., 2015b). Arrows indicate sub-use cases and related activities that have to be realized

1https://www.sidenor.com/en/ 
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The bubble driven upward flow of the liquid steel promotes the 
transfer of inclusions from the steel to the slag and homogenizes the 
temperature and chemical composition. 

The main objective of SM is to obtain the correct chemical 
composition and to ensure an appropriate temperature for the 
casting process. In addition, there are several important tasks which 
must be complete during SM, for example removal of inclusion 
and gases. In order to reach these objectives, Sidenor has a SM 
mill consisting of two ladle furnaces (LFs) and a vacuum degasser 
(VD). Each LF has three electrodes for heating the slag, steel, and 
ferro-additions. The ladle contains liquid steel and slag for all the 
production process, from the EAF to the end of the casting process. 
The liquid steel has a temperature of around 1850 K in the ladle and 
it is covered with slag, which prevents contact between the liquid 
steel and the atmosphere. The slag has a lower density than steel and 
consists mainly of lime and various oxides. Slag conditioning can be 
improved during SM by adding slag-formers.

In order to handle the liquid steel and slag at such high 
temperature, the ladle is constructed with a strong outer steel shell, 
the inside of which is lined with layers of insulating (refractory) 
materials. The refractory consists of ceramics and its most 
important properties are:

i. Ability to withstand high temperatures
ii. Favourable thermal properties
iii. High resistance to erosion by molten steel and slag, 
The inner layer of refractory bricks, which are in contact with 

the liquid steel, and slag, is progressively eroded by each heat, and 
after several heats the erosion is such that it is not safe to use the 
ladle for another heat. The refractory is visually inspected after each 
heat and depending on its state, the ladle may be used again, or put 
aside for repair or demolition. In case of repair, the upper bricks, 
which are more eroded, will be replaced and the ladle is returned to 
production. Later, based on continuing visual inspection, the ladle 
may be deemed ready for demolition. In this case the entire inner 
lining is replaced. 

One important goal for Sidenor is to reduce the refractory 
costs by identifying new methods for extending the refractory life. 
One of the key aims is to use the same ladle for more heats without 
compromising safety, but another important issue is to better better 
understand the mechanism that underlies refractory erosion and 
avoid as much as possible the working practices that shorten the 
usable life of the lining.  

Target for the pragmatic model development
The main goal of our pragmatic modelling approach is to develop a 
model from which the results can help decide whether the ladle can 
be safely used again without repair or relining. The model should 
incorporate both historical and current production data. The model 
should increases the knowledge of the operators, and could also 
contribute to related digital twins in semantic and cognitive aspects.

In addition, the model should provide information about which 
parameters contribute the most to ladle refractory erosion, and what 
precautions can be taken to extend refractory life. 

Physics-based pragmatic model
We now investigate the recommended work flow for the 
development of the abovementioned pragmatic model. The generic 
work flow could be applied to the development of any physics-based 
models. A particular ambition with this work is to develop a hybrid 
model that can base predictions on any combinations of direct use 
of data, indirect use of data, and the physics-based model. However, 
for the physics-based model the data is crucial for tuning the model. 
The justification of tuning is that we are dealing with an extremely 
complex process, containing multiple levels of uncertainty. As part 
of the overall complexity many aspects of critical physical data are 
unknown or have changed due to ageing.  

It was decided to frame the model as PPBM (pragmatism 
in physics-based modelling). Referring to the pragmatism steps 
1–6 above, we first set out to establish the development team, 
comprising mainly two developers. This step is preparatory, and the 
team was selected based on experience and skills. In addition, the 
contributions from the industry were crucial for understanding the 
case and providing relevant data. 

The following text describes the PPBM development in six steps, 
as illustrated in Figure 1.  

Pragmatism step 1: Problem and context identification
Step 1 aims at describing accurately the purpose of the model and 
the quantitative output data the model shall produce, including time 
constraints and accuracy requirements. To facilitate this step we 
employ the user experiences described from the perspective of ladle 
operators at Sidenor. The main user, who is expected to benefit from 
the model results, places the model in the industrial perspective 
and defines its role and contribution to the industry process. We 
discuss our experiences in solving the challenges met during that 

Figure 2 – Left: Schematic of a typical steel ladle, showing wear refractory bricks, permanent lining (between wear bricks and steel casing), steel casing, bottom bricks, 
bottom plug for gas blowing, and tap-hole (nozzle) with slide gate. Right: Hot ladle waiting for the next heat. Maximum steel capacity is around 150 t
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collaboration, which we experienced as very demanding. The actors 
and entities participating in the overall case work flow are shown 
in Figure 3. The step (1) Definition Accepted should have been 
finished at latest after 6 months. However, the problem definition 
and context were continuously challenged without any formal 
requests to change the definition. In addition to developing the 
physics-based model the objective included developing  the model 
in such a way that it can be used in different hybrid approaches, 
combining data and physics-based models. The hybrid approach, 
involving using data to calibrate the model, is included here, while 
development of models that explore the combination of the physics-
based model and all additional available data is outside the scope 
of this development. However, continuous interaction between the 
ML team (MLT) and the physics-based team had to be ensured. 
Important decision gates during the model development process are 
illustrated in Table I.

User story
The main output of this phase, the user story, can be summarized as 
a model of the SM that can predict the average refractory loss for a 
given use of the ladle, and the accumulated loss over the lifespan of 
the ladle. The expected input paramesters are the amounts of steel, 
slag, and additives held in the ladle. Predictions of the temperature 
of the steel, slag, and refractory wall are important determinants 

of refractory loss. We therefore need the temperature in the steel 
as hot steel is added to the ladle. To account for heating during SM 
we need the electrical power that is input as a function of time. 
In addition, we need the time history of applied inert gas and the 
vacuum pressure above the melt. The model must be able to take 
the entire history of the ladle (since the last relining) into account 
when the simulations are run. The state of the refractory wall from 
the previous heat, in terms of temperatures and erosion, must be 
input to the next use of the ladle (next heat). It should be possible to 
continue the simulation when new data is available.

Pragmatism step 2: Analytical strategy and plan
This part of the development included overall model design, 
resulting in a specification document. This document was very 
detailed, but still only a signpost towards the implementation. 
Instead of writing a specific implementation report the code 
included necessary comments and the original specification was 
updated when changes were made. As regards the functionalities 
(how to use the model) no specific documentation was completed 
apart from short text files to explain the scripts. 

The ladle and refractory, with bottom porous plug and tap-hole, 
is three-dimensional. To develop a fast model that can simulate the 
refractory behaviour over weeks in real time, using a full 3D model, 
and with the available time and resources, was deemed infeasible. 

Figure 3 – Development steps for the pragmatism in physics-based modelling (PPBM) 
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However, many of the ladle‘s features can be represented in a 
simplified 2D model. It was therefor decided to move on with a 2D 
model.

The model simplifications are listed below.
 ➤  During part of the ladle operation the ladle is inside a ladle 

furnace (SM mill) with electrodes (for Ohmic heating) 
immersed in the slag. The electrodes have a heating efficiency 
(tuning coefficient) and dynamic effects of heat storage in 
the electrodes are neglected.  However, it was subsequently 
learned that the electrodes do not contact the slag or metal, 
but supply heat via arcs between electrode tip and slag/metal. 
The arcs radiate towards the refractory bricks placed above the 
level of liquid steel and slag. This radiation may be excessive in 
some cases.

 ➤  The additions to the ladle will need time to melt and 
mix. It is assumed that the melting and mixing processes 
are instantaneous. As a result, the model will predict an 
immediate temperature drop when additions are made to 
the melt, while in reality this cooling effect will manifest over 
several minutes. 

 ➤  Vertical heat conduction between the bricks and inside the 
steel casing is neglected.

 ➤ Steel and slag temperatures are represented by mass averages.
 ➤  When hot steel is teemed into a colder ladle thermal cracking 

will occur, increasing with increasing temperature difference. 
These effects are very hard to model in detail and are proposed 
to be dealt with as a hybrid extension of the model.

 ➤  Excessive erosion of refractory above the slag/metal level is 
due to the extremely high temperature of the electrode arcs, 
together with irregular splashing of hot metal during vacuum 
treatment. These erosion phenomena, taking place above the 
average melt surface, are not included in the model. 

Effects which are dealt with are dynamic temperatures in the 
side and bottom refractory bricks, insulation layer, and steel shell. 
When stirring gas is injected 2D CFD simulations were performed 
to compute the distribution of wall shear stresses. In Figure 4 we see 
an example from a 2D simulation of the gas-driven flow in the ladle 
containing both steel and slag. The maximum velocity is around 
0.9 m/s, using a typical gas flow rate that has been used by Sidenor. 
The broken lines show trajectories of gas bubbles released from the 

bottom plug. The methods used here are Lagrangian representation 
of the bubbles, which expand due to the lower hydrostatic pressure 
and vacuum above the melt interface. The slag motion is represented 
by the volume of fluid technique (Wikipedia, 2023). 

Based on a set of these CFD simulations the wall shear stress as 
function of gas flow rate and relative height could be extracted and 
used as input for heat- and mass-transfer models. Based on visual 
observations from video taken at the plant at a late stage of the 
project, it was found that application of the vacuum, together with 
gas stirring, led to a violent agitation in the steel close to the surface. 
This observation resulted in recalculations with CFD to account for 
gas expansion due to the local steel pressure. The result was much 
higher shear stresses close to the surface when vacuum was applied. 
New fitting functions for the wall shear stress as result of relative 
height, gas flow rate, and pressure above the steel were created 
and implemented in the model. It is noticed that when other team 
members visited the plant earlier in the project, the consequences 
of vacuum treatment on gas stirring was not realized and brought 
forward to the system architects team.

  Table I

  Decision gates in model development  (see also Figure 3)
  Decision gate Outcome Resulting procedure scenario Comment

  1.  Case definition accepted Yes Now a physics-based model can be created 
 No Ask industry case owner for more information
  2.   Involved physics  Yes Implementation can start Implementation can start as soon as each sub-model has 

sufficiently  understood?   reached a proper understanding and is well-specified 
 No Involve specialists and relevant literature. The industry case owner can be helpful at this stage

  3.  Available data understood? Yes The model can be run The model can be run as long as the provided data has  
   the right structure. Proper data is only required for  
   decision gate 4 and 5 
 No Go back to the decision gate 2 
  4.   Model acceptable as a sub- Yes Sub-model can now be used in a hybrid model 

model in a hybrid model? No Go back to the decision gate 3 This could be due to data not being understood,  
   assumptions in the physics being wrong or the case  
   definition not being properly understood

  5.  Model can reproduce the data? Yes Model finished 
 No Go back to the decision gates 2 and 3 If tuning model parameters is not sufficient to reproduce  
   the data, both the data and the physics should be reviewed.

Figure 4—CFD simulation of gas-driven flow in the ladle. Regions coloured 
blue and red (at the top) represent volume fractions of steel and slag, 
respectively
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framework is quite generic and several other, standard database 
solutions could also be used).

Description of model implementation
The physics-based model developed here is implemented in Python 
as a single class. This enables a complete state of the model to be 
saved to disk and continued at a later stage. This is important as 
the final version will model several different steel ladles in parallel. 
Each heat-run of the ladle that should be simulated depends on the 
previous modelled state. As the simulation time is specified to be 
significantly shorter than one hour (seconds in reality), while each 
lade is used two or three times a day, we need to be able to start and 
stop the simulation easily. 

The main ladle model depends on several stateless sub-models, 
all described in Johansen, Løvfall, and Rodriguez Duran (2023).

The model is reliant on both static and transient data from the 
plant. The data can be retrieved either from an InfluxDB database 
or from files on disk. Either way, data retrieval is relatively time-
consuming, and is therefore done only when necessary, and the 
required data is stored inside the object and used when needed. 
When a new heat-run is simulated, a new set of data must be 
loaded, and the previous data-set is overwritten. Since the data 
will be loaded several times for the same object, it is loaded 
independently from the model initialization. 

Depending on the model scenario, the same model with the 
same data could be run several times. For instance, the time from 
when casting is finished to when the ladle is filled with steel again 
is modelled as an empty ladle. This is done before the model is 
run again, but this time the full model and data is used. This way 
of using the model requires the possibility of resetting parts of 
the ladle state between the different runs. The temperature in the 
ladle wall, for instance, should not be reset, but parmeters  like the 
amount of steel and simulation time should be reset.

The actual simulation of a specific heat for a of the steel ladle 
is carried out with constant time-steps. First, a preparatory step is 
done, where the amount of steel and slag in the ladle is determined, 
the heat added to the ladle during the time-step is calculated, 
and the gas flow rate and pressure are extracted from the data. In 
addition, the fraction of steel and slag for each cell is determined, 
and the mass lost from the refractory during the time-step is 
calculated.

Next, the new temperature in the steel and the slag is solved for. 
With this given, the temperature in the wall and the bottom layer is 
calculated. Once the model is solved, time-dependent data is stored 
inside the object before the next time-step is carried out.

The mass loss (erosion) of the wall is calculated, and 
accumulated for each time-step, but the wall is eroded only at 
the end of each heat. Due to the different modes that the model 
is run in, the actual wall erosion is controlled from the outside as 
an explicit call to erode the wall. This is done to ensure that the 
temporary runs to create the correct wall temperatures do not affect 
the wall thickness.

The model should always be used with an external script that 
sets up a given scenario to be run. How the scenario is set up has a 
large impact on the results.

After a ladle is re-lined, it is used many times (40–50) before 
parts of the refractory are replaced. The ladle is then used until the 
entire lining needs to be replaced. Between each use of the ladle, 
the wall is not allowed to cool down (if the waiting time is too long 

It was assumed that the slag behaved like a moving ‘lid’, floating 
on top of the liquid steel. The modelled wave agitation of the slag, 
caused by the gas stirring, provided an added local mass transfer 
rate for refractory dissolution into the slag. The assumption of the 
slag behaving as a lid should later be relaxed. This will, however, 
require more complex and time-consuming CFD work. This would 
improve the model in the slag-metal transition region.

Sub-models for refractory dissolution and erosion of the 
steel-wetted refractory, as well as dissolution into the slag, where 
it is present, had to be developed. Data for solubility of refractory 
binder in the steel, and for refractory solubility into the slag, was 
obtained from the literature and from thermodynamic equilibrium 
software (FactSage). The energy equations for slag and steel were 
written in terms of enthalpy, allowing for any relationship between 
temperature, composition, and enthalpy. This is important when 
dealing with cold additions to hot slag and steel.

Pragmatism step 3: Architecture of the analytical framework
Step 3, the architecture of the analytical framework, incorporated 
the designs of both the experiments, data structures and related 
analyses, and model and simulation entities in greater detail. After 
this step the development team should be ready for coordination 
of the experiments, analyses, models, and simulations and data/
information exchange among them. Of course, this phase is usually 
carried in several iterations, usually starting with the proof-of-
concept model (simplest possible representative model), which 
gradually approaches the final result, i.e. the framework ready for 
execution of the work flows (step 4).

The architecture of the model was created in phases. In the 
first phase, a simplified proof-of-concept model was quickly 
implemented (as a monolithic approach) to see how the 
specification was holding up, and if more input was required. This 
proved valuable, as several issues were handled early. Python was 
chosen for building the model. 

Once the basic model was working satisfactorily, the 
implementation was redesigned as a set of modules with well-
defined interfaces to give the required flexibility in future 
applications of the model. We needed a model that could keep 
its state and be flexible enough to enable changes without major 
rewrites. The model itself was implemented as a single class, which 
proved valuable as we had to do several rewrites to accommodate 
unforeseen changes. The use of the model was set up as a series of 
input scripts, executing runs for the LadleModel object, and with 
different purposes. For instance, (i) running a single case, (ii) tuning 
the model with a set of parameters based on one or many cases, and 
(iii) running entire campaigns from first use till demolition. 

The data was originally given as column-based data files (MS 
Excel and csv). In order to efficiently utilize the data, we had to 
pre-process it to fit our needs. For instance, the time-dependent 
data was given as large chunks containing multiple heats. These 
were split into one file for each heat. Later, the data was uploaded 
to a database (InfluxDB)2, and the data reading had to be changed 
to accompany two different sources. With hindsight it would have 
made sense to use a database in the first place. The output of the 
model was handled as a mix of plots, output to screen and the 
results saved to file. For the data from a database, the results were 
written back to the database.

Data was originally provided as csv files. At a later stage, data 
was loaded into InfluxDB. Doing this at a much earlier stage could 
have saved time. The database was chosen by external parties and 
was not a design choice for the pragmatic model (the modelling 2https://www.influxdata.com/ 
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geometry, last temperature before it is filled with metal, time for 
repair of the refractory, and total number of heats before full 
relining of the ladle. At both relining and demolition (full relining) 
the erosion profile in the ladle was mapped. Dynamic data includes 
gas purging, vacuum evolution, heater power, steel temperatures 
(probe-based), alloy and slag-forming additions, time of tapping, 
and idle time until next heat.

The output data from the process is the measured steel 
temperatures and the data for relining and demolition. The number 
of heats before relining and demolition depends on the operator's 
visual assessments. The erosion profiles are maximum values 
and must be compared with the predictions, which are ensemble 
averages.

The execution step was found to be far from linear as it must 
involve multiple iterations. Based on initial execution of the 
model, using available input data, several issues regarding poor 
representation of data were found. As we see from Figure 3, decision 
point 5, when the model fails to reproduce data, we backtrack and 
update the model specification. This process was repeated many 
times throughout the project. 

A good example of industrial data not always reflecting what 
might be expected is the steel temperature data reported by Sidenor. 
The logging system reports a new temperature every second, but 
from the data we could see that the temperature was constant for a 
long time, and then suddenly jumped. We quickly confirmed with 
the industrial partner that the logging system would repeat the last 
temperature value entered until there was a new value. In practice 
the temperature was measured at irregular intervals during the 
heats. We compensated for this by making a linear interpolation 
between the measured points. The temperature series is used to 
compare the calculated values with the measured, but is not used as 
input to the model, with one exception. The first temperature point 
was used as a starting value for the steel temperature in the ladle. 

As the model improved, and we started running more cases, we 
realized that the first temperature sometimes seems inaccurate. For 
instance, we found cases where the temperature increased without 
any energy being added. Further investigation revealed that the first 
temperature ‘measured’ for a heat was the last temperature from 
the previous heat. We thus had no value for the critical starting 
temperature in the ladle. Temperature measurements from the EAF 
proved unsuitable for use as a starting value. We then decided that 
the best way forward was to iterate on the steel temperature by using 
the EAF temperature as a starting value, and minimize R0 (see 
Equation [2]) to a given tolerance, chosen to be 10 K.

To improve the model, we defined a set of tuning parameters. 
We then simulated the erosion state and temperature of the ladle 
continuously over many heats, until the maximum erosion of 
the refractory was 75%. This can be compared with the dynamic 
measured steel temperature in each heat, as well as the number of 
heats that was run until repair was necessary.  

Another critical input for the numerical model is the amount 
of steel in the ladle. This is given in the data, but we found that 
sometimes the results from the numerical model gave a poor match 
with the data, and the reported amount of steel seemed either too 
high (more steel than the ladle can hold) or very low. By going 
through the steps of pragmatic modelling, we found out that the 
reported amount of steel in the ladle was what was cast, and not 
a direct measurement. Casting issues occasionally result in a cast 
being aborted. This will result in the reported steel weight being 
less than that actually used in the refining. The remaining steel will 
then end up being registered to one (or several) later heats. There 

the refractory is heated with burners, although this is not included 
in the model), thus the state of the refractory wall at the end of one 
heat and the waiting time until it is used again are both important 
for the next simulation. All must be taken into account when a 
simulation is run. This is done by allowing the user to control the 
model from the outside. 

When a ladle object is created, no data is read into the object, 
therefore running the model at this stage would fail. This avoids 
having several ways to set the data, and enables the same object to 
be used for consecutive heats without copying results. 

To show how this can be done, we will go through a couple of 
different scenarios.

First of all, it is important to be able to run a single heat 
independently, and to reproduce the results quickly. This way of 
running will not take the history of the ladle into account properly, 
and we need a way to estimate a realistic initial state for the 
refractory wall. 

First we have a method to set the initial wall temperature (so as 
not to start from a totally unrealistic state, which would require a 
long simulation time to obtain a realistic result). This method will 
yield a linear temperature profile between the inner and outermost 
bricks. After reading the relevant production data into the case, we 
can run the case for a given amount of time to heat up the refractory 
to a realistic temperature. From the time that casting is finished to 
the next heat, the ladle will stand idle and the refractory will cool 
significantly. To account for this, we can run the model without steel 
and slag for a given time. The model will not be able to solve all the 
equations properly, and so a flag is set, telling the model that the 
simulation is run with an empty ladle. The ladle state is now ready 
to run the actual simulation. Due to the different modes described 
above we have an additional method to actually erode the ladle wall 
at the end of the simulation. This is to make sure that the temporary 
simulations are not changing the refractory thickness.

A more realistic scenario is to simulate an entire lifespan of 
a ladle. This can be done in much of the same way as described 
above. For the first heat, the recipe will be identical, while for the 
subsequent heats we can use the results of the previous heats as 
the initial state of the refractory. In this case we can also take into 
account the actual time between successive heats, as the waiting 
time between heats is recorded. This is now used to calculate how 
long the ladle is empty. Sometimes the waiting time is so long that a 
burner has to be used to keep the refractory wall warm. This is not 
simulated, and therefore we ignore waiting times longer than three 
hours. 

We had an additional challenge; the initial temperature of the 
steel in the ladle was unknown. The temperature of the the EAF was 
available, but we found that this is not always representative of the 
starting state. To compensate for the unknown steel temperature, 
we iterate to find the initial temperature that results in the smallest 
difference between the calculated steel temperature and the 
measured temperature.

Pragmatism step 4: Execution 
Step 4 coordinates work flows of experiments, models, and 
simulations and executes related data analyses. Ideally it should be 
possible, without any framework changes, to repeat the exercises 
and include them as an integral part of the industrial process. 
However, usually analyses in the evaluation step (step 5 in Figure 1) 
require repeating steps 3–4 until the framework reaches the quality 
needed for support of the industrial process.

The model exemplifies hybrid modelling, where we exploit both 
static data and dynamic data. Static data includes ladle materials, 
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the number of temperature measurements in one heat. Now, if the 
initial steel temperature is incorrect that will drive a large residual 
R1,n. However, this problem is picked up by the residual R0,n defined 
as

[2]

If the predictions are perfect we have, due to incorrect initial 
temperature for the steel, that

Tk,n
prep - Tk,n

measured = DTinitial, resulting in R0,n = DTinitial, and 

R1,n = |DTinitial|. On the other hand, if the temperature levels of both 
simulation and data are identical, we have, R0,n = 0.0, and  

     0. Accordingly, we used  as the overall 

residual to minimize:

[3]

Tuning step (b)
Here we correct the initial temperatures in order to obtain the 
correct steel temperatures for the simulation of refractory erosion. 
Based on step (a) the initial temperatures are corrected for all cases 
where |R0,n|  > 10 K.

Note that in both steps (a) and (b) the erosion is predicted based 
on preliminary tuning. As the refractory is eroded this will also 
impact the thermal dynamics of the system.

Tuning step (c)
Now we tune the erosion part of the model. We have data on when 
a decision was taken to repair the refractory and when it was 
demolished.

We do not have a model for degradation due to thermal shock, 
and this element is for now not considered. As thermal shock is 
most important at the bottom of the ladle, while chemical erosion is 
most pronounced at the slag line, this omission may not be critical 
for the usability of the model. Accordingly, we tune the erosion part 
of the model to match the observed number of uses until repair.

Repair is deemed necessary when the maximum erosion is 
greater than 75% for the three inner bricks. 

We have here a new residual, Θrepair,n to minimize.

[4]

Here N represents the number of heats and n is the campaign 
number.

Tuning step (d)
When we can reproduce the times of repair well, we move on to 
reproduce the number of heats before demolition. In a ladle repair 
the bricks above a given level are repaired, while those below are not 
repaired. This must also be considered for the tuning. Optimally, we 
should find that tuning of the demolition is not required. However, 
it is possible for a repair to change the properties of the refractory 
in a way that necessitates some tuning of the models to handle the 
evolution of erosion after repair.

In this case it was eventually found that no tuning behind step 
(c) was necessary. The model could reproduce the demolition data 
very satisfactorily.

is no way for the numerical model to compensate directly for these 
errors, as was done for the steel temperature. To avoid over-large 
discrepancies, we limit the minimum and maximum amounts of 
steel added to the ladle.

Tuning parameters that were selected were (i) refractory 
conductivity, (ii) melting heat for each addition, (iii) heat transfer 
coefficients (external, external emissivity, metal-wall, slag-wall, 
metal-slag, and slag, refractory and lid emissivity), (iv) electrode 
energy efficiency, and (v) carbon diffusion length in wear bricks. 
Here only the latter deals purely with erosion. 

During testing of the model, it was found that the erosion state 
of the refractory and the evolution of temperature were closely 
coupled. In Figures 5 and 6 we see that the steel temperature is 
higher for a relatively uneroded refractory than for an eroded one. 
This is a result of a lower heat capacity in the eroded refractory. As 
expected, it was found that when the refractory was cold at the time 
of filling, the steel temperature is lower and more heating power is 
needed.

Temperature tuning was done in two steps, using a preliminary 
and approximate erosion model. As we found that the initial 
measured temperature in the data was not relevant, we also needed 
a strategy for obtaining a relevant initial temperature for the steel. 
Fortunately, we had measured temperatures from the EAF that 
could be used, when available. A temperature drop due to transfer 
of the steel had to be assumed.

Tuning step (a)
RMS residual for temperature was defined as 

[1]

Here n expresses a campaign number and Nk (k = 1, .., Nk) is 

Figure 5—Evolution of predicted and measured steel temperature for a 73.6% 
eroded refractory. Heater power is also shown

Figure 6—Evolution of predicted and measured steel temperature for an almost 
fresh (3.9% eroded) refractory. Heater power is also shown
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Pragmatism step 5: Evaluation of the solution
The outcome of the development is twofold. We have a model 
that can deliver certain prediction results. In addition, we have 
a numerical code that can be utilized as an element in multiple 
applications such as cognitive digital twins and other applications 
for asset management and optimization.

The quality of the solution is in this case exemplified by a 
comparison between prediction and measurements at the time of 
demolition, for all ladles and ladle campaigns operated by Sidenor 
in 2019. The result is shown in Figure 7. The averages are carried 
out over bricks 7–35, referring to Figure 8. It must be noted that 
the measurements have picked the bricks which are most eroded 
at each level. In Figure 8 we see typical measured and predicted 
erosion profiles. The measured values are a result of the ladle being 
sectioned in two halves, and where the most eroded bricks for 
each half are measured. As a result, the model should predict lower 
values than what is observed. This is also the case as seen in Figure 
7. We further see from Figure 8 that high erosion is found above 
brick 35, labelled ‘splash-based erosion’. This erosion is a result of 
thermal shock due to intermittent splashing of steel during vacuum 

Figure 7—Comparison between measured and predicted average eroded thickness for all Sidenor ladles in 2019. Colour codes represent different ladle numbers 

Figure 8—Comparison between measured and predicted erosion profiles, at time of demolition of lining, for Sidenor ladle 1, campaign 79, 2019

treatment, combined with low-pressure chemical decomposition 
(Jansson, 2008) of the MgOC bricks, neither of which are accounted 
for in the model. 

It is fair to ask whether the model can support the operators 
in allowing more uses of the refractory before demolition. Based 
on the result in Figure 7 it seems that the answer is yes. The model 
shows a good comparison between measured demolition data and 
what is predicted. All campaigns with predicted erosion thickness 
below 80 mm could be safely extended with more heats. If the 
model predicts that erosion is not excessive but the operator is 
uncertain, this could result in one more heat. We have seen that 
some heats may involve as much as three times or more erosion 
than average heats. This knowledge would also be useful for the 
operator's assessment.

Pragmatism step 6: Conclusion and communication
The conclusions are presented in the final section of this paper. 
Communication is done internally within the team and with the 
industry partner. The present paper is an important part of the 
communication, together with a technical paper (Johansen, Løvfall, 
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➤  Industrial data is not always what it seems to be for outsiders. 
Data documentation might sometimes rely on in-house 
knowledge that is not transparent for outsiders. Thus is it 
important to question all data that could not be explained. The 
data in itself might not be wrong, but the interpretation could 
be.

One could ask, why not go for a pure ML approach here? This 
has been attempted but was found challenging as the amount 
of output data is very limited. Such an approach was, however, 
explored by Mutsam et al. (2019) and they obtained acceptable 
agreement between data, applying both a linear regression model 
and a deep learning neural network model. As part of pre-
processing of their data they removed outliers (unexpected high 
erosion spots). The difference between our and these approaches 
is that we have physical mechanisms that we can touch and 
manipulate and, when tuned to data, this allows us to work outside 
the data window. This cannot be done safely with models relying 
only on interpolating data.

After being tuned to data, the physics-based model is already a 
hybrid digital twin. A natural next step is to explore the deviation 
between the model’s predictions and the results obtained by various 
alternative ML methods. This could help to single out missing 
mechanisms, as well as the degree of randomness in the data (from 
causes we have not recognized or measured).

A final aspect is the introduction of cognition into this task. This 
may happen through various mechanisms, such as: 

i.      The operators use the model actively and build experience 
on how the model predictions and visual observations 
relate. This will increase trust in the model in cases where 
the operator has doubts as to whether to proceed with 
another heat. 

ii.     The model predictions, together with operations data, may 
be presented to the operators as knowledge graphs4. This 
may offers additional support to the operators (Albagli-Kim 
and Beimel, 2022). 

iii.    Self-adaptive algorithms, by learning from data, may 
continuously improve the model.

The pragmatic modelling approach comprises two equally 
important phases: development and exploitation (including use 
of the models and data in the overall decision support systems 
and processes). Both phases require a small, but dedicated, 
team of experts (not necessarily more than 2–3 persons). Their 
engagement should start with the framework development and 
continue with the exploitation of models and produced results/
data. They should also exploit the potential of the framework and 
the continually produced data for further process optimization and 
improvement. This requires continuity of the team and availability 
of the financial resources for a longer period. Without dedicated 
strategic management support, the value of the work be significantly 
reduced, if not lost.

There should be a plan for internal training and model 
adaptation in case the model development is outsourced.

Conclusions
The pragmatism in industrial modelling methodology was applied 
and extended to the development of a model for ladle refractory 
lifespan prediction. The major contributions to the methodology 
were as follows.

and Rodriguez Duran, 2024) that outlines the details of the physics-
based simulation model.

Observations and learning outcomes
The steps in the pragmatism work flow of the presented use case 
had to be adjusted due to limited time and resources. As seen 
from Figure 3, multiple feedback loops had to be implemented 
in the work flow. This was critical to continuously improve the 
understanding of the ladle process, the data, and the physics 
involved. The work was done with an absolute minimum team. 
Such a small team is typical for many industrial developments. The 
learning outcomes from this work may therefore be useful in future 
developments.
➤  The overall development would have been faster if the data 

had been organized in a database (such as TimescaleDB3 or 
InfluxDB) at the outset. This would have allowed for a more 
generic pre-processing and presentation of data and saved 
significant time at later stages in the project. However, the 
initial development would have taken more time.

➤  The code should be modularized as early as possible. This 
makes the code more versatile to use (testing, tuning, 
prediction) and easier to develop and later extend. As our 
model could be accessed as one object, specific scripts 
could be deployed according to need at any stage of the 
development. 

➤  The implementation programming language should be chosen 
to allow agile and rapid application developments, with 
performance a secondary concern until the model structure 
has settled down. The Python programming language is a 
good example of this.

➤  It is very difficult to design a model architecture for the 
start of the project when so many changes and iterations are 
needed. It is then expected that several redesigns of the code 
are required. The initial design should be simple, but effective. 

➤  Need for maturing time: The duration of the work should be 
sufficiently long to allow better understanding of (a) the case, 
(b) the data, and (c) the underlying physics. When the model 
is applied and does not fit with the data this most often pushes 
the understanding to a higher level.

➤  More iterations needed than expected: This is linked to 
maturing time. For the increased maturing time to make a 
difference, more iterations in the work flow is a must.

➤  It was found that data for model tuning was scarce, even if the 
amount of input data was significant. Data for temperature 
validation for the slag was not available, as was the case 
for refractory temperature below the steel surface. The 
only information available was the state of the refractory 
before repair (typically after more than 40 heats) and at the 
time of demolition. The erosion difference between heats 
is only obtained from our model predictions. The model 
predicts a one-dimensional erosion profile while the data 
shows variation in erosion along the perimeter of the ladle. 
The details of this variation have been recorded recently. 
Unfortunately, this information is too late to be processed in 
the COGNITWIN project. This information is critical for a 
more quantitative assessment of the stochastic variations in 
erosion, which is beyond the capabilities of the current model. 
Processing this information to assess the variability in erosion 
at different levels above the ladle bottom would be of help 
in interpreting the model predictions in terms of maximum 
erosion at different levels in the ladle.

3https://www.timescale.com/ 
4https://en.wikipedia.org/wiki/Knowledge_graph
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i)      Processes in the metallurgical industry are complex in 
many dimensions. Operational data will entail many 
challenges and sometimes the data does not express what 
it seemingly is supposed to express. Therefore, it is critical 
that the solution architects have some experience with this 
type of industry to enable good communication with the 
industry experts.

ii)     Developing a model based on a slim team (a core team 
of two scientists) should be extended in time, allowing 
multiple iterations in the development process. Allocating 
large funding resources to be utilized over a short time 
would be costly and would produces less valuable results.

iii)    A well-defined tuning strategy was implemented. However, 
exact tuning was not possible as data relevant for operation 
is monitored, but not data that would be useful for model 
tuning and validation. As a result, only approximate tuning 
was possible. Tuning should ensure that all qualitative 
variations in the data are accommodated. In this case the 
model can be used in a semi-quantitative manner, where 
model predictions, visual inspections of the ladle refractory, 
and operator experience  together inform the decision 
whether the lining should be demolished or not.
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Nome-nclature
AI Artificial intelligence
BF  Blast furnace
EAF Electric arc furnace 
Campaign  The campaign, is given an ID number, and for given 

ladle number, starts with the first use with new lining, 
and ends with the demolition of the lining.

LF Ladle furnace
ML Machine learning 
MLT Machine learning team
SM Secondary metallurgy 
Tn,k Temperature [K]
Θn Residual, defined by Equation [3]
VD Vacuum degasser
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